JP2006152870A - Exhaust emission control system of internal combustion engine - Google Patents

Exhaust emission control system of internal combustion engine Download PDF

Info

Publication number
JP2006152870A
JP2006152870A JP2004342390A JP2004342390A JP2006152870A JP 2006152870 A JP2006152870 A JP 2006152870A JP 2004342390 A JP2004342390 A JP 2004342390A JP 2004342390 A JP2004342390 A JP 2004342390A JP 2006152870 A JP2006152870 A JP 2006152870A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
control
unburned fuel
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004342390A
Other languages
Japanese (ja)
Inventor
Takahiro Oba
孝宏 大羽
Soichi Matsushita
宗一 松下
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004342390A priority Critical patent/JP2006152870A/en
Publication of JP2006152870A publication Critical patent/JP2006152870A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D2041/026Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To oxidize and remove PM accumulated on a filter, while inhibiting degradation of exhaust gas emission and fuel-economy in an exhaust emission control system of an internal combustion engine provided with the filter in the exhaust gas passage of the engine for collecting PM in the exhaust gas. <P>SOLUTION: In the exhaust emission control system, a catalyst having the function of oxidation is placed in the exhaust gas passage upstream of the filter, or it is carried on the filter. The filter is regenerated by supplying unburned fuel to the catalyst. If the adhesion of unburned fuel on the passage reaches at least a specified amount in the filter-regeneration control, an exhaust gas temperature-raising control is started so at to raise the temperature of exhaust gas by raising the engine load. Thereafter, the exhaust gas temperature-raising control is stopped in the timing when the amount of adhesion of unburned fuel on the passage, which increases again upon stop of the exhaust gas temperature-raising control, becomes at most the specified amount of adhesion when the filter regeneration control is stopped. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の排気通路に設けられ排気中の粒子状物質を捕集するパティキュレートフィルタを備えた内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine provided with a particulate filter that is provided in an exhaust passage of the internal combustion engine and collects particulate matter in the exhaust gas.

内燃機関の排気通路に設けられ排気中の粒子状物質(以下、PMと称する)を捕集するパティキュレートフィルタ(以下、単にフィルタと称する)を備えた内燃機関の排気浄化システムにおいては、フィルタを目標温度にまで昇温させることで、該フィルタに堆積したPMを酸化・除去するフィルタ再生制御が行われる。   In an exhaust gas purification system for an internal combustion engine provided with a particulate filter (hereinafter simply referred to as a filter) that is provided in an exhaust passage of the internal combustion engine and collects particulate matter (hereinafter referred to as PM) in the exhaust gas, By raising the temperature to the target temperature, filter regeneration control for oxidizing and removing PM accumulated on the filter is performed.

また、内燃機関の排気通路に設けられ排気中のPMを捕集するフィルタを備えた内燃機関の排気浄化システムにおいては、アイドル運転状態が所定時間以上継続された場合、排気絞り弁によって排気の流量を絞ることによって、フィルタに流入する排気の温度を昇温させる技術が知られている(例えば、特許文献1参照。)。
特開2003−286887号公報 特開2004−132224号公報 特開2003−269147号公報 特開2000−8840号公報
Further, in an exhaust gas purification system for an internal combustion engine provided with a filter that is provided in an exhaust passage of the internal combustion engine and collects PM in exhaust gas, when the idling operation state is continued for a predetermined time or longer, the exhaust flow rate is controlled by an exhaust throttle valve. A technique is known in which the temperature of the exhaust gas flowing into the filter is raised by narrowing down (see, for example, Patent Document 1).
JP 2003-286887 A JP 2004-132224 A JP 2003-269147 A JP 2000-8840 A

内燃機関の排気通路に設けられ排気中のPMを捕集するフィルタを備えた内燃機関の排気浄化システムにおいては、フィルタより上流側の排気通路に設けられているか、もしくは、フィルタに担持されている、酸化機能を有する触媒をさらに備えたものがある。   In an exhaust gas purification system for an internal combustion engine that is provided in an exhaust passage of the internal combustion engine and includes a filter that collects PM in exhaust gas, the exhaust purification system of the internal combustion engine is provided in the exhaust passage upstream of the filter or is carried by the filter. Some of them further include a catalyst having an oxidation function.

このような排気浄化システムにおけるフィルタ再生制御では、触媒が活性状態にあるときに、触媒より上流側から該触媒に未燃燃料を供給し、該未燃燃料が触媒で酸化することによって発生する酸化熱によってフィルタの温度を目標温度に制御する場合がある。   In the filter regeneration control in such an exhaust purification system, when the catalyst is in an active state, unburned fuel is supplied to the catalyst from the upstream side of the catalyst, and oxidation generated by oxidizing the unburned fuel with the catalyst. The temperature of the filter may be controlled to the target temperature by heat.

このとき、未燃燃料は触媒より上流側から供給されるため、該未燃燃料の一部が触媒より上流側の排気通路内壁面に付着する場合がある。この未燃燃料の付着量が過剰に増加すると、大気中への白煙の排出量が過剰に増加し、排気エミッションの悪化を招く虞がある。   At this time, since unburned fuel is supplied from the upstream side of the catalyst, a part of the unburned fuel may adhere to the inner wall surface of the exhaust passage upstream of the catalyst. If the amount of unburned fuel attached increases excessively, the amount of white smoke discharged into the atmosphere increases excessively, which may lead to deterioration of exhaust emissions.

そこで、フィルタ再生制御においては、触媒に未燃燃料を供給すると共に、内燃機関の機関負荷を上昇させることによって排気を昇温させる排気昇温制御を実行する場合がある。この場合、排気が昇温された状態で触媒に未燃燃料が供給されるため、未燃燃料の蒸発が促進され、排気通路内壁面における未燃燃料の付着量が低減される。   Therefore, in the filter regeneration control, there is a case where exhaust temperature raising control is performed in which unburnt fuel is supplied to the catalyst and the exhaust gas is heated by raising the engine load of the internal combustion engine. In this case, since the unburned fuel is supplied to the catalyst in a state where the exhaust gas is heated, the evaporation of the unburned fuel is promoted, and the amount of unburned fuel attached to the inner wall surface of the exhaust passage is reduced.

しかしながら、このような排気昇温制御は、内燃機関の機関負荷を上昇させることで実行されるため、燃費悪化を招く虞がある。   However, since such exhaust temperature raising control is executed by increasing the engine load of the internal combustion engine, there is a risk that fuel consumption will be deteriorated.

本発明は、上記問題に鑑みてなされたものであって、内燃機関の排気通路に設けられ排気中のPMを捕集するフィルタを備えた内燃機関の排気浄化システムにおいて、排気エミッション及び燃費の悪化を抑制しつつ、フィルタに堆積したPMを酸化・除去することが可能な技術を提供することを課題とする。   The present invention has been made in view of the above problems, and in an exhaust gas purification system for an internal combustion engine provided with a filter provided in an exhaust passage of the internal combustion engine to collect PM in exhaust gas, exhaust emission and deterioration in fuel consumption are achieved. It is an object of the present invention to provide a technique capable of oxidizing and removing PM deposited on a filter while suppressing the above.

本発明は、内燃機関の排気通路に設けられ排気中の粒子状物質を捕集するフィルタと、該フィルタより上流側の排気通路に設けられているか、もしくは、該フィルタに担持されている、酸化機能を有する触媒を備えており、該触媒に未燃燃料を供給することでフィルタ再生制御を実行する。そして、フィルタ再生制御の実行中に、触媒より上流側の排気通路の内壁面における未燃燃料の付着量(以下、未燃燃料通路付着量と称する)が規定付着量以上となったときに、内燃機関の機関負荷を上昇させることで排気を昇温させる排気昇温制御の実行を開始し、それによって、未燃燃料通路付着量を減少させる。その後、該排気昇温制御を停止した場合に再度増加する未燃燃料通路付着量が、フィルタ再生制御が停止されたときに前記規定付着量以下となるタイミングで排気昇温制御を停止する。   The present invention relates to a filter that is provided in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas, and an oxidation device that is provided in an exhaust passage upstream of the filter or that is supported by the filter. A catalyst having a function is provided, and filter regeneration control is executed by supplying unburned fuel to the catalyst. Then, during the execution of the filter regeneration control, when the amount of unburned fuel attached to the inner wall surface of the exhaust passage upstream of the catalyst (hereinafter referred to as the amount of unburned fuel passage attached) becomes equal to or greater than the specified amount of deposit, Execution of the exhaust gas temperature raising control for raising the temperature of the exhaust gas by increasing the engine load of the internal combustion engine is started, thereby reducing the amount of unburned fuel passage adhesion. After that, when the exhaust gas temperature raising control is stopped, the exhaust gas temperature raising control is stopped at a timing when the unburned fuel passage adhesion amount that increases again becomes equal to or less than the prescribed adhesion amount when the filter regeneration control is stopped.

より詳しくは、本発明に係る内燃機関の排気浄化システムは、
内燃機関の排気通路に設けられ排気中の粒子状物質を捕集するパティキュレートフィルタと、
前記パティキュレートフィルタより上流側の前記排気通路に設けられているか、もしくは、前記パティキュレートフィルタに担持されている、酸化機能を有する触媒と、
前記パティキュレートフィルタにおける粒子状物質の堆積量を検出する粒子状物質堆積量検出手段と、
該触媒より上流側から前記触媒に未燃燃料を供給する未燃燃料供給手段と、
前記触媒の温度が活性温度以上のときに前記未燃燃料供給手段によって前記触媒に未燃燃料を供給し、該未燃燃料が前記触媒で酸化されることによって発生する酸化熱によって前記パティキュレートフィルタの温度を目標温度に昇温させ、それによって、前記パティキュレートフィルタに堆積した粒子状物質を酸化・除去するフィルタ再生制御を実行するフィルタ再生制御実行手段と、
該フィルタ再生制御実行手段によってフィルタ再生制御の実行が開始された後、粒子状物質堆積量検出手段によって検出される粒子状物質の堆積量が目標PM堆積量以下となったときにフィルタ再生制御を停止させるフィルタ再生制御停止手段と、
前記フィルタ再生制御の実行中に、前記触媒より上流側の前記排気通路の内壁面における未燃燃料の付着量である未燃燃料通路付着量を検出する未燃燃料通路付着量検出手段と、
該未燃燃料付着量検出手段によって検出される未燃燃料通路付着量が規定付着量以上となったときに、前記内燃機関の機関負荷を上昇させることで排気を昇温させる排気昇温制御の実行を開始し、それによって未燃燃料通路付着量を減少させる排気昇温制御実行手段と、
排気昇温制御実行手段によって排気昇温制御の実行が開始された後、前記フィルタ再生制御停止手段によってフィルタ再生制御が停止される前に前記排気昇温制御手段による排気昇温制御を停止させる排気昇温制御停止手段と、を備え、
前記排気昇温制御停止手段は、排気昇温制御が停止されることで再度増加する未燃燃料通路付着量が、フィルタ再生制御停止手段によってフィルタ再生制御が停止されたときに、前記規定付着量以下となるタイミングで排気昇温制御を停止させることを特徴とする。
More specifically, the exhaust gas purification system for an internal combustion engine according to the present invention is:
A particulate filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
A catalyst having an oxidation function, provided in the exhaust passage on the upstream side of the particulate filter, or carried on the particulate filter;
Particulate matter accumulation amount detection means for detecting the accumulation amount of particulate matter in the particulate filter;
Unburned fuel supply means for supplying unburned fuel to the catalyst from the upstream side of the catalyst;
When the temperature of the catalyst is equal to or higher than the activation temperature, unburned fuel is supplied to the catalyst by the unburned fuel supply means, and the particulate filter is generated by oxidation heat generated when the unburned fuel is oxidized by the catalyst. A filter regeneration control execution means for performing a filter regeneration control for oxidizing and removing particulate matter deposited on the particulate filter,
After the execution of the filter regeneration control is started by the filter regeneration control execution means, the filter regeneration control is performed when the particulate matter accumulation amount detected by the particulate matter accumulation amount detection means becomes equal to or less than the target PM accumulation amount. A filter regeneration control stop means for stopping;
An unburned fuel passage adhering amount detection means for detecting an unburned fuel passage adhering amount that is an adhering amount of unburned fuel on the inner wall surface of the exhaust passage upstream of the catalyst during the execution of the filter regeneration control;
When the unburned fuel passage adhering amount detected by the unburned fuel adhering amount detection means exceeds a predetermined adhering amount, exhaust temperature increase control is performed to raise the exhaust temperature by increasing the engine load of the internal combustion engine. Exhaust temperature raising control execution means for starting execution and thereby reducing the amount of unburned fuel passage adhesion,
Exhaust gas that stops the exhaust gas temperature increase control by the exhaust gas temperature increase control unit after the exhaust gas temperature increase control execution unit starts executing the exhaust gas temperature increase control and before the filter regeneration control stop unit stops the filter regeneration control. Temperature rise control stop means,
The exhaust gas temperature increase control stop means is configured such that when the exhaust gas temperature increase control is stopped, the unburned fuel passage adhesion amount increases again when the filter regeneration control is stopped by the filter regeneration control stop means. The exhaust gas temperature raising control is stopped at the following timing.

