JP2006153720A - Rotation angle-detecting device - Google Patents

Rotation angle-detecting device Download PDF

Info

Publication number
JP2006153720A
JP2006153720A JP2004346410A JP2004346410A JP2006153720A JP 2006153720 A JP2006153720 A JP 2006153720A JP 2004346410 A JP2004346410 A JP 2004346410A JP 2004346410 A JP2004346410 A JP 2004346410A JP 2006153720 A JP2006153720 A JP 2006153720A
Authority
JP
Japan
Prior art keywords
rotation angle
magnetic field
gear
soft magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004346410A
Other languages
Japanese (ja)
Other versions
JP4737372B2 (en
Inventor
Toshinao Kido
利尚 木戸
Seiji Fukuoka
誠二 福岡
Kimiko Oi
きみ子 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004346410A priority Critical patent/JP4737372B2/en
Publication of JP2006153720A publication Critical patent/JP2006153720A/en
Application granted granted Critical
Publication of JP4737372B2 publication Critical patent/JP4737372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate necessity of arranging a permanent magnet onto a detection objective gear as required in a conventional device, by integrating a magnetoelectric conversion element and a magnetic field generation means to detect a protrusion or a recess of a soft magnetic rotor, and to require no working expense for the recess for arranging the permanent magnet to reduce cost. <P>SOLUTION: This rotation angle-detecting device for detecting a rotation angle of a gear 1 is provided with the gear 1 of of a soft magnetic body having teeth 1a as the protrusions, spin valve type great magnetic field resistance effect elements R1-R4 for obtaining angle information of the gear 1, and the permanent magnet 15 for impressing a bias magnetic field to the elements R1-R4. The elements R1-R4 and the permanent magnet 15 are positioned to be stored inside a housing of a case 25. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁電変換素子を用いて軟磁性回転体の回転に伴う磁界変化を非接触で検出する検出装置に係り、特に工業用工作機械や、自動車のエンジン等に用いられる回転弁等の回転角度を検出するために、スピンバルブ型巨大磁気抵抗効果素子等の磁電変換素子を用いた回転角度検出装置に関するものである。   The present invention relates to a detection device that uses a magnetoelectric conversion element to detect a magnetic field change accompanying rotation of a soft magnetic rotator in a non-contact manner, and in particular, rotation of a rotary valve or the like used for industrial machine tools, automobile engines, and the like. The present invention relates to a rotation angle detection device using a magnetoelectric conversion element such as a spin valve type giant magnetoresistive effect element in order to detect an angle.

従来、検出すべき移動体が回転体である回転角度検出装置としては、回転角度を検出するために回転軸の端部に永久磁石を設け、その回転軸の回転と同期した磁界変動を磁電変換素子で電気信号に変換し、回転角度を非接触で検出するものがあり、例えば、下記特許文献1に開示されている回転角度検出装置が知られている。   Conventionally, as a rotational angle detection device in which the moving body to be detected is a rotating body, a permanent magnet is provided at the end of the rotating shaft in order to detect the rotating angle, and the magnetic field fluctuations synchronized with the rotation of the rotating shaft are converted to magnetoelectric conversion. There is one that converts an electrical signal by an element and detects a rotation angle in a non-contact manner. For example, a rotation angle detection device disclosed in Patent Document 1 below is known.

特開2001−289610号公報 特許文献1のような回転角度検出装置では、回転軸に回転弁が取り付けられており、その回転弁の回転角度を検出対象とする構成であるが、図8(A),(B)のように、永久磁石60は、回転弁が取り付けられた回転軸62の端部にある開閉動力伝達用歯車61の中心部に形成された円柱状凹部61aに取り付けられている。磁電変換素子65は回転軸62を軸支している本体フレーム側に固定配置されている。JP, 2001-289610, A In a rotation angle detection device like patent documents 1, a rotation valve is attached to a rotating shaft, and it is the composition which makes the detection object the rotation angle of the rotation valve. ), (B), the permanent magnet 60 is attached to a cylindrical recess 61a formed at the center of the opening / closing power transmission gear 61 at the end of the rotary shaft 62 to which the rotary valve is attached. . The magnetoelectric conversion element 65 is fixedly disposed on the main body frame side that supports the rotating shaft 62.

上記特許文献1の装置は、開閉動力伝達用歯車に永久磁石取付用の凹部(溝部)を設け、ここに永久磁石を取り付ける必要があるため、動力伝達用歯車の加工コストが高くなるという問題があった。   The device of Patent Document 1 has a problem that the machining cost of the power transmission gear is increased because the opening / closing power transmission gear needs to be provided with a concave portion (groove) for mounting the permanent magnet and the permanent magnet needs to be mounted here. there were.

