JP2006152409A - Cemented carbide for die and die - Google Patents

Cemented carbide for die and die Download PDF

Info

Publication number
JP2006152409A
JP2006152409A JP2004347806A JP2004347806A JP2006152409A JP 2006152409 A JP2006152409 A JP 2006152409A JP 2004347806 A JP2004347806 A JP 2004347806A JP 2004347806 A JP2004347806 A JP 2004347806A JP 2006152409 A JP2006152409 A JP 2006152409A
Authority
JP
Japan
Prior art keywords
cemented carbide
phase
mold
resistance
hard phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004347806A
Other languages
Japanese (ja)
Other versions
JP4746310B2 (en
Inventor
Takashi Ando
孝 安東
Norimitsu Kimoto
典光 木本
Nobuyuki Kitagawa
信行 北川
Toshiyasu Ishizaki
壽康 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2004347806A priority Critical patent/JP4746310B2/en
Publication of JP2006152409A publication Critical patent/JP2006152409A/en
Application granted granted Critical
Publication of JP4746310B2 publication Critical patent/JP4746310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cemented carbide for a die having high wear resistance, and in which a deterioration layer by wire electric discharge machining is made thin as possible, and whose chipping resistance is high. <P>SOLUTION: The cemented carbide is composed of a bonding phase, and a hard phase with inevitable impurities. The bonding phase is composed of Co in, by weight, 6 to 20% to the cemented carbide, Cr in 3 to 15% to the total content with Co, V in 2.5 to 5.0%, and Mo in 1.0 to 5.0%. Then, the hard phase is composed of fine particles and WC of coarse particles, the ratio of the fine particles with a mean particle diameter of 0.3 to 0.6 μm is 60 to 90% of the hard phase, and the ratio of the coarse particles with a mean particle diameter of 0.8 to 2.5 μm is 10 to 40% of the hard phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は耐蝕性、耐摩耗性、耐欠損性に優れた金型用の超硬合金と金型に関する。特に、銅系金属との親和性が低く、銅系金属などの打ち抜きに好適な超硬合金に関する。   The present invention relates to a cemented carbide and a mold for a mold excellent in corrosion resistance, wear resistance, and fracture resistance. In particular, the present invention relates to a cemented carbide having a low affinity with a copper-based metal and suitable for punching a copper-based metal or the like.

超硬合金は、(1)工具鋼やダイス鋼に比べて高硬度で摩耗し難い、(2)弾性変形や塑性変形しにくい、(3)放熱特性に優れる、(4)熱膨張率が小さい、といった多くの特徴を有し、高い精度が要求される金型の材料として高く評価されている。   Cemented carbides are (1) harder and harder to wear than tool steel and die steel, (2) less elastic and plastic deformation, (3) excellent heat dissipation characteristics, (4) low coefficient of thermal expansion It is highly evaluated as a mold material that has many features such as

超硬合金の金型の製作には、ワイヤー放電加工が広く利用される。その際、加工液として水が使用される場合があり、金型用の超硬合金には耐蝕性が求められる。その他、金型として利用されることから、超硬合金には、高い耐摩耗性や耐欠損性も要求される。   Wire electrical discharge machining is widely used for the manufacture of cemented carbide molds. At that time, water may be used as a working fluid, and the cemented carbide for the mold is required to have corrosion resistance. In addition, since it is used as a mold, the cemented carbide is required to have high wear resistance and fracture resistance.

このような超硬合金の金型に関しては、特許文献1〜4に記載の技術が知られている。   For such a cemented carbide mold, the techniques described in Patent Documents 1 to 4 are known.

特許文献1には、放電加工時の良好な耐蝕性と金型使用時の良好な耐摩耗性、耐欠損性を同時に満足する金型用超硬合金が開示されている。この技術では、Cr、Niの添加により耐蝕性を高めている。さらに、WC粒子は、平均粒径0.8〜3μmの範囲内において、微細粒子と粗大粒子を混合して使用し、それにより耐欠損性を高めている。   Patent Document 1 discloses a cemented carbide alloy that satisfies both good corrosion resistance during electric discharge machining, good wear resistance when using a mold, and fracture resistance at the same time. In this technology, the corrosion resistance is enhanced by the addition of Cr and Ni. Further, the WC particles are used by mixing fine particles and coarse particles within an average particle diameter of 0.8 to 3 μm, thereby improving the fracture resistance.

特許文献2には、水溶性潤滑材に対する優れた耐蝕性と耐チッピング性を同時に発揮する金型用超硬合金が開示されている。この技術では、(Co+Ni)に対するV、Crの添加量を限定することでVおよびCrの炭化物相を析出させて耐蝕性を高め、WCの平均粒径を0.7μm超6μm以下とすることにより耐チッピング性を高めている。   Patent Document 2 discloses a cemented carbide alloy that simultaneously exhibits excellent corrosion resistance and chipping resistance to water-soluble lubricants. In this technology, the amount of V and Cr added to (Co + Ni) is limited to precipitate the carbide phase of V and Cr to improve the corrosion resistance, and the average particle diameter of WC is set to more than 0.7 μm and less than 6 μm. Chipping is improved.