ここで、目標温度とは、フィルタに堆積したPMを酸化・除去することが可能であり、且つ、フィルタの劣化は抑制される温度である。本発明に係るフィルタ再生制御では、触媒に供給する未燃燃料量を制御することでフィルタの温度を目標温度に制御する。   Here, the target temperature is a temperature at which PM deposited on the filter can be oxidized and removed and the deterioration of the filter is suppressed. In the filter regeneration control according to the present invention, the temperature of the filter is controlled to the target temperature by controlling the amount of unburned fuel supplied to the catalyst.

また、フィルタ再生制御の実行開始後、フィルタにおけるPM堆積量が目標PM堆積量以下となったときにフィルタ再生制御が停止される。ここで、目標PM堆積量は、予め定められた値であって、内燃機関の運転状態に与える影響が十分に小さいと判断出来るPM堆積量であっても良い。   Further, after the execution of the filter regeneration control is started, the filter regeneration control is stopped when the PM accumulation amount in the filter becomes equal to or less than the target PM accumulation amount. Here, the target PM accumulation amount may be a predetermined value and may be a PM accumulation amount that can be determined to have a sufficiently small influence on the operating state of the internal combustion engine.

本発明では、フィルタ再生制御の実行中に未燃燃料通路付着量が検出される。そして、この未燃燃料通路付着量が規定付着量以上となったときに、内燃機関の機関負荷を上昇させることで排気を昇温させる排気昇温制御の実行が開始される。ここで、規定付着量は、予め定められた値であって、大気中への白煙の排出量が許容量の上限値以下となる量であっても良い。排気昇温制御が実行されると、排気通路内での未燃燃料の蒸発が促進されるため、未燃燃料通路付着量が減少する。   In the present invention, the unburned fuel passage adhesion amount is detected during the execution of the filter regeneration control. Then, when the unburned fuel passage adhesion amount becomes equal to or greater than the prescribed adhesion amount, execution of the exhaust gas temperature raising control for raising the temperature of the exhaust gas by starting the engine load of the internal combustion engine is started. Here, the specified adhesion amount may be a predetermined value, and may be an amount in which the amount of white smoke discharged into the atmosphere is equal to or less than the upper limit value of the allowable amount. When the exhaust gas temperature raising control is executed, the evaporation of unburned fuel in the exhaust passage is promoted, so that the amount of unburned fuel passage attached decreases.

この排気昇温制御はフィルタ再生制御が停止される前に停止される。そのため、排気昇温制御が停止されると、フィルタ再生制御が停止されるまでの間に未燃燃料通路付着量が再度増加することになる。   This exhaust temperature raising control is stopped before the filter regeneration control is stopped. Therefore, when the exhaust gas temperature raising control is stopped, the unburned fuel passage adhesion amount increases again until the filter regeneration control is stopped.

そして、本発明では、フィルタ再生制御が停止されたときの未燃燃料通路付着量が前記規定付着量以下となるタイミングで排気昇温制御が停止される。つまり、排気昇温制御を停止した後、フィルタ再生制御が停止されるまでに再度増加する分の未燃燃料通路付着量が、排気昇温制御の実行中に減少する分の未燃燃料付着量以下となるようなタイミングで排気昇温制御が停止される。   In the present invention, the exhaust gas temperature raising control is stopped at a timing when the unburned fuel passage adhesion amount when the filter regeneration control is stopped becomes equal to or less than the specified adhesion amount. That is, after the exhaust gas temperature raising control is stopped, the unburned fuel passage adhesion amount that is increased again until the filter regeneration control is stopped is reduced while the exhaust gas temperature raising control is being executed. The exhaust gas temperature raising control is stopped at the following timing.

これにより、フィルタ再生制御を実行することで排気通路の内壁面に付着する未燃燃料通路付着量を規定付着量以下に抑えることが出来ると共に、排気昇温制御の実行時間を可及的に短時間に抑えることが出来る。   Thus, by executing the filter regeneration control, the amount of unburned fuel passage adhering to the inner wall surface of the exhaust passage can be suppressed to a specified amount or less, and the execution time of the exhaust gas temperature raising control is made as short as possible. Time can be kept down.

従って、本発明によれば、内燃機関の排気通路に設けられ排気中のPMを捕集するフィルタを備えた内燃機関の排気浄化システムにおいて、排気エミッション及び燃費の悪化を抑制しつつ、フィルタに堆積したPMを酸化・除去することが出来る。   Therefore, according to the present invention, in an exhaust gas purification system for an internal combustion engine provided with a filter that is provided in an exhaust passage of the internal combustion engine and collects PM in the exhaust gas, accumulation on the filter is suppressed while suppressing deterioration of exhaust emission and fuel consumption. The oxidized PM can be oxidized and removed.

尚、本発明においては、フィルタ再生制御が停止されたときの未燃燃料通路付着量が前記規定付着量となるタイミングで排気昇温制御を停止させるのが好ましい。つまり、排気昇温制御を停止した後、フィルタ再生制御が停止されるまでに再度増加する分の未燃燃料通路付着量が、排気昇温制御の実行中に減少する分の未燃燃料付着量と同量となるようなタイミングで排気昇温制御を停止させるのが好ましい。これによれば、排気昇温制御の実行時間をより短時間に抑えることが出来、その結果、燃費悪化をより抑制することが出来る。   In the present invention, it is preferable to stop the exhaust gas temperature raising control at the timing when the unburned fuel passage adhesion amount when the filter regeneration control is stopped becomes the specified adhesion amount. That is, after the exhaust gas temperature raising control is stopped, the unburned fuel passage adhesion amount that is increased again until the filter regeneration control is stopped is reduced while the exhaust gas temperature raising control is being executed. It is preferable to stop the exhaust gas temperature raising control at the same timing. According to this, the execution time of the exhaust gas temperature raising control can be suppressed to a shorter time, and as a result, fuel consumption deterioration can be further suppressed.

本発明では、排気昇温制御実行手段によって排気昇温制御の実行が開始された時点からフィルタ再生制御停止手段によってフィルタ再生制御が停止される時点までの時間であるフィルタ再生残り時間を推定するフィルタ再生残り時間推定手段と、排気昇温制御が実行されているときに、排気昇温制御の実行開始時点からの未燃燃料通路付着量の減少量を推定する未燃燃料通路付着量減少量推定手段と、該未燃燃料通路付着量減少量推定手段によって推定される未燃燃料通路付着量の減少量と同量の未燃燃料が、排気昇温制御停止手段によって排気昇温制御が停止された場合に、触媒より上流側の排気通路の内壁面に再度付着するのにかかる時間である未燃燃料再付着時間を推定する未燃燃料再付着時間推定手段と、をさらに備えても良い。   In the present invention, the filter that estimates the remaining filter regeneration time that is the time from when the exhaust gas temperature raising control execution unit starts executing the exhaust gas temperature raising control to the time point when the filter regeneration control stopping unit stops the filter regeneration control. Regeneration remaining time estimation means and unburned fuel passage adhesion amount reduction amount estimation for estimating the reduction amount of unburned fuel passage adhesion amount from the start time of exhaust temperature raising control when exhaust temperature raising control is being executed And the unburned fuel in the same amount as the unburned fuel passage adhering amount decrease estimated by the unburned fuel passage adhering amount decrease amount estimating means are stopped by the exhaust temperature raising control stopping means. In this case, an unburned fuel reattachment time estimating means for estimating an unburned fuel reattachment time which is a time taken to adhere again to the inner wall surface of the exhaust passage upstream of the catalyst may be further provided.

そして、この場合は、排気昇温制御実行手段によって排気昇温制御の実行が開始された後、該排気昇温制御の実行時間と未燃燃料再付着時間との和がフィルタ再生残り時間と一致した時点で、排気昇温制御停止手段が排気昇温制御を停止させても良い。   In this case, after execution of the exhaust gas temperature raising control is started by the exhaust gas temperature raising control execution means, the sum of the exhaust gas temperature raising control execution time and the unburned fuel reattachment time coincides with the remaining filter regeneration time. At this point, the exhaust gas temperature raising control stop means may stop the exhaust gas temperature raising control.

上述したように、本発明においては、フィルタ再生制御の実行中に排気昇温制御が実行されると、未燃燃料通路付着量が減少する。その後、排気昇温制御が停止されると、触媒より上流側の排気通路の内壁面に未燃燃料が再度付着し始めるために未燃燃料通路付着量
が再度増加する。
As described above, in the present invention, when the exhaust gas temperature raising control is executed during the execution of the filter regeneration control, the unburned fuel passage adhesion amount decreases. After that, when the exhaust gas temperature raising control is stopped, unburned fuel starts to adhere again to the inner wall surface of the exhaust passage upstream of the catalyst, so that the unburned fuel passage adhesion amount increases again.

そこで、上記制御においては、排気昇温制御が実行されているときに、排気昇温制御の実行開始時点からの未燃燃料通路付着量の減少量が推定され、さらに、該減少量に基づいて、排気昇温制御停止後における未燃燃料再付着時間が推定される。ここで、排気昇温制御の実行開始後、時間の経過と共に、未燃燃料通路付着量の減少量は増加し、それに伴って、未燃燃料再付着時間も長くなる。   Therefore, in the above control, when the exhaust gas temperature raising control is being executed, the reduction amount of the unburned fuel passage adhesion amount from the start time of the exhaust gas temperature raising control execution is estimated, and further, based on the reduction amount. The unburned fuel reattachment time after stopping the exhaust gas temperature raising control is estimated. Here, after the start of the exhaust gas temperature raising control, the decrease amount of the unburned fuel passage adhesion amount increases with the passage of time, and accordingly, the unburned fuel reattachment time also becomes longer.

そして、排気昇温制御の実行開始時点からの経過時間、即ち、排気昇温制御の実行時間と、推定された未燃燃料再付着時間との和が、フィルタ再生残り時間と一致した時点で排気昇温制御が停止される。つまり、排気昇温制御の停止後に未燃燃料再付着時間が経過した時点と、フィルタ再生制御停止手段によってフィルタ再生制御が停止される時点とが一致するようなタイミングで、排気昇温制御が停止される。   Then, when the elapsed time from the start of the exhaust gas temperature raising control, that is, the sum of the exhaust gas temperature raising control execution time and the estimated unburned fuel reattachment time matches the remaining filter regeneration time, The temperature rise control is stopped. That is, the exhaust gas temperature increase control is stopped at a timing such that the time when the unburned fuel reattachment time has elapsed after the exhaust gas temperature increase control stops coincides with the time point when the filter regeneration control is stopped by the filter regeneration control stop means. Is done.

従って、このような制御によれば、フィルタ再生制御が停止されたときの未燃燃料通路付着量が規定付着量となるタイミングで排気昇温制御を停止させることが出来る。   Therefore, according to such control, the exhaust gas temperature raising control can be stopped at the timing when the unburned fuel passage adhesion amount when the filter regeneration control is stopped becomes the specified adhesion amount.