本発明は、上記の点に鑑み、磁電変換素子と磁界発生手段とを一体として検出対象としての軟磁性回転体の凸部又は凹部を検知する構成とすることで、従来装置のように検出対象側歯車に永久磁石を配置する必要性を無くして、永久磁石を配置するための凹部の加工費用を無くし、コストを低減することが可能な回転角度検出装置を提供することを目的とする。   In view of the above points, the present invention is configured to detect a convex portion or a concave portion of a soft magnetic rotating body as a detection target by integrating the magnetoelectric conversion element and the magnetic field generation unit, and thus the detection target as in the conventional device. It is an object of the present invention to provide a rotation angle detection device that eliminates the need to dispose a permanent magnet on a side gear, eliminates the cost of processing a recess for disposing the permanent magnet, and reduces the cost.

また、本発明は、磁電変換素子と磁界発生手段とを互いに位置決めした状態で一体としておくことで、取り付け時に磁電変換素子と磁界発生手段の相互位置関係がばらつくことに起因する検出精度低下を防止可能な回転角度検出装置を提供することをもう1つの目的とする。   In addition, the present invention prevents the detection accuracy from deteriorating due to variation in the mutual positional relationship between the magnetoelectric conversion element and the magnetic field generating means during mounting by integrally positioning the magnetoelectric conversion element and the magnetic field generating means in a mutually positioned state. It is another object to provide a possible rotation angle detection device.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明に係る回転角度検出装置は、少なくとも1つ以上の凸部又は凹部を有する軟磁性回転体と、前記軟磁性回転体の角度情報を得る少なくとも2つ以上の磁電変換素子と、該磁電変換素子にバイアス磁界を印加する磁界発生手段とを有し、前記軟磁性回転体の回転角度を検出する構成において、
前記磁電変換素子と前記磁界発生手段とを位置決めして、同一ハウジング内に収納したことを特徴としている。
In order to achieve the above object, a rotation angle detecting device according to the present invention includes a soft magnetic rotator having at least one convex portion or a concave portion, and at least two or more angle information for obtaining the soft magnetic rotator. In a configuration having a magnetoelectric conversion element and magnetic field generating means for applying a bias magnetic field to the magnetoelectric conversion element, and detecting a rotation angle of the soft magnetic rotator,
The magnetoelectric conversion element and the magnetic field generating means are positioned and housed in the same housing.

前記回転角度検出装置において、前記軟磁性回転体は、動力伝達用の歯車である構成としてもよい。   In the rotation angle detection device, the soft magnetic rotator may be a power transmission gear.

前記回転角度検出装置において、前記軟磁性回転体の前記凸部又は凹部を有する面に、前記磁電変換素子が対向配置された構成であるとよい。   In the rotation angle detecting device, the magnetoelectric conversion element may be arranged to face the surface of the soft magnetic rotating body having the convex portion or the concave portion.

前記磁電変換素子は、スピンバルブ型巨大磁気抵抗効果素子であるとよい。   The magnetoelectric conversion element may be a spin valve type giant magnetoresistive element.

本発明に係る回転角度検出装置によれば、検出対象である回転体に、永久磁石を設ける必要性が無く、磁石取付用の凹部又は溝部を設ける加工も不要となるため、加工費用を削減することができる。また、検出対象である回転体が軟磁性体である場合、その凸部又は凹部を検出するので、軟磁性体に永久磁石配置のための凹部又は溝部を形成しなくて済み、薄型化(小型化)を図ることができる。   According to the rotation angle detection device according to the present invention, there is no need to provide a permanent magnet on a rotating body to be detected, and processing for providing a recess or groove for attaching a magnet is not necessary, thereby reducing processing costs. be able to. Further, when the rotating body to be detected is a soft magnetic material, the convex portion or the concave portion is detected, so that it is not necessary to form a concave portion or a groove portion for arranging the permanent magnet in the soft magnetic material, and the thickness is reduced (small size). ).

また、磁電変換素子と磁界発生手段とを位置決めし、同一ハウジング内に収納したことで、前記磁電変換素子と磁界発生手段との相対位置調整要素を減らすことができ、両者の位置関係のばらつきに起因する検出精度低下を防止できる。   Further, by positioning the magnetoelectric conversion element and the magnetic field generating means and storing them in the same housing, the relative position adjusting element between the magnetoelectric conversion element and the magnetic field generating means can be reduced, and the positional relationship between them can be varied. It is possible to prevent the detection accuracy from being lowered.

以下、本発明を実施するための最良の形態として、回転角度検出装置の実施の形態を図面に従って説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a rotation angle detection device will be described below with reference to the drawings as the best mode for carrying out the present invention.

図1及び図2(A),(B)は本発明に係る回転角度検出装置の実施の形態であって、軟磁性材回転体の回転情報を得るための回転角度検出装置を構成した場合を示す。また、ここでは、磁電変換素子として磁気抵抗効果素子、とくにベクトル検知型であるスピンバルブ型巨大磁気抵抗効果素子(以下、SV−GMR素子)を用いる。   1 and 2 (A) and 2 (B) show an embodiment of a rotation angle detection device according to the present invention, in which a rotation angle detection device for obtaining rotation information of a soft magnetic material rotating body is configured. Show. Further, here, a magnetoresistive effect element, in particular, a spin-valve giant magnetoresistive effect element (hereinafter referred to as an SV-GMR element) that is a vector detection type is used as the magnetoelectric conversion element.