特許文献3には、銅または銅系合金の被加工材のスタンピング加工に用いられる金型の寿命を伸ばす超硬合金が開示されている。銅または銅系合金を被加工材とする場合、超硬合金中のCoと銅の親和性が高いため、打ち抜き加工時に発生する摩擦により超硬合金と銅または銅系合金との間で相互拡散が生じる。その結果、超硬合金の硬度に影響を与えるWCをつなぎとめる結合相の作用が脆弱になり、WC粒子が超硬合金から脱落してしまう。そこで、この技術ではNi-Coを結合相とし、銅との親和性の低いNiの含有量を特定して、銅と結合相の反応を最小限に抑制している。さらには、0.5μm以下の微細なWC粒子を用いることで均一微細組織として応力集中を緩和し、WC粒子が超硬合金から脱落することを抑制している。   Patent Document 3 discloses a cemented carbide that extends the life of a mold used for stamping a workpiece of copper or a copper-based alloy. When copper or copper alloy is used as the work material, the high affinity between Co and copper in the cemented carbide, so the mutual diffusion between the cemented carbide and the copper or copper alloy due to the friction generated during punching Occurs. As a result, the action of the binder phase that holds WC that affects the hardness of the cemented carbide becomes fragile, and the WC particles fall off the cemented carbide. Therefore, in this technique, Ni—Co is used as a binder phase, the content of Ni having low affinity with copper is specified, and the reaction between copper and the binder phase is minimized. Furthermore, by using fine WC particles of 0.5 μm or less, stress concentration is relaxed as a uniform fine structure, and WC particles are prevented from falling off the cemented carbide.

特許文献4には、耐衝撃性、耐摩耗性および抗折力に優れ、特に打ち抜き型に適した超硬合金製金型用部品が開示されている。この技術ではWCの平均粒径を2.5〜4.5μmとすることにより耐衝撃性と耐摩耗性を確保している。さらに粒径1μm未満の微粒WC粒子の含有量を制限することで耐衝撃性を保持し、粒径6μmを越える粗粒WC粒子の含有量を制限することで抗折力を保持している。   Patent Document 4 discloses a cemented carbide mold part that is excellent in impact resistance, wear resistance, and bending strength, and is particularly suitable for a punching die. This technology ensures impact resistance and wear resistance by setting the average particle size of WC to 2.5 to 4.5 μm. Further, the impact resistance is maintained by limiting the content of fine WC particles having a particle size of less than 1 μm, and the bending strength is maintained by limiting the content of coarse WC particles having a particle size of more than 6 μm.

特開2003-155538号公報JP 2003-155538 A 特開平8-337837号公報JP-A-8-337837 特開平6-287675号公報JP-A-6-287675 特開平11-124649号公報JP 11-124649 A

しかし、上記のいずれの超硬合金も、耐蝕性、耐摩耗性、耐欠損性を兼備することに関し、なお不十分である。   However, any of the above cemented carbides is still insufficient with respect to having corrosion resistance, wear resistance, and fracture resistance.

従来の金型の製作は、機械加工やワイヤー放電加工により超硬合金を加工した後、最終の仕上げとして高度の技量を持った熟練者による手仕上げに依存している。一方で、最近のワイヤー放電加工の急速な高精度化や、金型ユーザからの納期の短縮要請などにより、加工面への仕上げとなる研削や磨きを省略する製造技術が求められている。しかし、このような手仕上げによる研削や研磨を省略してもなお十分な耐蝕性、耐摩耗性、耐欠損性を有する超硬合金は得られていない。   Conventional mold production relies on hand finishing by skilled workers with a high degree of skill as the final finish after machining cemented carbide by machining or wire electrical discharge machining. On the other hand, a manufacturing technique that eliminates grinding and polishing for finishing the processed surface is required due to the rapid increase in accuracy of recent wire electrical discharge machining and the request for shortening the delivery time from the mold user. However, a cemented carbide having sufficient corrosion resistance, wear resistance, and fracture resistance has not been obtained even if grinding and polishing by hand finishing are omitted.

例えば、特許文献1、2および4に記載の技術は、いずれも0.7μm超の大きい粒径のWCを使用している。超硬合金のWCの粒径が大きいと、耐欠損性(耐チッピング性)および耐衝撃性は向上するが、耐摩耗性に劣る。特に、被加工材との反応による摩耗を起こし易く、精密金型などの角部をシャープに維持しにくいという課題もある。   For example, all of the techniques described in Patent Documents 1, 2, and 4 use WC having a large particle diameter of more than 0.7 μm. When the particle size of the WC of the cemented carbide is large, the fracture resistance (chipping resistance) and impact resistance are improved, but the wear resistance is inferior. In particular, there is a problem that wear due to reaction with the workpiece tends to occur, and it is difficult to keep the corners of precision molds sharp.