本発明において、フィルタ再生残り時間推定手段は、排気昇温制御の実行開始時点でのフィルタにおけるPM堆積量、および、排気昇温制御の実行開始直前におけるフィルタからのPMの除去速度に基づいて、フィルタ再生残り時間を推定しても良い。   In the present invention, the filter regeneration remaining time estimation means is based on the PM accumulation amount in the filter at the start of execution of the exhaust gas temperature increase control, and the PM removal rate from the filter immediately before the start of the exhaust gas temperature increase control. The remaining filter regeneration time may be estimated.

つまり、排気昇温制御の実行開始時点からフィルタ再生制御の停止時点までの間におけるPMの除去速度を、排気昇温制御の実行開始直前におけるPMの除去速度と同等と仮定することで、排気昇温制御の実行開始時点でのPM堆積量および排気昇温制御の実行開始直前におけるPMの除去速度に基づいてフィルタ再生残り時間を推定することが出来る。   That is, assuming that the PM removal rate from the start of exhaust gas temperature raising control to the stop point of filter regeneration control is equivalent to the PM removal rate immediately before the start of exhaust gas temperature raising control, The remaining filter regeneration time can be estimated based on the PM accumulation amount at the start of execution of temperature control and the PM removal speed immediately before the start of execution of exhaust temperature increase control.

尚、ここで、PMの除去速度とは、単位時間当たりにフィルタから除去されるPMの量のことである。   Here, the PM removal rate is the amount of PM removed from the filter per unit time.

また、本発明において、未燃燃料通路付着量減少量推定手段は、排気昇温制御の実行中における触媒より上流側の排気通路内の排気温度に基づいて、排気昇温制御の実行開始時点からの未燃燃料通路付着量の減少量を推定しても良い。   Further, in the present invention, the unburned fuel passage adhesion amount decrease amount estimation means is configured to start exhaust gas temperature increase control from the start of execution based on the exhaust temperature in the exhaust passage upstream of the catalyst during execution of the exhaust gas temperature increase control. The amount of decrease in the unburned fuel passage adhesion amount may be estimated.

また、本発明において、触媒より上流側の排気通路の内壁面温度(以下、単に、排気通路内壁面温度と称する)を検出する内壁面温度検出手段をさらに備えた場合、未燃燃料再付着時間推定手段は、未燃燃料通路付着量減少量推定手段によって推定される未燃燃料通路付着量の減少量、および、内壁面温度検出手段よって検出される、排気昇温制御の実行開始時点での排気通路内壁面温度に基づいて、未燃燃料再付着時間を推定しても良い。   Further, in the present invention, when further provided with an inner wall surface temperature detecting means for detecting the inner wall surface temperature of the exhaust passage upstream of the catalyst (hereinafter simply referred to as exhaust passage inner wall surface temperature), the unburned fuel reattachment time. The estimation means includes a reduction amount of the unburned fuel passage adhesion amount estimated by the unburned fuel passage adhesion amount reduction amount estimation means, and an exhaust temperature increase control detected by the inner wall surface temperature detection means at the start of execution of the exhaust gas temperature raising control. The unburned fuel reattachment time may be estimated based on the exhaust passage inner wall surface temperature.

つまり、排気昇温制御停止後の排気通路内壁面温度を、排気昇温制御の実行開始時点での排気通路内壁面温度と同等と仮定することで、未燃燃料通路付着量減少量推定手段によって推定される未燃燃料通路付着量の減少量、および、排気昇温制御の実行開始時点での排気通路内壁面温度に基づいて、排気昇温制御停止後の未燃燃料再付着時間を推定することが出来る。   That is, by assuming that the exhaust passage inner wall surface temperature after stopping the exhaust temperature raising control is equal to the exhaust passage inner wall temperature at the start of execution of the exhaust temperature raising control, the unburned fuel passage adhesion amount decrease estimation means Based on the estimated decrease amount of the unburned fuel passage adhesion amount and the exhaust passage inner wall surface temperature at the start of execution of the exhaust temperature raising control, the unburned fuel reattachment time after stopping the exhaust temperature raising control is estimated. I can do it.

尚、排気昇温制御の実行中は、排気昇温制御の実行開始直前よりもPMの除去速度が上昇する場合がある。そのため、排気昇温制御の実行開始直前のPMの除去速度に基づいてフィルタ再生残り時間を推定した場合、実際のフィルタ再生残り時間は、推定されたフィルタ再生残り時間よりも短い虞がある。   It should be noted that during execution of the exhaust gas temperature raising control, the PM removal rate may be higher than immediately before the start of the exhaust gas temperature raising control. Therefore, when the filter regeneration remaining time is estimated based on the PM removal rate immediately before the start of the exhaust gas temperature raising control, the actual filter regeneration remaining time may be shorter than the estimated filter regeneration remaining time.

しかしながら、実際のフィルタ再生残り時間が、推定されたフィルタ再生残り時間よりも短い場合、フィルタ再生制御停止時の未燃燃料通路付着量は規定付着量よりも少ない量となる。そのため、上記のような場合であっても、排気エミッションの悪化を招く可能性は低い。   However, when the actual remaining filter regeneration time is shorter than the estimated remaining filter regeneration time, the unburned fuel passage adhesion amount when the filter regeneration control is stopped is smaller than the prescribed adhesion amount. Therefore, even in the above case, it is unlikely that exhaust emissions will deteriorate.

また、排気昇温制御を実行すると排気通路内壁面温度が上昇するため、排気昇温制御停止後の排気通路内壁面温度は、排気昇温制御の実行開始時点での排気通路内壁面温度よりも高い場合がある。そのため、排気昇温制御の実行開始時点での排気通路内壁面温度に基づいて未燃燃料再付着時間を推定した場合、実際の未燃燃料再付着時間は、推定された未燃燃料再付着時間よりも長い虞がある。   In addition, since the exhaust passage inner wall surface temperature rises when exhaust temperature raising control is executed, the exhaust passage inner wall surface temperature after stopping the exhaust temperature raising control is higher than the exhaust passage inner wall surface temperature at the start of exhaust temperature raising control. May be expensive. Therefore, when the unburned fuel reattachment time is estimated based on the exhaust passage inner wall surface temperature at the start of execution of the exhaust gas temperature raising control, the actual unburned fuel reattachment time is the estimated unburned fuel reattachment time. There is a possibility that it is longer.

しかしながら、実際の未燃燃料再付着時間が、推定された未燃燃料再付着時間よりも長い場合、フィルタ再生制御停止時の未燃燃料通路付着量は規定付着量よりも少ない量となる。そのため、上記のような場合であっても、排気エミッションの悪化を招く可能性は低い。   However, when the actual unburned fuel reattachment time is longer than the estimated unburned fuel reattachment time, the unburned fuel passage attachment amount when the filter regeneration control is stopped is smaller than the prescribed attachment amount. Therefore, even in the above case, it is unlikely that exhaust emissions will deteriorate.

本発明において、フィルタより下流側の排気通路に設けられた排気絞り弁をさらに備えた場合、排気昇温制御実行手段は、該排気絞り弁を閉弁状態とすることで排気昇温制御を実行しても良く、排気昇温制御停止手段は、該排気絞り弁を開弁状態とすることで排気昇温制御を停止しても良い。   In the present invention, when the exhaust throttle valve provided in the exhaust passage downstream of the filter is further provided, the exhaust temperature increase control execution means executes the exhaust temperature increase control by closing the exhaust throttle valve. Alternatively, the exhaust gas temperature raising control stop means may stop the exhaust gas temperature raising control by opening the exhaust throttle valve.

ここで、排気絞り弁を閉弁状態とするとは、排気絞り弁を閉弁方向に制御することによって排気の流量が絞られる状態とすることである。また、排気絞り弁を開弁状態とするとは、排気絞り弁を閉弁状態としたときよりも該排気絞り弁の開度を大きい状態とすることであって、全開状態とする場合も含まれる。   Here, the closed state of the exhaust throttle valve means that the flow rate of the exhaust is throttled by controlling the exhaust throttle valve in the valve closing direction. Further, opening the exhaust throttle valve means that the exhaust throttle valve has a larger opening than when the exhaust throttle valve is closed, and includes a case where the exhaust throttle valve is fully opened. .

排気絞り弁を閉弁状態とすると、内燃機関の機関負荷が上昇するため、排気温度が上昇することになる。一方、排気絞り弁を開弁状態とすると、排気絞り弁を閉弁状態としたときよりも内燃機関の機関負荷が低下するため、排気温度も低下することになる。即ち、排気絞り弁を開弁状態とすると、排気絞り弁を閉弁状態とすることで実行される排気昇温制御が停止されることになる。   When the exhaust throttle valve is closed, the engine load of the internal combustion engine increases, and the exhaust temperature increases. On the other hand, when the exhaust throttle valve is opened, the engine load of the internal combustion engine is lower than when the exhaust throttle valve is closed, so that the exhaust temperature is also lowered. That is, when the exhaust throttle valve is opened, the exhaust gas temperature raising control executed by closing the exhaust throttle valve is stopped.

本発明において、内燃機関によって駆動される補機の要求負荷を制御する補機要求負荷制御手段をさらに備えた場合、排気昇温制御実行手段は、該補機要求負荷制御手段によって補機の要求負荷を上昇させることで排気昇温制御を実行しても良く、排気昇温制御停止手段は、該補機要求負荷制御手段によって補機の要求負荷を低下させることで排気昇温制御を停止しても良い。   In the present invention, when it further comprises auxiliary equipment required load control means for controlling the required load of the auxiliary machine driven by the internal combustion engine, the exhaust gas temperature raising control execution means is requested by the auxiliary equipment required load control means. The exhaust temperature raising control may be executed by increasing the load, and the exhaust temperature raising control stopping means stops the exhaust temperature raising control by lowering the required load of the auxiliary equipment by the auxiliary equipment required load control means. May be.

補機の要求負荷を上昇させると、内燃機関の機関負荷が上昇するため、排気温度が上昇することになる。一方、補機の要求負荷を低下させると、補機の要求負荷を上昇させたときよりも内燃機関の機関負荷が低下するため、排気温度も低下することになる。即ち、補機の要求負荷を低下させると、補機の要求負荷を上昇させることで実行される排気昇温制御が停止されることになる。   When the required load of the auxiliary machine is increased, the engine load of the internal combustion engine is increased, so that the exhaust temperature is increased. On the other hand, when the required load of the auxiliary machine is reduced, the engine load of the internal combustion engine is lower than when the required load of the auxiliary machine is increased, and the exhaust temperature is also lowered. That is, when the required load on the auxiliary machine is reduced, the exhaust gas temperature raising control executed by increasing the required load on the auxiliary machine is stopped.

また、本発明においては、補機要求負荷制御手段と、フィルタより下流側の排気通路に設けられた排気絞り弁との両方を備えた場合、フィルタ再生制御の実行中は排気絞り弁を閉弁状態としても良い。この場合は、フィルタ再生制御が実行されることでフィルタの温度が目標温度以上となった後、排気昇温制御を実行するまでの間は、補機要求負荷制御手段によって補機の要求負荷を低下させる。また、この場合においても、フィルタ再生制御の実行中に行われる排気昇温制御は、補機の要求負荷を上昇させることで実行され、補機
の要求負荷を低下させることで停止される。
In the present invention, when both the auxiliary required load control means and the exhaust throttle valve provided in the exhaust passage downstream of the filter are provided, the exhaust throttle valve is closed during the filter regeneration control. It is good also as a state. In this case, after the filter regeneration control is executed and the filter temperature becomes equal to or higher than the target temperature, the auxiliary equipment required load control means reduces the required load of the auxiliary equipment until the exhaust temperature raising control is executed. Reduce. Also in this case, the exhaust gas temperature raising control performed during the execution of the filter regeneration control is executed by increasing the required load of the auxiliary machine, and is stopped by reducing the required load of the auxiliary machine.

このような制御によれば、フィルタ制御の実行中において、フィルタの温度が目標温度以上となった以後、排気昇温制御を実行するとき以外は、排気絞り弁を閉弁状態とすることによる内燃機関の機関負荷の上昇が、補機の要求負荷を低下させることで抑制される。そのため、燃費の悪化を抑制することが出来る。   According to such control, the internal combustion engine is made by closing the exhaust throttle valve except when the exhaust gas temperature raising control is executed after the filter temperature becomes equal to or higher than the target temperature during the filter control. An increase in the engine load of the engine is suppressed by reducing the required load of the auxiliary machine. Therefore, deterioration of fuel consumption can be suppressed.