図1及び図2(B)に示すように、軟磁性材回転体としての動力伝達用歯車1は、円周となっている外周面に一定間隔の配列ピッチPで所定数の歯(凸部)1aを設けた構成である。この動力伝達用歯車1は回転軸2の端部に固着されており、自動車のエンジン等に用いられる回転弁の回転角度を検出する用途の場合には、回転軸2に回転弁が取り付けられている。   As shown in FIG. 1 and FIG. 2B, a power transmission gear 1 as a soft magnetic material rotating body has a predetermined number of teeth (convex portions) at an arrangement pitch P of a constant interval on an outer peripheral surface that is a circumference. ) 1a. The power transmission gear 1 is fixed to the end of the rotary shaft 2, and in the case of detecting the rotation angle of a rotary valve used in an automobile engine or the like, the rotary shaft 2 is attached to the rotary shaft 2. Yes.

動力伝達用歯車1の歯1aを形成した外周面に対向して、これより90°位相差2信号(A相及びB相)を得るための磁気抵抗効果素子として、2つの対をなすSV−GMR素子R1〜R4(つまり、R1とR2の対、及びR3とR4の対)が配置されている。また、SV−GMR素子R1〜R4にバイアス磁界を印加するバイアス磁界発生手段としてバイアス磁石15を配置している。これらのSV−GMR素子R1〜R4とバイアス磁石15とはケース25(図1の点線部分)内の同一ハウジング内に配置されている。SV−GMR素子R1〜R4とバイアス磁石15は相互に位置決めされて基板30に装着されているが、図1においては、基板30を省略している。SV−GMR素子R1〜R4とバイアス磁石15との配置の詳細については後述する。   As a magnetoresistive effect element for obtaining a 90 ° phase difference 2 signal (A phase and B phase) opposite to the outer peripheral surface on which the teeth 1a of the power transmission gear 1 are formed, two pairs of SV- GMR elements R1 to R4 (that is, a pair of R1 and R2 and a pair of R3 and R4) are arranged. Further, a bias magnet 15 is arranged as a bias magnetic field generating means for applying a bias magnetic field to the SV-GMR elements R1 to R4. These SV-GMR elements R1 to R4 and the bias magnet 15 are arranged in the same housing in the case 25 (dotted line portion in FIG. 1). The SV-GMR elements R1 to R4 and the bias magnet 15 are positioned relative to each other and mounted on the substrate 30, but the substrate 30 is omitted in FIG. Details of the arrangement of the SV-GMR elements R1 to R4 and the bias magnet 15 will be described later.

なお、図1では解りやすくするためにSV−GMR素子R1〜R4をバイアス磁石15に比較して大きく図示したが、実際には微小寸法である。例えば、SV−GMR素子R1〜R4は4個あわせて1mm角程度、バイアス磁石15は5mm角程度の大きさである。   In FIG. 1, the SV-GMR elements R <b> 1 to R <b> 4 are illustrated larger than the bias magnet 15 for easy understanding, but in actuality, the dimensions are small. For example, four SV-GMR elements R1 to R4 are about 1 mm square, and the bias magnet 15 is about 5 mm square.

図2及び図3のように、2つの対をなすSV−GMR素子R1〜R4とバイアス磁石15とは、歯車1の外周面が移動する方向(外周面の接線方向)及び回転軸2に対して平行に対向して配置された基板30に相互に位置決めして装着されている。前記2つの対をなすSV−GMR素子R1〜R4のうち一方の対をなすSV−GMR素子R1,R2は、前記基板30の一方の面(歯車1の外周面と対向する面)上に、回転軸2と平行な方向(歯車厚み方向)に並んで配列されている。SV−GMR素子R1,R2の感磁面は歯車外周面に対向し、かつピン層磁化方向は回転体1の移動方向に対して互いに略順方向と略逆方向を向くように配置されている。   As shown in FIGS. 2 and 3, two pairs of SV-GMR elements R <b> 1 to R <b> 4 and the bias magnet 15 are in a direction in which the outer peripheral surface of the gear 1 moves (tangential direction of the outer peripheral surface) and the rotating shaft 2. The substrates 30 are mounted so as to be positioned relative to each other. Among the two pairs of SV-GMR elements R1 to R4, one pair of SV-GMR elements R1 and R2 is on one surface of the substrate 30 (a surface facing the outer peripheral surface of the gear 1). They are arranged side by side in a direction (gear thickness direction) parallel to the rotating shaft 2. The magnetosensitive surfaces of the SV-GMR elements R1 and R2 face the outer peripheral surface of the gear, and the pin layer magnetization directions are arranged so as to be substantially forward and substantially opposite to the moving direction of the rotating body 1, respectively. .

前記2つの対をなすSV−GMR素子R1〜R4のうち他方の対をなすSV−GMR素子R3,R4も、前記基板30の一方の面(歯車1と対向する面)上に、回転軸2と平行な方向に並んで配列されている。この場合も、SV−GMR素子R3,R4の感磁面は歯車外周面に対向し、かつピン層磁化方向は歯車1の移動方向に対して互いに略順方向と略逆方向を向くように配置されている。ここで、図4に示すように、前記他方の対をなすSV−GMR素子R3,R4の配列は、前記一方の対をなすSV−GMR素子R1,R2の配列から歯車1の移動方向に配列間隔Lだけ離れた位置となっている。但し、配列間隔Lは、歯車1の歯1aの配列ピッチをPとしたとき、
L=nP±P/4 (nは整数) …(1)
である。
Of the two pairs of SV-GMR elements R1 to R4, the other pair of SV-GMR elements R3 and R4 also has a rotating shaft 2 on one surface of the substrate 30 (the surface facing the gear 1). Are arranged side by side in parallel to the direction. Also in this case, the magnetosensitive surfaces of the SV-GMR elements R3 and R4 are opposed to the outer peripheral surface of the gear, and the pinned layer magnetization directions are arranged in substantially forward and substantially opposite directions with respect to the moving direction of the gear 1. Has been. Here, as shown in FIG. 4, the arrangement of the other pair of SV-GMR elements R3 and R4 is arranged in the moving direction of the gear 1 from the arrangement of the one pair of SV-GMR elements R1 and R2. The positions are separated by an interval L. However, the arrangement interval L is P when the arrangement pitch of the teeth 1a of the gear 1 is P.
L = nP ± P / 4 (n is an integer) (1)
It is.

バイアス磁界発生用のバイアス磁石15は、前記基板30の他方の面(歯車1と反対側の面)上に、SV−GMR素子R1からR2を見た略延長線上(R3からR4を見た略延長線上でもある)に配置されている。そして、歯車1が存在しないときに、SV−GMR素子R1〜R4位置での磁界が当該SV−GMR素子R1〜R4の感磁面に平行な磁界成分を主に有し、かつ各SV−GMR素子R1〜R4のピン層磁化方向に略垂直な磁束を発生する磁極配置(例えば、磁極面15aが前記感磁面に略垂直)となっている。なお、SV−GMR素子R1〜R4を前記基板30の一方の面(歯車1と対向する面)上に、バイアス磁石15は前記基板30の他方の面(歯車1と反対側の面)上に、それぞれ配置してあるので、バイアス磁石15がSV−GMR素子R1〜R4の感磁面と歯車1の外周面間のギャップにはみ出すことはない。   The bias magnet 15 for generating the bias magnetic field is on the other surface of the substrate 30 (the surface opposite to the gear 1) on a substantially extended line when viewing the SV-GMR elements R1 to R2 (approximately when viewing R3 to R4). (Also on the extension line). When the gear 1 is not present, the magnetic field at the position of the SV-GMR elements R1 to R4 mainly has a magnetic field component parallel to the magnetic sensitive surface of the SV-GMR elements R1 to R4, and each SV-GMR A magnetic pole arrangement (for example, the magnetic pole surface 15a is substantially perpendicular to the magnetic sensitive surface) that generates a magnetic flux substantially perpendicular to the pinned layer magnetization direction of the elements R1 to R4 is employed. The SV-GMR elements R1 to R4 are placed on one surface of the substrate 30 (the surface facing the gear 1), and the bias magnet 15 is placed on the other surface of the substrate 30 (the surface opposite to the gear 1). In this case, the bias magnet 15 does not protrude into the gap between the magnetic sensitive surface of the SV-GMR elements R1 to R4 and the outer peripheral surface of the gear 1.

図5(A)のように、対をなすSV−GMR素子R1,R2の直列接続及び対をなすSV−GMR素子R3,R4の直列接続に対して供給電圧Vinが供給され、SV−GMR素子R1,R2の接続点とアース(GND)間の電圧が図5(B)のA相の検出出力として得られるとともに、SV−GMR素子R3,R4の接続点とアース間の電圧がB相(A相に対して位相が90°ずれている)の検出出力として得られるようになっている(動作原理については以下の図6で説明する。)。   As shown in FIG. 5A, the supply voltage Vin is supplied to the series connection of the paired SV-GMR elements R1 and R2 and the series connection of the paired SV-GMR elements R3 and R4, and the SV-GMR element The voltage between the connection point of R1 and R2 and the ground (GND) is obtained as the A-phase detection output of FIG. 5B, and the voltage between the connection point of SV-GMR elements R3 and R4 and the ground is the B phase ( (The operation principle will be described in FIG. 6 below).