本発明によれば、内燃機関の排気通路に設けられ排気中のPMを捕集するフィルタを備えた内燃機関の排気浄化システムにおいて、排気エミッション及び燃費の悪化を抑制しつつ、フィルタに堆積したPMを酸化・除去することが出来る。   According to the present invention, in an exhaust gas purification system for an internal combustion engine having a filter that is provided in an exhaust passage of the internal combustion engine and collects PM in the exhaust gas, the PM deposited on the filter while suppressing deterioration of exhaust emission and fuel consumption. Can be oxidized and removed.

以下、本発明に係る内燃機関の排気浄化システムの実施の形態について図面に基づいて説明する。   Embodiments of an exhaust gas purification system for an internal combustion engine according to the present invention will be described below with reference to the drawings.

<内燃機関及びその吸排気系の概略構成>
図1は、本実施例に係る内燃機関及びその吸排気系の概略構成を示す図である。内燃機関1は4つの気筒2を有する車両駆動用のディーゼル機関である。内燃機関1の気筒2内にはピストン3が摺動自在に設けられている。気筒2内上部の燃焼室には、吸気ポート4と排気ポート5とが接続されている。吸気ポート4および排気ポート5の燃焼室への開口部は、それぞれ吸気弁6および排気弁7によって開閉される。吸気ポート4および排気ポート5は、それぞれ吸気通路8および排気通路9に接続されている。また、気筒2には、該気筒2内に燃料を直接噴射する燃料噴射弁10が設けられている。
<Schematic configuration of internal combustion engine and intake / exhaust system thereof>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its intake / exhaust system according to the present embodiment. The internal combustion engine 1 is a diesel engine for driving a vehicle having four cylinders 2. A piston 3 is slidably provided in the cylinder 2 of the internal combustion engine 1. An intake port 4 and an exhaust port 5 are connected to the combustion chamber in the upper part of the cylinder 2. The openings of the intake port 4 and the exhaust port 5 to the combustion chamber are opened and closed by an intake valve 6 and an exhaust valve 7, respectively. The intake port 4 and the exhaust port 5 are connected to an intake passage 8 and an exhaust passage 9, respectively. The cylinder 2 is provided with a fuel injection valve 10 that directly injects fuel into the cylinder 2.

排気通路9には、排気中のPMを捕集するフィルタ11が設けられており、該フィルタ11より上流側には酸化触媒12が設けられている。尚、本実施例においては、酸化触媒12が、フィルタ11より上流側の排気通路9に設けられる代わりに、フィルタ11に担持されても良い。また、酸化触媒12の位置に設けられる触媒は酸化機能を有していれば良く、例えば、吸蔵還元型NOx触媒等であっても良い。   The exhaust passage 9 is provided with a filter 11 that collects PM in the exhaust, and an oxidation catalyst 12 is provided upstream of the filter 11. In this embodiment, the oxidation catalyst 12 may be carried by the filter 11 instead of being provided in the exhaust passage 9 upstream from the filter 11. Moreover, the catalyst provided in the position of the oxidation catalyst 12 should just have an oxidation function, for example, a storage reduction type NOx catalyst etc. may be sufficient.

また、フィルタ11より下流側の排気通路9には、排気流量を制御する排気絞り弁15が設けられている。   An exhaust throttle valve 15 that controls the exhaust flow rate is provided in the exhaust passage 9 downstream of the filter 11.

酸化触媒12より上流側の排気通路9には、該排気通路9内の排気温度に対応した電気信号を出力する上流側排気温度センサ13が設けられている。また、酸化触媒12より下流側且つフィルタ11より上流側の排気通路9には、該排気通路9内の排気温度に対応した電気信号を出力する下流側排気温度センサ14が設けられている。さらに、排気通路9には、酸化触媒12より下流側且つフィルタ11より上流側の排気通路9内の圧力とフィルタ11より下流側且つ排気絞り弁15より上流側の排気通路9内の圧力との差を検出する差圧センサ16が設けられている。   An upstream exhaust temperature sensor 13 that outputs an electrical signal corresponding to the exhaust temperature in the exhaust passage 9 is provided in the exhaust passage 9 upstream of the oxidation catalyst 12. A downstream exhaust temperature sensor 14 that outputs an electrical signal corresponding to the exhaust temperature in the exhaust passage 9 is provided in the exhaust passage 9 downstream from the oxidation catalyst 12 and upstream from the filter 11. Further, the exhaust passage 9 includes a pressure in the exhaust passage 9 downstream from the oxidation catalyst 12 and upstream from the filter 11 and a pressure in the exhaust passage 9 downstream from the filter 11 and upstream from the exhaust throttle valve 15. A differential pressure sensor 16 for detecting the difference is provided.

以上述べたように構成された内燃機関1には、この内燃機関1を制御するためのECU20が併設されている。ECU20には、上流側排気温度センサ13や、下流側排気温度センサ14、差圧センサ16等の各種センサが電気的に接続されている。各種センサの出力信号がECU20に入力される。そして、ECU20は、上流側排気温度センサ13および/または下流側排気温度センサ14の出力値に基づいて酸化触媒12の温度を推定する。また、ECU20は、差圧センサ16の出力値に基づいてフィルタ11におけるPM堆積量を推定する。   The internal combustion engine 1 configured as described above is provided with an ECU 20 for controlling the internal combustion engine 1. Various sensors such as an upstream exhaust temperature sensor 13, a downstream exhaust temperature sensor 14, and a differential pressure sensor 16 are electrically connected to the ECU 20. Output signals from various sensors are input to the ECU 20. Then, the ECU 20 estimates the temperature of the oxidation catalyst 12 based on the output value of the upstream side exhaust temperature sensor 13 and / or the downstream side exhaust temperature sensor 14. Further, the ECU 20 estimates the PM accumulation amount in the filter 11 based on the output value of the differential pressure sensor 16.

さらに、ECU20には、燃料噴射弁10および排気絞り弁15が電気的に接続されており、ECU20によってこれらが制御される。また、ECU20には、内燃機関1を駆動力とするオルタネータ17が電気的に接続されており、該オルタネータ17の要求負荷がECU20によって制御される。尚、本実施例においては、本発明に係る補機が該オルタネータ17を含んで構成される。   Further, the fuel injection valve 10 and the exhaust throttle valve 15 are electrically connected to the ECU 20, and these are controlled by the ECU 20. Further, an alternator 17 having the internal combustion engine 1 as a driving force is electrically connected to the ECU 20, and a required load of the alternator 17 is controlled by the ECU 20. In this embodiment, the auxiliary machine according to the present invention includes the alternator 17.

<フィルタ再生制御>
次に、本実施例に係るフィルタ再生制御について説明する。本実施例においては、フィルタ11におけるPM堆積量が規定PM堆積量Qpm1以上となったときに、該フィルタ11に堆積したPMを酸化・除去すべく、該フィルタ11を目標温度Tftにまで昇温させるフィルタ再生制御の実行が開始される。
<Filter regeneration control>
Next, filter regeneration control according to the present embodiment will be described. In this embodiment, when the PM accumulation amount in the filter 11 becomes equal to or more than the specified PM accumulation amount Qpm1, the filter 11 is heated to the target temperature Tft in order to oxidize and remove the PM accumulated on the filter 11. The filter regeneration control to be executed is started.

ここで、規定PM堆積量Qpm1は、フィルタ11より上流側の排気通路9内の圧力が過剰に上昇する虞がある量よりも少ない量であって、予め定められた量である。また、目標温度Tftは、フィルタ11に堆積したPMを酸化・除去することが可能であり、且つ、フィルタ11の劣化は抑制される温度である。この目標温度Tftは実験等によって予め定められている。   Here, the specified PM accumulation amount Qpm1 is a predetermined amount that is smaller than an amount in which the pressure in the exhaust passage 9 upstream of the filter 11 may increase excessively. The target temperature Tft is a temperature at which PM deposited on the filter 11 can be oxidized and removed and the deterioration of the filter 11 is suppressed. This target temperature Tft is determined in advance by experiments or the like.

本実施例に係るフィルタ再生制御においては、先ず、酸化触媒12の温度を活性温度の下限値Tact以上に上昇させるべく、内燃機関1から排出される排気の温度を上昇させる排気昇温制御が実行される。   In the filter regeneration control according to the present embodiment, first, exhaust gas temperature raising control is executed to raise the temperature of the exhaust gas exhausted from the internal combustion engine 1 in order to raise the temperature of the oxidation catalyst 12 to the lower limit value Tact of the activation temperature. Is done.

排気昇温制御は、排気絞り弁15を閉弁状態として、排気の流量を絞ることによって行われる。排気絞り弁15によって排気の流量が絞られると、内燃機関1の機関負荷が上昇するため排気が昇温される。この排気の昇温に伴って、酸化触媒12の温度も上昇する。   The exhaust gas temperature raising control is performed by closing the exhaust throttle valve 15 and reducing the flow rate of the exhaust gas. When the flow rate of the exhaust is throttled by the exhaust throttle valve 15, the engine load of the internal combustion engine 1 increases, so that the temperature of the exhaust is raised. As the exhaust gas temperature rises, the temperature of the oxidation catalyst 12 also rises.

そして、酸化触媒12の温度が活性温度の下限値Tact以上となると、内燃機関1においてポスト燃料噴射を実行することで酸化触媒12への未燃燃料の供給が開始される。   When the temperature of the oxidation catalyst 12 becomes equal to or higher than the lower limit value Tact of the activation temperature, supply of unburned fuel to the oxidation catalyst 12 is started by executing post fuel injection in the internal combustion engine 1.

ポスト燃料噴射は、内燃機関1の燃焼サイクルにおける、主燃料噴射より遅い時期であって、且つ、非着火時期に、燃料噴射弁10から副燃料噴射を実行することで行われる。ここで、着火時期とは、燃料噴射弁10から気筒2内に燃料を噴射したときに、噴射された燃料のほとんどが着火しない時期のことである。   The post fuel injection is performed by executing the auxiliary fuel injection from the fuel injection valve 10 at a timing later than the main fuel injection in the combustion cycle of the internal combustion engine 1 and at a non-ignition timing. Here, the ignition timing is a timing when most of the injected fuel does not ignite when fuel is injected into the cylinder 2 from the fuel injection valve 10.

ポスト燃料噴射が行われると、該ポスト燃料噴射によって噴射され、未燃の状態で内燃機関1から排出された燃料(未燃燃料)が酸化触媒12に供給される。そして、この酸化触媒12に供給された未燃燃料が該酸化触媒12で酸化するときに発生する酸化熱によってフィルタ11が昇温される。   When the post fuel injection is performed, the fuel injected by the post fuel injection and discharged from the internal combustion engine 1 in an unburned state (unburned fuel) is supplied to the oxidation catalyst 12. Then, the temperature of the filter 11 is raised by oxidation heat generated when the unburned fuel supplied to the oxidation catalyst 12 is oxidized by the oxidation catalyst 12.

本実施例においては、ポスト燃料噴射の実行開始後、フィルタ11の温度が目標温度Tft以上となると、排気絞り弁15が全開状態にされて排気昇温制御が停止される。その後のフィルタ再生制御の実行中においては、ポスト燃料噴射による燃料噴射量(以下、単にポスト燃料噴射量と称する)を制御することで、フィルタ11の温度が目標温度Tftに制御される。   In this embodiment, when the temperature of the filter 11 becomes equal to or higher than the target temperature Tft after the start of post fuel injection, the exhaust throttle valve 15 is fully opened and the exhaust gas temperature raising control is stopped. During the execution of the subsequent filter regeneration control, the temperature of the filter 11 is controlled to the target temperature Tft by controlling the fuel injection amount by post fuel injection (hereinafter simply referred to as post fuel injection amount).