SV−GMR素子は、磁化方向が一方向に固定されたピン層と、電流が主として流れる非磁性層と、磁化方向が外部磁界方向(外部磁束方向)に一致するフリー層とで構成されている。ピン層磁化方向と外部磁界のベクトル方向が一致するときは低抵抗値となり、SV−GMR素子面内において外部磁界のベクトル方向を回転させると、ピン層磁化方向となす角度により抵抗値が変化し、反対方向のとき高抵抗値となる。この特性が図6(B)に示すSV−GMR素子の面内磁気特性であり、図6(A)のようにSV−GMR素子の感磁面に平行な外部磁界が存在する条件下で、外部磁界を感磁面に垂直な回転中心軸にて回転させ、ピン層磁化方向に対する回転角度と抵抗変化率(ΔR/R)との関係を示したものである。この場合、抵抗変化率(ΔR/R)は正弦波に近い波形でなだらかに変化し、飽和領域は生じない。   The SV-GMR element is composed of a pinned layer whose magnetization direction is fixed in one direction, a nonmagnetic layer through which a current mainly flows, and a free layer whose magnetization direction matches the external magnetic field direction (external magnetic flux direction). . When the pin layer magnetization direction matches the external magnetic field vector direction, the resistance value is low. When the external magnetic field vector direction is rotated in the SV-GMR element plane, the resistance value changes depending on the angle formed with the pin layer magnetization direction. In the opposite direction, the resistance value is high. This characteristic is the in-plane magnetic characteristic of the SV-GMR element shown in FIG. 6B. Under the condition that an external magnetic field parallel to the magnetosensitive surface of the SV-GMR element exists as shown in FIG. This shows the relationship between the rotation angle with respect to the pinned layer magnetization direction and the rate of change in resistance (ΔR / R) by rotating the external magnetic field around the rotation center axis perpendicular to the magnetosensitive surface. In this case, the rate of change in resistance (ΔR / R) changes gently with a waveform close to a sine wave, and no saturation region occurs.

本実施の形態では、図6(B)で示したSV−GMR素子の面内磁気特性を利用するものである。すなわち、図6(A)のようにSV−GMR素子の感磁面に平行なバイアス磁石によるバイアス磁界を印加する条件下で外部磁界を変化させ、同図(B)の角度90°近傍において直線的に変化する面内磁気特性を利用して、同図(C)の略正弦波の(飽和領域の無い)出力波形を得るようにしている。   In this embodiment, the in-plane magnetic characteristics of the SV-GMR element shown in FIG. 6B are used. That is, as shown in FIG. 6A, the external magnetic field is changed under the condition that a bias magnetic field is applied by a bias magnet parallel to the magnetosensitive surface of the SV-GMR element, and a straight line is formed near an angle of 90 ° in FIG. By utilizing the in-plane magnetic characteristics that change with time, an output waveform of a substantially sine wave (without a saturation region) in FIG.

従って、図1の本実施の形態の配置において、動力伝達用歯車1(移動情報を得るための軟磁性材回転体兼用)の歯1aがSV−GMR素子R1,R2の対の真っ正面に対向しているときは、各SV−GMR素子R1,R2の感磁面に平行な磁界成分の向きは歯1aの影響を受けず、ピン層磁化方向に略垂直である。それに対し、歯車1の歯1aがSV−GMR素子R1,R2の正面位置から左側にずれた位置では、前記感磁面に平行な磁界成分の向きは歯1aの影響を受けて左側に曲がる(磁極面15aから出た磁束は左側に曲がる)。また、歯車1の歯1aがSV−GMR素子R1,R2の正面位置から右側にずれた位置では、前記感磁面に平行な磁界成分の向きは凸部2の影響を受けて右側に曲がる(磁極面15aから出た磁束は右側に曲がる)。従って、図6(B)の実線矢印の動作範囲で歯車1の回転に伴いピン層磁化方向に対する外部磁界方向が周期的に変化し、図6(C)のような略正弦波の検出出力が得られる。   Accordingly, in the arrangement of the present embodiment of FIG. 1, the tooth 1a of the power transmission gear 1 (also used as a soft magnetic material rotating body for obtaining movement information) faces the front of the pair of SV-GMR elements R1 and R2. In this case, the direction of the magnetic field component parallel to the magnetosensitive surface of each SV-GMR element R1, R2 is not affected by the teeth 1a and is substantially perpendicular to the pinned layer magnetization direction. On the other hand, at the position where the tooth 1a of the gear 1 is shifted to the left from the front position of the SV-GMR elements R1 and R2, the direction of the magnetic field component parallel to the magnetosensitive surface is bent to the left by the influence of the tooth 1a ( The magnetic flux emitted from the magnetic pole surface 15a bends to the left). At the position where the tooth 1a of the gear 1 is shifted to the right side from the front position of the SV-GMR elements R1 and R2, the direction of the magnetic field component parallel to the magnetosensitive surface is bent to the right side due to the influence of the convex portion 2 ( The magnetic flux emitted from the magnetic pole surface 15a bends to the right). Therefore, the external magnetic field direction with respect to the pinned layer magnetization direction periodically changes with the rotation of the gear 1 within the operation range indicated by the solid arrow in FIG. 6B, and a substantially sine wave detection output as shown in FIG. can get.