そして、本実施例においては、フィルタ再生制御の実行開始後、フィルタ11におけるPM堆積量が目標PM堆積量Dpmt以下となったときに、ポスト燃料噴射の実行を停止することでフィルタ再生制御が停止される。   In this embodiment, after the start of the filter regeneration control, the filter regeneration control is stopped by stopping the post fuel injection when the PM accumulation amount in the filter 11 becomes equal to or less than the target PM accumulation amount Dpmt. Is done.

<ポスト燃料噴射実行中における排気昇温制御>
本実施例に係るフィルタ再生制御においては、フィルタ11の温度が目標温度Tft以上となると、排気昇温制御が停止されるため、酸化触媒12より上流側の排気通路9において未燃燃料の蒸発が促進され難くなる。そのため、未燃燃料の一部が、酸化触媒12より上流側の排気通路9の内壁面に付着し易くなる。未燃燃料の付着量が過剰に増加すると、大気中への白煙の排出量が過剰に増加し、排気エミッションの悪化を招く虞がある。
<Exhaust temperature rise control during post fuel injection>
In the filter regeneration control according to the present embodiment, when the temperature of the filter 11 becomes equal to or higher than the target temperature Tft, the exhaust gas temperature raising control is stopped, so that unburned fuel evaporates in the exhaust passage 9 upstream of the oxidation catalyst 12. It becomes difficult to be promoted. Therefore, a part of the unburned fuel easily adheres to the inner wall surface of the exhaust passage 9 upstream of the oxidation catalyst 12. If the amount of unburned fuel attached increases excessively, the amount of white smoke discharged into the atmosphere increases excessively, and exhaust emissions may deteriorate.

そこで、本実施例では、酸化触媒12より上流側の排気通路9の内壁面に付着する未燃燃料通路付着量を減少させるべく、ポスト燃料噴射の実行中におけるある期間に、排気絞り弁15を閉弁状態とすることで排気昇温制御が実行される。   Therefore, in the present embodiment, the exhaust throttle valve 15 is set for a certain period during the post fuel injection in order to reduce the amount of unburned fuel passage adhering to the inner wall surface of the exhaust passage 9 upstream of the oxidation catalyst 12. Exhaust temperature raising control is executed by closing the valve.

ここで、本実施例に係る、ポスト燃料噴射の実行中における排気昇温制御の実行開始タイミングおよび停止タイミングについて図2に基づいて説明する。図2は、フィルタ再生制御において、ポスト燃料噴射が実行されフィルタ11の温度が目標温度Tftに達したとき以降の、酸化触媒12より上流側の排気通路9の内壁面温度(以下、単に排気通路内壁面温度と称する)、および、フィルタ12におけるPM堆積量、未燃燃料通路付着量、排気絞り弁15の開度の変化を示すタイムチャートである。図2に示すタイムチャートにおいて、それぞれの横軸が時間tを表している。   Here, the execution start timing and stop timing of the exhaust gas temperature raising control during execution of the post fuel injection according to the present embodiment will be described with reference to FIG. FIG. 2 shows the inner wall surface temperature of the exhaust passage 9 upstream of the oxidation catalyst 12 after the post fuel injection is executed and the temperature of the filter 11 reaches the target temperature Tft in the filter regeneration control (hereinafter simply referred to as the exhaust passage). 5 is a time chart showing changes in PM accumulation amount, unburned fuel passage adhesion amount, and opening degree of the exhaust throttle valve 15 in the filter 12. In the time chart shown in FIG. 2, each horizontal axis represents time t.

上述したように、本実施例では、フィルタ再生制御において、ポスト燃料噴射が実行されフィルタ11の温度が目標温度Tftに達すると、排気絞り弁15が全開状態にされて排気昇温制御が停止される。そのため、フィルタ11の温度が目標温度Tftに達した後、酸化触媒12より上流側の排気通路9内を流れる排気の温度が低下し、それに伴って、排気通路内壁面温度は、図2に示すように、時間の経過と共に徐々に低下する。尚、本実施例において、排気通路内壁面温度は、上流側排気温度センサ13の出力値および排気通路9の熱容量等に基づいてECU20によって算出される。   As described above, in the present embodiment, in the filter regeneration control, when the post fuel injection is executed and the temperature of the filter 11 reaches the target temperature Tft, the exhaust throttle valve 15 is fully opened, and the exhaust gas temperature raising control is stopped. The Therefore, after the temperature of the filter 11 reaches the target temperature Tft, the temperature of the exhaust gas flowing in the exhaust passage 9 upstream of the oxidation catalyst 12 decreases, and accordingly, the exhaust passage inner wall surface temperature is shown in FIG. Thus, it gradually decreases with the passage of time. In this embodiment, the exhaust passage inner wall surface temperature is calculated by the ECU 20 based on the output value of the upstream side exhaust temperature sensor 13, the heat capacity of the exhaust passage 9, and the like.

また、図2に示すように、フィルタ11の温度が目標温度Tftに達した後、時間の経過と共に、PM堆積量は徐々に減少し、未燃燃料通路付着量は徐々に増加する。そして、本実施例では、未燃燃料通路付着量が規定付着量Qf1以上となったとき(図2に(a)で示す時期)に、ECU20は、排気絞り弁15を閉弁状態として排気昇温制御の実行を開始する。尚、規定付着量Qf1以上となるまでの未燃燃料通路付着量は、ポスト燃料噴射量の積算値および排気通路内壁面温度等に基づいてECU20によって算出される。   Further, as shown in FIG. 2, after the temperature of the filter 11 reaches the target temperature Tft, the PM accumulation amount gradually decreases and the unburned fuel passage adhesion amount gradually increases with time. In this embodiment, when the unburned fuel passage adhesion amount becomes equal to or greater than the prescribed adhesion amount Qf1 (time shown by (a) in FIG. 2), the ECU 20 closes the exhaust throttle valve 15 and raises the exhaust gas. Start execution of temperature control. The unburned fuel passage adhesion amount up to the specified adhesion amount Qf1 or more is calculated by the ECU 20 based on the integrated value of the post fuel injection amount, the exhaust passage inner wall surface temperature, and the like.

排気昇温制御が実行されると、図2に示すように、排気通路内壁面温度が徐々に上昇する。そして、排気通路9の内壁面に付着した未燃燃料の蒸発が促進されるため、図2に示すように、未燃燃料通路付着量が徐々に減少する。   When the exhaust temperature raising control is executed, the exhaust passage inner wall surface temperature gradually increases as shown in FIG. And since evaporation of unburned fuel adhering to the inner wall surface of the exhaust passage 9 is promoted, the amount of unburned fuel passage attached gradually decreases as shown in FIG.

ここで、ECU20は、排気絞り弁15を閉弁状態としたときに、この時点から、フィルタ11におけるPM堆積量が目標PM堆積量Dpmtとなってフィルタ再生制御が停止される時点(図2に(c)で示す時期)までの時間であるフィルタ再生残り時間t1を推定する。   Here, when the exhaust throttle valve 15 is closed, the ECU 20 starts from this point in time when the PM accumulation amount in the filter 11 becomes the target PM accumulation amount Dpmt and the filter regeneration control is stopped (see FIG. 2). The remaining filter regeneration time t1, which is the time until (time indicated by (c)), is estimated.

ここでは、排気昇温制御の実行を開始した時点、即ち、排気絞り弁15を閉弁状態とした時点から、フィルタ再生制御が停止される時点までの間におけるPMの除去速度を、排気絞り弁15を閉弁状態とする直前におけるフィルタ11からのPMの除去速度と同等と仮定する。そして、ECU10は、排気絞り弁15を閉弁状態とした時点でのフィルタ11におけるPM堆積量、および、排気絞り弁15を閉弁状態とする直前におけるフィルタ11からのPMの除去速度に基づいて、フィルタ再生残り時間t1を推定する。   Here, the PM removal speed from the time when execution of the exhaust gas temperature raising control is started, that is, from the time when the exhaust throttle valve 15 is closed to the time when the filter regeneration control is stopped is expressed as the exhaust throttle valve. It is assumed that the removal rate of PM from the filter 11 immediately before the valve 15 is closed is equal to that. Then, the ECU 10 is based on the PM accumulation amount in the filter 11 when the exhaust throttle valve 15 is closed, and the PM removal rate from the filter 11 just before the exhaust throttle valve 15 is closed. The remaining filter regeneration time t1 is estimated.

排気絞り弁15を閉弁状態とした後、ECU20は、規定時間毎に、排気絞り弁15を閉弁状態とした時点からの未燃燃料通路付着量の減少量ΔQfを推定する。この未燃燃料通路付着量の減少量ΔQfは、排気絞り弁15を閉弁状態とした後の酸化触媒12より上流側の排気通路9内の排気温度に基づいて推定される。尚、ここでの規定時間は、予め定められた時間であって、可及的に短いのが好ましい。   After the exhaust throttle valve 15 is closed, the ECU 20 estimates a reduction amount ΔQf of the unburned fuel passage adhesion amount from the time when the exhaust throttle valve 15 is closed every specified time. The unburned fuel passage adhesion amount reduction amount ΔQf is estimated based on the exhaust temperature in the exhaust passage 9 upstream of the oxidation catalyst 12 after the exhaust throttle valve 15 is closed. The specified time here is a predetermined time and is preferably as short as possible.

さらに、ECU20は、推定した未燃燃料通路付着量の減少量ΔQfと同量の未燃燃料が、排気絞り弁15が全開状態とされることで排気昇温制御が停止された場合に、酸化触媒12より上流側の排気通路9の内壁面に再度付着するのにかかる時間である未燃燃料再付着時間t2を推定する。   Further, the ECU 20 oxidizes the unburned fuel in the same amount as the estimated decrease amount ΔQf of the unburned fuel passage adhesion amount when the exhaust temperature raising control is stopped by the exhaust throttle valve 15 being fully opened. An unburned fuel reattachment time t2, which is the time taken to attach again to the inner wall surface of the exhaust passage 9 upstream of the catalyst 12, is estimated.

このとき、ECU20は、排気絞り弁15を全開状態とした後の排気通路内壁面温度を、排気絞り弁15を閉弁状態とすることで排気昇温制御を開始した時点の排気通路内壁面温度Tp1と同等と仮定して未燃燃料再付着時間t2を推定する。つまり、ECU20は、排気絞り弁15を閉弁状態とした後、規定時間経過毎に、未燃燃料通路付着量の減少量ΔQfおよび排気通路内壁面温度Tp1に基づいて未燃燃料再付着時間t2を推定する。   At this time, the ECU 20 determines the exhaust passage inner wall surface temperature after the exhaust throttle valve 15 is fully opened, and the exhaust passage inner wall surface temperature at the time when the exhaust temperature raising control is started by closing the exhaust throttle valve 15. The unburned fuel reattachment time t2 is estimated on the assumption that it is equivalent to Tp1. That is, after the exhaust throttle valve 15 is closed, the ECU 20 performs the unburned fuel reattachment time t2 based on the decrease ΔQf of the unburned fuel passage adhering amount and the exhaust passage inner wall surface temperature Tp1 every specified time. Is estimated.

ここで、排気昇温制御の実行開始後、時間の経過と共に、未燃燃料通路付着量の減少量ΔQfは増加するため、それに伴って、未燃燃料再付着時間t2も長くなる。   Here, since the decrease amount ΔQf of the unburned fuel passage adhering amount increases with the lapse of time after the start of the exhaust gas temperature raising control, the unburned fuel reattachment time t2 also increases accordingly.

そして、ECU20は、排気絞り弁15を閉弁状態とした時点からの経過時間、即ち、排気昇温制御の実行時間t3と、未燃燃料再付着時間t2との和が、フィルタ再生残り時間t1と一致した時点(図2に(b)で示す時期)で、排気絞り弁15を全開状態として排気昇温制御を停止する。   Then, the ECU 20 determines that the elapsed time from when the exhaust throttle valve 15 is closed, that is, the sum of the exhaust temperature raising control execution time t3 and the unburned fuel reattachment time t2 is the remaining filter regeneration time t1. At the time (time shown by (b) in FIG. 2), the exhaust throttle valve 15 is fully opened, and the exhaust gas temperature raising control is stopped.