このことは、SV−GMR素子R3,R4の対についても同様であり、移動情報を得るためのSV−GMR素子R1,R2の対とSV−GMR素子R3,R4の対との配列間隔Lが前記(1)式の関係となっていることで、図5(B)に示す互いに90°の位相差を有するA相及びB相の実質的に正弦波の電圧波形が得られる。   This also applies to the pair of SV-GMR elements R3 and R4, and the arrangement interval L between the pair of SV-GMR elements R1 and R2 and the pair of SV-GMR elements R3 and R4 for obtaining movement information is the same. Due to the relationship of the above expression (1), a substantially sine voltage waveform of A phase and B phase having a phase difference of 90 ° as shown in FIG. 5B can be obtained.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) 動力伝達用歯車1を検出対象となる軟磁性材回転体として用いることができ、しかもその歯車1に、磁石取付用凹部(溝部)を設ける加工をする必要がないため、構造を簡素化し、加工費用を削減することができ、かつ、前記歯車1の回転軸方向の厚みを減らし、薄くすることができる。また、自動車のエンジン等に用いられる回転弁の回転角度検出装置に適用した場合には、装置形状の小型化を図ることができる。 (1) Since the power transmission gear 1 can be used as a soft magnetic material rotating body to be detected, and the gear 1 does not need to be provided with a magnet mounting recess (groove), the structure is simplified. Thus, the processing cost can be reduced, and the thickness of the gear 1 in the direction of the rotation axis can be reduced and reduced. In addition, when applied to a rotation angle detection device for a rotary valve used in an automobile engine or the like, the device shape can be reduced in size.

(2) また、2つの対をなすSV−GMR素子R1〜R4とバイアス磁石15とを基板30上に位置決めして取り付け、ケース25の同一ハウジング内に収納したことで、前記SV−GMR素子R1〜R4と前記バイアス磁石15との相対位置を予め正確に規定して、両者間の位置ばらつきを無くして角度検出精度の向上を図ることができる。 (2) Further, the SV-GMR elements R1 to R4 and the bias magnet 15 that form two pairs are positioned and mounted on the substrate 30 and housed in the same housing of the case 25, whereby the SV-GMR element R1. The relative position between R4 and the bias magnet 15 can be accurately defined in advance to eliminate positional variations between the two and improve angle detection accuracy.

(3) ベクトル検知型磁気抵抗効果素子としてのSV−GMR素子を用いており、強度検知型の磁気抵抗効果素子を用いている他の装置に比較して、バイアス磁石の発生磁界強弱ばらつきや、軟磁性材回転体である動力伝達用歯車1と磁気抵抗効果素子間ギャップ(組付けばらつき)には影響されないので検出出力信号の安定化を図ることができる。 (3) The SV-GMR element is used as a vector detection type magnetoresistive effect element, and compared with other devices using the strength detection type magnetoresistive effect element, the generated magnetic field intensity variation of the bias magnet, Since it is not affected by the gap (assembly variation) between the power transmission gear 1 which is a soft magnetic material rotating body and the magnetoresistive effect element, the detection output signal can be stabilized.

(4) 図6(A)のようにSV−GMR素子の感磁面に平行なバイアス磁界を印加して素子面内磁気特性を利用し、かつ動作範囲を図6(B)のようにピン層磁化方向と磁界が略直交する点を中心として両者の角度が変化する部分を利用するため(SV−GMR素子面内磁気特性変化の直線部を活用するため)、A相及びB相の検出出力として飽和の無い正弦波にきわめて近い波形が得られる。 (4) Apply a bias magnetic field parallel to the magnetosensitive surface of the SV-GMR element as shown in FIG. 6A to use the in-plane magnetic characteristics, and the operating range is pinned as shown in FIG. 6B. Detection of the A phase and the B phase in order to use a portion where the angle of both changes around the point where the magnetization direction of the layer and the magnetic field are substantially orthogonal (to utilize the linear portion of the in-plane magnetic property change of the SV-GMR element). A waveform very close to a sine wave without saturation can be obtained as an output.

(5) SV−GMR素子R1,R2の対、及びSV−GMR素子R3,R4の対は、ピン層磁化方向が歯車1の移動方向に対し、互いに略順方向と略逆方向を向くようにしたので、各SV−GMR素子の対を直列接続して供給電圧Vinを供給し、SV−GMR素子同士の接続点から検出出力を取り出すことで、1個のSV−GMR素子を使用する場合の2倍の検出出力が得られる。 (5) The pair of SV-GMR elements R1 and R2 and the pair of SV-GMR elements R3 and R4 are such that the pinned layer magnetization direction is substantially forward and substantially opposite to the movement direction of the gear 1. Therefore, a pair of SV-GMR elements are connected in series to supply a supply voltage Vin, and a detection output is taken out from a connection point between the SV-GMR elements, so that one SV-GMR element is used. Double detection output is obtained.