排気絞り弁15が全開状態とされることで排気昇温制御が停止されると、図2に示すように、フィルタ11におけるPM堆積量が目標PM堆積量Dpmtとなってフィルタ再生制御が停止されるまでの間、排気通路内壁面温度は再度低下し、未燃燃料付着量は再度増加する。   When the exhaust gas temperature raising control is stopped by fully opening the exhaust throttle valve 15, as shown in FIG. 2, the PM accumulation amount in the filter 11 becomes the target PM accumulation amount Dpmt, and the filter regeneration control is stopped. In the meantime, the exhaust passage inner wall surface temperature decreases again, and the amount of unburned fuel increases again.

そして、上記のように推定した、フィルタ再生残り時間t1および未燃燃料再付着時間t2が、それぞれ、実際の、フィルタ再生残り時間t1および未燃燃料再付着時間t2と同等であれば、上記のようなタイミングで排気絞り弁15を全開状態として排気昇温制御を停止することで、フィルタ再生制御が停止されたときの未燃燃料付着量は規定付着量Qf1となる。   If the estimated filter regeneration remaining time t1 and the unburned fuel reattachment time t2 estimated as described above are equivalent to the actual filter regeneration remaining time t1 and the unburned fuel reattachment time t2, respectively, By stopping the exhaust gas temperature raising control with the exhaust throttle valve 15 fully opened at such timing, the unburned fuel adhesion amount when the filter regeneration control is stopped becomes the specified adhesion amount Qf1.

ただし、本実施例では、上記のように、排気絞り弁15を閉弁状態とした時点からフィルタ再生制御が停止される時点までの間におけるPMの除去速度を、排気絞り弁15を閉弁状態として排気昇温制御を開始する直前におけるフィルタ11からのPMの除去速度と同等と仮定して、フィルタ再生残り時間t1が推定される。しかしながら、排気昇温制御の実行中は、排気温度が高くなるため、図2に示すように、排気絞り弁15を閉弁状態とする直前よりもPMの除去速度が上昇する場合がある。この場合、排気絞り弁15を閉弁状態とする直前のPMの除去速度に基づいてフィルタ再生残り時間t1を推定すると、実際のフィルタ再生残り時間t1は、推定されたフィルタ再生残り時間t1よりも短くなる。   However, in this embodiment, as described above, the PM removal speed from the time when the exhaust throttle valve 15 is closed to the time when the filter regeneration control is stopped is the same as the exhaust throttle valve 15 is closed. Assuming that the removal rate of PM from the filter 11 immediately before starting the exhaust gas temperature raising control is equivalent, the remaining filter regeneration time t1 is estimated. However, since the exhaust gas temperature becomes higher during execution of the exhaust gas temperature raising control, the PM removal speed may be higher than immediately before the exhaust throttle valve 15 is closed as shown in FIG. In this case, if the filter regeneration remaining time t1 is estimated based on the PM removal speed immediately before the exhaust throttle valve 15 is closed, the actual filter regeneration remaining time t1 is larger than the estimated filter regeneration remaining time t1. Shorter.

また、本実施例では、上記のように、排気絞り弁15を全開状態とした後の排気通路内壁面温度を、排気絞り弁15を閉弁状態とすることで排気昇温制御を開始した時点の排気通路内壁面温度Tp1と同等と仮定して未燃燃料再付着時間t2が推定される。しかしながら、排気昇温制御を実行すると排気通路内壁面温度が上昇するため、図2に示すように
、排気昇温制御停止後の排気通路内壁面温度は、排気昇温制御の実行開始時点での排気通路内壁面温度Tp1よりも高い場合がある。この場合、排気昇温制御を開始した時点の排気通路内壁面温度Tp1に基づいて未燃燃料再付着時間t2を推定すると、実際の未燃燃料再付着時間t2は、推定された未燃燃料再付着時間t2よりも長くなる。
In this embodiment, as described above, the exhaust passage inner wall surface temperature after the exhaust throttle valve 15 is fully opened is set to the time when the exhaust temperature increase control is started by setting the exhaust throttle valve 15 to the closed state. Assuming that the exhaust passage inner wall surface temperature is equal to Tp1, the unburned fuel reattachment time t2 is estimated. However, since the exhaust passage inner wall surface temperature rises when the exhaust temperature raising control is executed, as shown in FIG. 2, the exhaust passage inner wall surface temperature after the exhaust temperature raising control is stopped is the same as that at the start of the exhaust temperature raising control. The exhaust passage inner wall surface temperature Tp1 may be higher. In this case, if the unburned fuel reattachment time t2 is estimated based on the exhaust passage inner wall surface temperature Tp1 at the time when the exhaust gas temperature raising control is started, the actual unburned fuel reattachment time t2 becomes the estimated unburned fuel reattachment time t2. It becomes longer than the adhesion time t2.

このように、実際のフィルタ再生残り時間t1が、推定されたフィルタ再生残り時間t1よりも短い場合、および/または、実際の未燃燃料再付着時間t2が、推定された未燃燃料再付着時間t2よりも長い場合、上記のようなタイミングで排気絞り弁15を全開状態として排気昇温制御を停止すると、フィルタ再生制御が停止されたときの未燃燃料付着量は規定付着量Qf1よりも少ない量となる。   Thus, when the actual filter regeneration remaining time t1 is shorter than the estimated filter regeneration remaining time t1, and / or the actual unburned fuel reattachment time t2 is the estimated unburned fuel reattachment time. When longer than t2, if the exhaust temperature raising control is stopped with the exhaust throttle valve 15 fully opened at the timing as described above, the unburned fuel adhesion amount when the filter regeneration control is stopped is smaller than the specified adhesion amount Qf1. Amount.

即ち、本実施例によれば、フィルタ再生制御が停止されたときの未燃燃料付着量は規定付着量Qf1以下となる。   That is, according to the present embodiment, the unburned fuel adhesion amount when the filter regeneration control is stopped is equal to or less than the specified adhesion amount Qf1.

<フィルタ再生制御の制御ルーチン>
以下、本実施例に係るフィルタ再生制御の制御ルーチンについて、図3に示すフローチャートに基づいて説明する。本ルーチンは、ECU20に予め記憶されており、内燃機関1の運転中、規定時間毎に実行される。
<Control routine for filter regeneration control>
Hereinafter, the control routine of the filter regeneration control according to the present embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 20 and is executed at specified time intervals during the operation of the internal combustion engine 1.

本ルーチンでは、ECU20は、先ずS101において、フィルタ11におけるPM堆積量が規定PM堆積量Qpm1以上であるか否かを判別する。このS101において、肯定判定された場合、ECU20はS102に進み、否定判定された場合、ECU20は本ルーチンの実行を一旦終了する。   In this routine, first, in S101, the ECU 20 determines whether or not the PM accumulation amount in the filter 11 is equal to or greater than the specified PM accumulation amount Qpm1. If an affirmative determination is made in S101, the ECU 20 proceeds to S102, and if a negative determination is made, the ECU 20 once ends the execution of this routine.

S102において、ECU20は、排気絞り弁15を閉弁状態とすることで排気昇温制御を実行する。   In S102, the ECU 20 performs the exhaust gas temperature raising control by closing the exhaust throttle valve 15.

次に、ECU20は、S103に進み、酸化触媒12の温度が活性温度の下限値Tact以上であるか否かを判別する。このS103において、肯定判定された場合、ECU20はS104に進み、否定判定された場合、ECU20はS103を繰り返す。   Next, the ECU 20 proceeds to S103 and determines whether or not the temperature of the oxidation catalyst 12 is equal to or higher than the lower limit value Tact of the activation temperature. If an affirmative determination is made in S103, the ECU 20 proceeds to S104, and if a negative determination is made, the ECU 20 repeats S103.

S104において、ECU20は、内燃機関1においてポスト燃料噴射を実行する。   In S <b> 104, the ECU 20 performs post fuel injection in the internal combustion engine 1.

次に、ECU20は、S105に進み、フィルタ11の温度が目標温度Tft以上となったか否かを判別する。このS105において、肯定判定された場合、ECU20はS106に進み、否定判定された場合、ECU20はS105を繰り返す。   Next, the ECU 20 proceeds to S105 and determines whether or not the temperature of the filter 11 has become equal to or higher than the target temperature Tft. If an affirmative determination is made in S105, the ECU 20 proceeds to S106, and if a negative determination is made, the ECU 20 repeats S105.

S106において、ECU20は、排気絞り弁15を全開状態とすることで排気昇温制御を停止する。   In S106, the ECU 20 stops the exhaust gas temperature raising control by opening the exhaust throttle valve 15 fully.

次に、ECU20は、S107に進み、未燃燃料通路付着量が規定付着量Qf1以上となったか否かを判別する。このS107において、肯定判定された場合、ECU20はS110に進み、否定判定された場合、ECU20はS108に進む。   Next, the ECU 20 proceeds to S107, and determines whether or not the unburned fuel passage adhesion amount is equal to or greater than the specified adhesion amount Qf1. If an affirmative determination is made in S107, the ECU 20 proceeds to S110, and if a negative determination is made, the ECU 20 proceeds to S108.

S110において、ECU20は、排気通路9における未燃燃料の蒸発を促進させて未燃燃料通路付着量を減少させるべく、排気絞り弁15を閉弁状態とすることで排気昇温制御を実行する。   In S110, the ECU 20 executes the exhaust gas temperature raising control by closing the exhaust throttle valve 15 in order to promote the evaporation of the unburned fuel in the exhaust passage 9 and reduce the amount of unburned fuel passage adhesion.

次に、ECU20は、S111に進み、上記説明したように、フィルタ再生残り時間t1及び未燃燃料再付着時間t2を推定し、S110において排気絞り弁15を閉弁状態と
した時点からの経過時間、即ち、排気昇温制御の実行時間t3と、未燃燃料再付着時間t2との和が、フィルタ再生残り時間t1と一致するか否かを判別する。このS111において、肯定判定された場合、ECU20はS112に進み、否定判定された場合、ECU20はS111を繰り返す。
Next, the ECU 20 proceeds to S111, and as described above, estimates the remaining filter regeneration time t1 and the unburned fuel reattachment time t2, and the elapsed time from when the exhaust throttle valve 15 is closed in S110. That is, it is determined whether or not the sum of the exhaust gas temperature raising control execution time t3 and the unburned fuel reattachment time t2 matches the filter regeneration remaining time t1. If an affirmative determination is made in S111, the ECU 20 proceeds to S112, and if a negative determination is made, the ECU 20 repeats S111.

S112において、ECU20は、排気絞り弁15を全開状態とすることで排気昇温制御を停止する。その後、ECU20はS108に進む。   In S112, the ECU 20 stops the exhaust gas temperature raising control by opening the exhaust throttle valve 15 fully. Thereafter, the ECU 20 proceeds to S108.

S108において、ECU20は、フィルタ11におけるPM堆積量が目標PM堆積量以下となったか否かを判別する。このS108において、肯定判定された場合、ECU20はS109に進み、否定判定された場合、ECU20はS107に戻る。   In S108, the ECU 20 determines whether or not the PM accumulation amount in the filter 11 is equal to or less than the target PM accumulation amount. If an affirmative determination is made in S108, the ECU 20 proceeds to S109, and if a negative determination is made, the ECU 20 returns to S107.

S109において、ECU20は、ポスト燃料噴射を停止することでフィルタ再生制御を停止する。その後、ECU20は、本ルーチンの実行を一旦停止する。   In S109, the ECU 20 stops the filter regeneration control by stopping the post fuel injection. Thereafter, the ECU 20 temporarily stops the execution of this routine.

以上説明した制御ルーチンによれば、フィルタ再生制御を実行することで排気通路9の内壁面に付着する未燃燃料通路付着量を規定付着量Qf1以下に抑えることが出来ると共に、ポスト燃料噴射の実行中における排気昇温制御の実行時間t3を可及的に短時間に抑えることが出来る。   According to the control routine described above, by executing the filter regeneration control, the amount of unburned fuel passage adhering to the inner wall surface of the exhaust passage 9 can be suppressed to a specified amount of attachment Qf1 or less, and post fuel injection is performed. The execution time t3 of the exhaust gas temperature raising control in the inside can be suppressed as short as possible.

従って、本実施例によれば、排気エミッション及び燃費の悪化を抑制しつつ、フィルタに堆積したPMを酸化・除去することが出来る。   Therefore, according to the present embodiment, PM deposited on the filter can be oxidized and removed while suppressing deterioration of exhaust emission and fuel consumption.

尚、本実施例では、排気絞り弁15の開度を制御する代わりに、オルタネータ17の要求負荷を制御することで、排気昇温制御を実行しても良い。   In this embodiment, instead of controlling the opening degree of the exhaust throttle valve 15, the exhaust gas temperature raising control may be executed by controlling the required load of the alternator 17.

この場合、排気昇温制御を実行するときは、ECU20によって、オルタネータ17の要求負荷を増加させ、それによって、内燃機関1の機関負荷を上昇させる。そして、排気昇温制御を停止するときは、ECU20によって、オルタネータ17の要求負荷を減少させ、それによって、内燃機関1の機関負荷を低下させる。   In this case, when executing the exhaust gas temperature raising control, the required load of the alternator 17 is increased by the ECU 20, thereby increasing the engine load of the internal combustion engine 1. When stopping the exhaust gas temperature raising control, the required load of the alternator 17 is reduced by the ECU 20, thereby reducing the engine load of the internal combustion engine 1.

このような場合においても、排気昇温制御の実行開始タイミングおよび停止タイミングは、上記した排気絞り弁15の開度制御によって排気昇温制御を実行または停止する場合と同様とする。つまり、排気絞り弁15を閉弁状態とするタイミングと同様のタイミングで、オルタネータ17の要求負荷を増加させ、排気絞り弁15を全開状態とするタイミングと同様のタイミングで、オルタネータ17の要求負荷を減少させる。   Even in such a case, the execution start timing and stop timing of the exhaust gas temperature raising control are the same as those in the case where the exhaust gas temperature raising control is executed or stopped by the opening degree control of the exhaust throttle valve 15 described above. That is, the required load of the alternator 17 is increased at the same timing as when the exhaust throttle valve 15 is closed, and the required load of the alternator 17 is increased at the same timing as when the exhaust throttle valve 15 is fully opened. Decrease.

また、本実施例において、酸化触媒12より上流側の排気通路9に、排気中に燃料を添加する燃料添加弁をさらに備えた場合、ポスト燃料噴射の代わりに、燃料添加弁から燃料を添加することで酸化触媒12に未燃燃料を供給しても良い。   In this embodiment, when the exhaust passage 9 upstream of the oxidation catalyst 12 is further provided with a fuel addition valve for adding fuel into the exhaust, fuel is added from the fuel addition valve instead of post fuel injection. Thus, unburned fuel may be supplied to the oxidation catalyst 12.

<変形例>
ここで、本実施例に係るフィルタ再生制御の変形例について、図4に基づいて説明する。図4は、本実施例に係るフィルタ再生制御の変形例の制御ルーチンを示すフローチャートである。尚、このフローチャートは、図3に示すフローチャートと、S106、及び、S110、S112を、それぞれ、S206、及び、S210、S212に置換えた点のみが異なり、その他のステップは同様である。そのため、S206、及び、S210、S212についてのみ説明し、その他のステップの説明は省略する。また、本ルーチンも、ECU20に予め記憶され、内燃機関1の運転中、規定時間毎に実行されるルーチンである。
<Modification>
Here, a modified example of the filter regeneration control according to the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a control routine of a modified example of the filter regeneration control according to the present embodiment. This flowchart differs from the flowchart shown in FIG. 3 only in that S106, S110, and S112 are replaced with S206, S210, and S212, respectively, and the other steps are the same. Therefore, only S206, S210, and S212 will be described, and descriptions of other steps will be omitted. In addition, this routine is also stored in advance in the ECU 20 and is executed every specified time during the operation of the internal combustion engine 1.

本ルーチンでは、S105において肯定判定された場合、ECU20は、S206に進む。S206において、ECU20は、オルタネータ17の要求負荷を減少させる。その後、ECU20はS107に進む。   In this routine, if an affirmative determination is made in S105, the ECU 20 proceeds to S206. In S206, the ECU 20 reduces the required load of the alternator 17. Thereafter, the ECU 20 proceeds to S107.

S107において、肯定判定された場合、ECU20は、S210に進み、オルタネータ17の要求負荷を増加させる。その後、ECU20はS111に進む。   If an affirmative determination is made in S107, the ECU 20 proceeds to S210 and increases the required load of the alternator 17. Thereafter, the ECU 20 proceeds to S111.

S111において、肯定判定された場合、ECU20は、S212に進み、オルタネータ17の要求負荷を減少させる。その後、ECU20はS108に進む。   If an affirmative determination is made in S111, the ECU 20 proceeds to S212 and reduces the required load of the alternator 17. Thereafter, the ECU 20 proceeds to S108.

以上説明した制御ルーチンによれば、フィルタ再生制御に実行中は排気絞り弁15が閉弁状態に維持される。そして、フィルタ再生制御の実行開始後、フィルタ11の温度が目標温度Tft以上となったときは、オルタネータ17の要求負荷を減少される。これにより、排気絞り弁15を閉弁状態とすることによる内燃機関1の機関負荷の上昇が抑制される。   According to the control routine described above, the exhaust throttle valve 15 is maintained in the closed state during execution of the filter regeneration control. When the temperature of the filter 11 becomes equal to or higher than the target temperature Tft after the start of the filter regeneration control, the required load of the alternator 17 is reduced. Thereby, an increase in the engine load of the internal combustion engine 1 due to the exhaust throttle valve 15 being closed is suppressed.

また、オルタネータ17の要求負荷を減少させた後、未燃燃料通路付着量を
減少させるべく実行される排気昇温制御は、オルタネータ17の要求負荷を増加させることによって、前記と同様のタイミングで実行される。また、該排気昇温制御は、オルタネータ17の要求負荷を減少させることによって、前記と同様のタイミングで停止される。さらに、該排気昇温制御の停止後、フィルタ再生制御が停止されるまでの間は、排気絞り弁15を閉弁状態とすることによる内燃機関1の機関負荷の上昇が、オルタネータ17の要求負荷を減少させることで抑制される。
Further, after the required load of the alternator 17 is reduced, the exhaust gas temperature raising control executed to reduce the amount of unburned fuel passage adhesion is executed at the same timing as described above by increasing the required load of the alternator 17. Is done. Further, the exhaust gas temperature raising control is stopped at the same timing as described above by reducing the required load of the alternator 17. Further, after the exhaust gas temperature raising control is stopped until the filter regeneration control is stopped, the increase in the engine load of the internal combustion engine 1 caused by closing the exhaust throttle valve 15 is the required load of the alternator 17. It is suppressed by reducing.

つまり、フィルタ制御の実行中において、フィルタ11の温度が目標温度Tft以上となった以後、排気昇温制御を実行するとき以外は、排気絞り弁15を閉弁状態とすることによる内燃機関1の機関負荷の上昇が、オルタネータ17の要求負荷を減少させることで抑制される。そのため、燃費の悪化を抑制することが出来る。   That is, during the execution of the filter control, after the temperature of the filter 11 becomes equal to or higher than the target temperature Tft, the exhaust throttle valve 15 is closed so that the exhaust throttle valve 15 is closed except when the exhaust temperature raising control is executed. An increase in engine load is suppressed by reducing the required load of the alternator 17. Therefore, deterioration of fuel consumption can be suppressed.

本発明の実施例に係る内燃機関およびその吸排気系の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine which concerns on the Example of this invention, and its intake / exhaust system. フィルタ再生制御において、ポスト燃料噴射が実行されフィルタの温度が目標温度に達したとき以降の、排気通路内壁面温度、および、フィルタにおけるPM堆積量、未燃燃料通路付着量、排気絞り弁の開度の変化を示すタイムチャート。In the filter regeneration control, the exhaust passage inner wall surface temperature after the post fuel injection is executed and the filter temperature reaches the target temperature, the PM accumulation amount in the filter, the unburned fuel passage adhesion amount, and the exhaust throttle valve opening. Time chart showing the change in degrees. 本発明の実施例に係るフィルタ再生制御の制御ルーチンを示すフローチャート。The flowchart which shows the control routine of the filter reproduction | regeneration control which concerns on the Example of this invention. 本発明の実施例の変形例に係るフィルタ再生制御の制御ルーチンを示すフローチャート。The flowchart which shows the control routine of the filter reproduction | regeneration control which concerns on the modification of the Example of this invention.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・気筒
9・・・排気通路
10・・燃料噴射弁
11・・パティキュレートフィルタ
12・・酸化触媒
13・・上流側排気温度センサ
14・・下流側排気温度センサ
15・・排気絞り弁
16・・差圧センサ
17・・オルタネータ
20・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 9 ... Exhaust passage 10 ... Fuel injection valve 11 ... Particulate filter 12 ... Oxidation catalyst 13 ... Upstream exhaust temperature sensor 14 ... Downstream exhaust temperature sensor 15 .... Exhaust throttle valve 16 .... Differential pressure sensor 17 ... Alternator 20 ... ECU

Claims (6)