図7(A),(B)は本発明の他の実施の形態であって、検出対象の軟磁性材回転体としての回転角度検出用歯車50を、動力伝達用歯車1と別に構成して回転軸2に固着したものである。この場合、回転角度検出用歯車50の歯50aを形成した外周面に対向して、これより90°位相差2信号(A相及びB相)を得るための磁気抵抗効果素子として、2つの対をなすSV−GMR素子R1〜R4が配置されている。また、SV−GMR素子R1〜R4にバイアス磁界を印加するバイアス磁界発生手段としてバイアス磁石15を配置している。なお、その他の構成は前述した実施の形態と同様である。   FIGS. 7A and 7B show another embodiment of the present invention, in which a rotation angle detection gear 50 as a soft magnetic material rotating body to be detected is configured separately from the power transmission gear 1. It is fixed to the rotating shaft 2. In this case, two pairs of magnetoresistive effect elements for obtaining 90 ° phase difference two signals (A phase and B phase) are obtained by facing the outer peripheral surface on which the teeth 50a of the rotation angle detecting gear 50 are formed. SV-GMR elements R1 to R4 are arranged. Further, a bias magnet 15 is arranged as a bias magnetic field generating means for applying a bias magnetic field to the SV-GMR elements R1 to R4. Other configurations are the same as those in the above-described embodiment.

この図7の実施の形態によれは、回転角度検出用歯車50の歯数を、動力伝達用歯車1の歯数とは関係なく設定することができる。   According to the embodiment of FIG. 7, the number of teeth of the rotation angle detecting gear 50 can be set irrespective of the number of teeth of the power transmission gear 1.

上記各実施の形態において、軟磁性材回転体としての歯車の代わりに、半円周等の曲面を有する軟磁性材回転体を用いることも可能である。   In each of the above embodiments, a soft magnetic material rotating body having a curved surface such as a semicircular circumference can be used instead of the gear as the soft magnetic material rotating body.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る回転角度検出装置の実施の形態であって、検出対象の動力伝達用歯車、SV−GMR素子及びバイアス磁石の配置を示す全体構成の斜視図である。1 is a perspective view of an overall configuration showing an arrangement of a power transmission gear, an SV-GMR element, and a bias magnet to be detected, which is an embodiment of a rotation angle detection device according to the present invention. 実施の形態であって、(A)は側面図、(B)は正面図である。It is embodiment, (A) is a side view, (B) is a front view. 基板上における、回転情報(A相、B相)を得るSV−GMR素子及びバイアス磁石の配置を示す要部斜視図である。It is a principal part perspective view which shows arrangement | positioning of the SV-GMR element and bias magnet which obtain rotation information (A phase, B phase) on a board | substrate. SV−GMR素子の配列間隔Lと歯車の歯1aの配列ピッチPとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the arrangement space | interval L of an SV-GMR element, and the arrangement pitch P of the gear tooth 1a. 実施の形態において、(A)は互いに位相が90°ずれたA相及びB相の出力信号を取り出すための回路図、(B)はA相及びB相の出力信号の波形図である。In the embodiment, (A) is a circuit diagram for taking out A-phase and B-phase output signals whose phases are shifted from each other by 90 °, and (B) is a waveform diagram of A-phase and B-phase output signals. 本発明で用いるSV−GMR素子の面内磁気特性を示す説明図である。It is explanatory drawing which shows the in-plane magnetic characteristic of the SV-GMR element used by this invention. 本発明の他の実施の形態であって、(A)は側面図、(B)は正面図である。It is other embodiment of this invention, Comprising: (A) is a side view, (B) is a front view. 従来の回転角度検出装置であって、(A)は側断面図、(B)は正面図である。It is the conventional rotation angle detection apparatus, Comprising: (A) is a sectional side view, (B) is a front view.

符号の説明Explanation of symbols

1 動力伝達用歯車
1a,50a 歯
2 回転軸
15 バイアス磁石
25 ケース
30 基板
50 回転角度検出用歯車
R1〜R4 SV−GMR素子
DESCRIPTION OF SYMBOLS 1 Power transmission gear 1a, 50a Teeth 2 Rotating shaft 15 Bias magnet 25 Case 30 Substrate 50 Rotation angle detection gear R1-R4 SV-GMR element

Claims (4)