内燃機関の排気通路に設けられ排気中の粒子状物質を捕集するパティキュレートフィルタと、
前記パティキュレートフィルタより上流側の前記排気通路に設けられているか、もしくは、前記パティキュレートフィルタに担持されている、酸化機能を有する触媒と、
前記パティキュレートフィルタにおける粒子状物質の堆積量を検出する粒子状物質堆積量検出手段と、
該触媒より上流側から前記触媒に未燃燃料を供給する未燃燃料供給手段と、
前記触媒の温度が活性温度以上のときに前記未燃燃料供給手段によって前記触媒に未燃燃料を供給し、該未燃燃料が前記触媒で酸化されることによって発生する酸化熱によって前記パティキュレートフィルタの温度を目標温度に昇温させ、それによって、前記パティキュレートフィルタに堆積した粒子状物質を酸化・除去するフィルタ再生制御を実行するフィルタ再生制御実行手段と、
該フィルタ再生制御実行手段によってフィルタ再生制御の実行が開始された後、粒子状物質堆積量検出手段によって検出される粒子状物質の堆積量が目標PM堆積量以下となったときにフィルタ再生制御を停止させるフィルタ再生制御停止手段と、
前記フィルタ再生制御の実行中に、前記触媒より上流側の前記排気通路の内壁面における未燃燃料の付着量である未燃燃料通路付着量を検出する未燃燃料通路付着量検出手段と、
該未燃燃料付着量検出手段によって検出される未燃燃料通路付着量が規定付着量以上となったときに、前記内燃機関の機関負荷を上昇させることで排気を昇温させる排気昇温制御の実行を開始し、それによって未燃燃料通路付着量を減少させる排気昇温制御実行手段と、
排気昇温制御実行手段によって排気昇温制御の実行が開始された後、前記フィルタ再生制御停止手段によってフィルタ再生制御が停止される前に前記排気昇温制御手段による排気昇温制御を停止させる排気昇温制御停止手段と、を備え、
前記排気昇温制御停止手段は、排気昇温制御が停止されることで再度増加する未燃燃料通路付着量が、フィルタ再生制御停止手段によってフィルタ再生制御が停止されたときに、前記規定付着量以下となるタイミングで排気昇温制御を停止させることを特徴とする内燃機関の排気浄化システム。
A particulate filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
A catalyst having an oxidation function, provided in the exhaust passage on the upstream side of the particulate filter, or carried on the particulate filter;
Particulate matter accumulation amount detection means for detecting the accumulation amount of particulate matter in the particulate filter;
Unburned fuel supply means for supplying unburned fuel to the catalyst from the upstream side of the catalyst;
When the temperature of the catalyst is equal to or higher than the activation temperature, unburned fuel is supplied to the catalyst by the unburned fuel supply means, and the particulate filter is generated by oxidation heat generated when the unburned fuel is oxidized by the catalyst. A filter regeneration control execution means for performing a filter regeneration control for oxidizing and removing particulate matter deposited on the particulate filter,
After the execution of the filter regeneration control is started by the filter regeneration control execution means, the filter regeneration control is performed when the particulate matter accumulation amount detected by the particulate matter accumulation amount detection means becomes equal to or less than the target PM accumulation amount. A filter regeneration control stop means for stopping;
An unburned fuel passage adhering amount detection means for detecting an unburned fuel passage adhering amount that is an adhering amount of unburned fuel on the inner wall surface of the exhaust passage upstream of the catalyst during the execution of the filter regeneration control;
When the unburned fuel passage adhering amount detected by the unburned fuel adhering amount detection means exceeds a predetermined adhering amount, exhaust temperature increase control is performed to raise the exhaust temperature by increasing the engine load of the internal combustion engine. Exhaust temperature raising control execution means for starting execution and thereby reducing the amount of unburned fuel passage adhesion,
Exhaust gas that stops the exhaust gas temperature increase control by the exhaust gas temperature increase control unit after the exhaust gas temperature increase control execution unit starts executing the exhaust gas temperature increase control and before the filter regeneration control stop unit stops the filter regeneration control. Temperature rise control stop means,
The exhaust gas temperature increase control stop means is configured such that when the exhaust gas temperature increase control is stopped, the unburned fuel passage adhesion amount increases again when the filter regeneration control is stopped by the filter regeneration control stop means. An exhaust gas purification system for an internal combustion engine, wherein the exhaust gas temperature raising control is stopped at the following timing.
前記排気昇温制御実行手段によって排気昇温制御の実行が開始された時点から前記フィルタ再生制御停止手段によってフィルタ再生制御が停止される時点までの時間であるフィルタ再生残り時間を推定するフィルタ再生残り時間推定手段と、
排気昇温制御が実行されているときに、排気昇温制御の実行開始時点からの未燃燃料通路付着量の減少量を推定する未燃燃料通路付着量減少量推定手段と、
該未燃燃料通路付着量減少量推定手段によって推定される未燃燃料通路付着量の減少量と同量の未燃燃料が、前記排気昇温制御停止手段によって排気昇温制御が停止された場合に前記触媒より上流側の前記排気通路の内壁面に再度付着するのにかかる時間である未燃燃料再付着時間を推定する未燃燃料再付着時間推定手段と、をさらに備え、
前記排気昇温制御実行手段によって排気昇温制御の実行が開始された後、該排気昇温制御の実行時間と、前記未燃燃料再付着時間推定手段によって推定される未燃燃料再付着時間との和が、前記フィルタ再生残り時間推定手段によって推定されるフィルタ再生残り時間と一致した時点で、前記排気昇温制御停止手段が排気昇温制御を停止させることを特徴とする請求項1記載の内燃機関の排気浄化システム。
The remaining filter regeneration that estimates the remaining filter regeneration time, which is the time from when the exhaust gas warming control execution means is started to when the filter regeneration control stop means stops the filter regeneration control. Time estimation means;
An unburned fuel passage adhesion amount decrease amount estimation means for estimating a decrease amount of the unburned fuel passage adhesion amount from the start of execution of the exhaust temperature increase control when the exhaust temperature increase control is being executed;
When the exhaust gas temperature increase control is stopped by the exhaust temperature increase control stop means for the same amount of unburned fuel passage decrease amount estimated by the unburned fuel path adhesion amount decrease amount estimation means And an unburned fuel reattachment time estimating means for estimating an unburned fuel reattachment time which is a time taken to reattach to the inner wall surface of the exhaust passage upstream of the catalyst.
After the execution of the exhaust gas temperature raising control is started by the exhaust gas temperature raising control execution means, the execution time of the exhaust gas temperature raising control, and the unburned fuel reattachment time estimated by the unburned fuel reattachment time estimating means, 2. The exhaust gas temperature increase control stop unit stops the exhaust gas temperature increase control when the sum of the values coincides with the filter regeneration remaining time estimated by the filter regeneration remaining time estimation unit. An exhaust purification system for an internal combustion engine.
前記触媒より上流側の前記排気通路の内壁面温度を検出する内壁面温度検出手段をさらに備え、
前記フィルタ再生残り時間推定手段が、排気昇温制御の実行開始時点での前記パティキ
ュレートフィルタにおける粒子状物質の堆積量、および、排気昇温制御の実行開始直前における前記パティキュレートフィルタからの粒子状物質の除去速度に基づいて、フィルタ再生残り時間を推定し、
前記未燃燃料通路付着量減少量推定手段が、排気昇温制御の実行中における前記触媒より上流側の前記排気通路内の排気温度に基づいて、排気昇温制御の実行開始時点からの未燃燃料通路付着量の減少量を推定し、
前記未燃燃料再付着時間推定手段が、前記未燃燃料通路付着量減少量推定手段によって推定される未燃燃料通路付着量の減少量、および、前記内壁面温度検出手段よって検出される、排気昇温制御の実行開始時点での前記触媒より上流側の前記排気通路の内壁面温度に基づいて、未燃燃料再付着時間を推定することを特徴とする請求項2記載の内燃機関の排気浄化システム。
An inner wall surface temperature detecting means for detecting an inner wall surface temperature of the exhaust passage upstream of the catalyst;
The filter regeneration remaining time estimation means includes the amount of particulate matter accumulated in the particulate filter at the start of execution of exhaust gas temperature raising control, and the particulate form from the particulate filter immediately before the start of exhaust gas temperature raising control. Estimate the remaining filter regeneration time based on the material removal rate,
The unburned fuel passage adhering amount reduction amount estimation means is configured to perform unburned fuel from the start of execution of exhaust gas temperature increase control based on the exhaust temperature in the exhaust passage upstream from the catalyst during execution of exhaust gas temperature increase control. Estimate the amount of fuel passage adhesion reduction,
The unburned fuel reattachment time estimating means detects the unburned fuel passage adhesion amount reduction amount estimated by the unburned fuel passage adhesion amount reduction amount estimation means, and the inner wall surface temperature detection means detects the exhaust gas. 3. The exhaust gas purification of an internal combustion engine according to claim 2, wherein an unburned fuel reattachment time is estimated based on an inner wall surface temperature of the exhaust passage upstream of the catalyst at the start of execution of temperature rise control. system.
前記パティキュレートフィルタより下流側の排気通路に設けられた排気絞り弁をさらに備え、
前記排気昇温制御実行手段が、前記排気絞り弁を閉弁状態とすることで排気昇温制御を実行し、
前記排気昇温制御停止手段が、前記排気絞り弁を開弁状態とすることで排気昇温制御を停止することを特徴とする請求項1から3のいずれかに記載の内燃機関の排気浄化システム。
An exhaust throttle valve provided in an exhaust passage downstream of the particulate filter;
The exhaust gas temperature raising control execution means executes the exhaust gas temperature raising control by closing the exhaust throttle valve,
The exhaust gas purification control system for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust gas temperature increase control stop means stops the exhaust gas temperature increase control by opening the exhaust throttle valve. .
前記内燃機関によって駆動される補機の要求負荷を制御する補機要求負荷制御手段をさらに備え、
前記排気昇温制御実行手段が、前記補機要求負荷制御手段によって前記補機の要求負荷を上昇させることで排気昇温制御を実行し、
前記排気昇温制御停止手段が、前記補機要求負荷制御手段によって前記補機の要求負荷を低下させることで排気昇温制御を停止することを特徴とする請求項1から3のいずれかに記載の内燃機関の排気浄化システム。
An auxiliary machine required load control means for controlling the required load of the auxiliary machine driven by the internal combustion engine,
The exhaust temperature raising control execution means executes the exhaust temperature raising control by increasing the required load of the auxiliary machine by the auxiliary machine required load control means,
4. The exhaust gas temperature raising control stop means stops the exhaust gas temperature raising control by lowering the required load of the auxiliary machine by the auxiliary machine required load control means. 5. Exhaust gas purification system for internal combustion engines.
前記パティキュレートフィルタより下流側の排気通路に設けられた排気絞り弁をさらに備え、
前記フィルタ再生制御実行手段によるフィルタ再生制御の実行中は前記排気絞り弁を閉弁状態とし、
フィルタ再生制御が実行されることで前記パティキュレートフィルタの温度が前記目標温度以上となった後、前記排気昇温制御実行手段よって排気昇温制御が実行されるまでの間は、前記補機要求負荷制御手段によって前記補機の要求負荷を低下させることを特徴とする請求項5記載の内燃機関の排気浄化システム。
An exhaust throttle valve provided in an exhaust passage downstream of the particulate filter;
During the execution of the filter regeneration control by the filter regeneration control execution means, the exhaust throttle valve is closed,
After the temperature of the particulate filter becomes equal to or higher than the target temperature by executing the filter regeneration control, the auxiliary machine request is required until the exhaust gas temperature raising control is executed by the exhaust gas temperature raising control execution means. 6. The exhaust gas purification system for an internal combustion engine according to claim 5, wherein a required load of the auxiliary machine is reduced by a load control means.
JP2004342390A 2004-11-26 2004-11-26 Exhaust emission control system of internal combustion engine Withdrawn JP2006152870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342390A JP2006152870A (en) 2004-11-26 2004-11-26 Exhaust emission control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342390A JP2006152870A (en) 2004-11-26 2004-11-26 Exhaust emission control system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006152870A true JP2006152870A (en) 2006-06-15

Family

ID=36631461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342390A Withdrawn JP2006152870A (en) 2004-11-26 2004-11-26 Exhaust emission control system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006152870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145081A1 (en) * 2008-05-29 2009-12-03 株式会社小松製作所 Exhaust gas purifying system for internal combustion engine and soot filter regenerating method
WO2011099172A1 (en) * 2010-02-12 2011-08-18 三菱重工業株式会社 Exhaust gas treatment method and device for internal combustion engine
US10184379B2 (en) 2014-08-27 2019-01-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145081A1 (en) * 2008-05-29 2009-12-03 株式会社小松製作所 Exhaust gas purifying system for internal combustion engine and soot filter regenerating method
WO2011099172A1 (en) * 2010-02-12 2011-08-18 三菱重工業株式会社 Exhaust gas treatment method and device for internal combustion engine
EP2444609A1 (en) * 2010-02-12 2012-04-25 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment method and device for internal combustion engine
US20120180456A1 (en) * 2010-02-12 2012-07-19 Satoshi Yamada Exhaust gas treatment method and device for internal combustion engine
EP2444609A4 (en) * 2010-02-12 2013-04-17 Mitsubishi Heavy Ind Ltd Exhaust gas treatment method and device for internal combustion engine
US8826650B2 (en) 2010-02-12 2014-09-09 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment method and device for internal combustion engine
US10184379B2 (en) 2014-08-27 2019-01-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine

Similar Documents

Publication Publication Date Title
US7021051B2 (en) Method for regenerating particulate filter
US20090044517A1 (en) Exhaust gas purification system for an internal combustion engine
JP2007040221A (en) Exhaust emission control device
CN112005002B (en) Method and device for controlling internal combustion engine
KR101030861B1 (en) Exhaust purification system for internal combustion engine
JP4135734B2 (en) Exhaust gas purification system for internal combustion engine
JP4816606B2 (en) Exhaust gas purification system for internal combustion engine
EP1650414B1 (en) Exhaust gas control apparatus for internal combustion engine
JP2006274982A (en) Exhaust emission control device
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP6254411B2 (en) Engine control device
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP4026576B2 (en) Exhaust gas purification system for internal combustion engine
JP2010169032A (en) Engine control device
JP2006152870A (en) Exhaust emission control system of internal combustion engine
JP2006274980A (en) Exhaust emission control device
JP4221992B2 (en) Fuel cut control device for internal combustion engine
JP4406255B2 (en) Method for maintaining catalyst temperature of internal combustion engine
JP2006152871A (en) Catalyst heating system of internal combustion engine
JP2006152875A (en) Catalyst heating system of internal combustion engine
JP2004162612A (en) Exhaust emission control device for internal combustion engine
JP4512519B2 (en) Exhaust gas purification device for internal combustion engine
JP4144504B2 (en) Exhaust gas purification device for internal combustion engine
JP6677008B2 (en) Exhaust gas purification device for internal combustion engine
JP4867573B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090114