少なくとも1つ以上の凸部又は凹部を有する軟磁性回転体と、前記軟磁性回転体の角度情報を得る少なくとも2つ以上の磁電変換素子と、該磁電変換素子にバイアス磁界を印加する磁界発生手段とを有し、前記軟磁性回転体の回転角度を検出する回転角度検出装置において、
前記磁電変換素子と前記磁界発生手段とを位置決めして、同一ハウジング内に収納したことを特徴とする回転角度検出装置。
A soft magnetic rotator having at least one convex or concave portion, at least two or more magnetoelectric transducers for obtaining angle information of the soft magnetic rotator, and magnetic field generating means for applying a bias magnetic field to the magnetoelectric transducers In a rotation angle detection device for detecting the rotation angle of the soft magnetic rotator,
The rotation angle detecting device characterized in that the magnetoelectric conversion element and the magnetic field generating means are positioned and housed in the same housing.
前記軟磁性回転体は、動力伝達用の歯車である請求項1記載の回転角度検出装置。   The rotation angle detection device according to claim 1, wherein the soft magnetic rotator is a power transmission gear. 前記軟磁性回転体の前記凸部又は凹部を有する面に、前記磁電変換素子が対向配置されている請求項1又は2記載の回転角度検出装置。   The rotation angle detection device according to claim 1, wherein the magnetoelectric conversion element is disposed so as to face the surface of the soft magnetic rotator having the convex portion or the concave portion. 前記磁電変換素子は、スピンバルブ型巨大磁気抵抗効果素子である請求項1,2又は3記載の回転角度検出装置。   4. The rotation angle detection device according to claim 1, wherein the magnetoelectric conversion element is a spin valve type giant magnetoresistance effect element.
JP2004346410A 2004-11-30 2004-11-30 Rotation angle detector Active JP4737372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346410A JP4737372B2 (en) 2004-11-30 2004-11-30 Rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346410A JP4737372B2 (en) 2004-11-30 2004-11-30 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2006153720A true JP2006153720A (en) 2006-06-15
JP4737372B2 JP4737372B2 (en) 2011-07-27

Family

ID=36632202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346410A Active JP4737372B2 (en) 2004-11-30 2004-11-30 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP4737372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038161A1 (en) * 2007-09-20 2009-03-26 Alps Electric Co., Ltd. Origin detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248971B2 (en) 2018-02-02 2022-02-15 Analog Devices International Unlimited Company Magnetic field torque and/or angle sensor
US11637482B2 (en) 2020-10-08 2023-04-25 Analog Devices International Unlimited Company Magnetic sensor system for motor control
US11460323B2 (en) 2021-02-05 2022-10-04 Analog Devices International Unlimited Company Magnetic field sensor package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227805A (en) * 1997-02-18 1998-08-25 Toyota Motor Corp Rotation sensor
JPH1151695A (en) * 1997-08-06 1999-02-26 Toyota Motor Corp Revolutions-sensor
JPH11311543A (en) * 1998-04-28 1999-11-09 Yazaki Corp Magnetoresistive element and magnetic detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227805A (en) * 1997-02-18 1998-08-25 Toyota Motor Corp Rotation sensor
JPH1151695A (en) * 1997-08-06 1999-02-26 Toyota Motor Corp Revolutions-sensor
JPH11311543A (en) * 1998-04-28 1999-11-09 Yazaki Corp Magnetoresistive element and magnetic detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038161A1 (en) * 2007-09-20 2009-03-26 Alps Electric Co., Ltd. Origin detection device

Also Published As

Publication number Publication date
JP4737372B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP5666886B2 (en) Rotary encoder
JP5840374B2 (en) Absolute encoder device and motor
US8564283B2 (en) Rotation-angle-detecting apparatus, rotating machine and rotation-angle-detecting method
JP4324813B2 (en) Rotation angle detector and rotating machine
JP4319153B2 (en) Magnetic sensor
JP5128120B2 (en) Rotation sensor
KR20040035067A (en) detection apparatus for steering angle in vehicle
US5644226A (en) Magnetic detector having a bias magnet and magnetoresistive elements shifted away from the center of the magnet
JP2008281556A (en) Angle detector, valve system, and noncontact volume
JP4947250B2 (en) Angle detector
JP2007263585A (en) Rotation angle detector
RU2615612C2 (en) Contactless true dual axis shaft encoder
KR101521384B1 (en) Mounting substrate
JP5206962B2 (en) Rotation angle sensor
JP4737372B2 (en) Rotation angle detector
JP4424481B2 (en) Moving body detection device
JP4506960B2 (en) Moving body position detection device
JP2006105827A (en) Rotation angle sensor
JP2016217932A (en) Rotation detection device
JPH1019602A (en) Magnetic encoder
US6177793B1 (en) Magnetic detector which detects a rotational angle of a rotary member
JP2007113931A (en) Magnetic encoder
JP2009300143A (en) Magnetic position detecting apparatus
JP2009162742A (en) Rotation angle detecting device and scissors gear suitable for the same
JP2007114155A (en) Magnetic type encoder device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

R150 Certificate of patent or registration of utility model

Ref document number: 4737372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3