一方、特許文献3に記載の技術は、NiやCr、Vなどを添加することによって、銅または銅系合金をスタンピング加工するときの銅と結合相の相互拡散を抑制している。しかし、WC粒子として粒径が0.5μm以下の微細なものを用いており、耐摩耗性には優れるが、耐欠損性が十分ではない。   On the other hand, the technique described in Patent Document 3 suppresses mutual diffusion of copper and a binder phase when stamping copper or a copper-based alloy by adding Ni, Cr, V, or the like. However, fine particles having a particle size of 0.5 μm or less are used as the WC particles, and the wear resistance is excellent, but the fracture resistance is not sufficient.

本発明は上記の事情に鑑みてなされたもので、その主目的は、耐摩耗性と耐蝕性が高く、さらにワイヤー放電加工した際、その加工面の耐欠損性にも優れる金型用の超硬合金を提供することにある。   The present invention has been made in view of the above circumstances, and its main purpose is high wear resistance and corrosion resistance. Further, when wire electric discharge machining is performed, it is excellent in chipping resistance of the machined surface. It is to provide a hard alloy.

また、本発明の別の目的は、耐摩耗性、耐蝕性、耐欠損性に優れる金型を提供することにある。   Another object of the present invention is to provide a mold having excellent wear resistance, corrosion resistance, and fracture resistance.

本発明は、結合相にCr、V、Moを所定量添加すると共に、硬質相に所定の微細粒子と粗大粒子を混合して用いることで上記の目的を達成する。   The present invention achieves the above object by adding a predetermined amount of Cr, V, and Mo to the binder phase and mixing and using predetermined fine particles and coarse particles in the hard phase.

本発明者らは、新しい要請にマッチした超硬合金を開発すべく、従来の超硬合金の問題点を調査した結果、以下の知見を得た。   As a result of investigating the problems of the conventional cemented carbide in order to develop a cemented carbide that meets the new requirements, the present inventors have obtained the following knowledge.

(1)従来の超硬合金では、ワイヤー放電加工切断面に一定厚さの変質層がある。
(2)変質層は、(A)電気化学的な腐食による腐食層、(B)微細なクラック(亀裂)を含む脆化層、(C)カットワイヤーに含まれる銅が超硬合金に拡散して形成される拡散層が主なものである。
(3)変質層における微細なクラックは、金型の使用に伴い次第に進展してチッピングの原因となる。
(4)金型で銅系の材料を打ち抜き加工などすると、銅と結合相であるCoが相互に拡散して、硬質相であるWCが脱落し易くなる。
(1) In a conventional cemented carbide, there is an altered layer having a certain thickness on the cut surface of the wire electric discharge machining.
(2) The altered layer is (A) a corrosion layer caused by electrochemical corrosion, (B) an embrittlement layer containing fine cracks, and (C) copper contained in the cut wire diffuses into the cemented carbide. The diffusion layer formed mainly is the main one.
(3) Fine cracks in the deteriorated layer gradually develop with use of the mold and cause chipping.
(4) When a copper-based material is punched with a metal mold, copper and Co, which is a binder phase, diffuse to each other and WC, which is a hard phase, easily falls off.

以上の知見に基づいて、耐摩耗性と耐欠損性を両立すると共に、変質層の生成を極力抑えることを狙いとして種々の検討を行った結果、本発明を完成した。   Based on the above findings, the present invention has been completed as a result of various studies aimed at achieving both wear resistance and fracture resistance and suppressing the generation of a deteriorated layer as much as possible.

すなわち、本発明金型用の超硬合金は、結合相と硬質相と不可避不純物とからなる超硬合金である。結合相は、超硬合金に対して6〜20重量%(以下%と記す)のCoと、Coの総量に対して3〜15%のCrと、2.5〜5.0%のVと、1.0〜5.0%のMoとからなる。そして、硬質相は、微細粒子と粗大粒子のWCで構成され、平均粒径が0.3〜0.6μmの微細粒子が硬質相の60〜90%、平均粒径が0.8〜2.5μmの粗大粒子が硬質相の10〜40%であることを特徴とする。   That is, the cemented carbide for the mold of the present invention is a cemented carbide composed of a binder phase, a hard phase, and inevitable impurities. The binder phase is 6 to 20% by weight Co (hereinafter referred to as%) with respect to the cemented carbide, 3 to 15% Cr with respect to the total amount of Co, 2.5 to 5.0% V, and 1.0 to 5.0. % Of Mo. The hard phase is composed of fine particles and coarse particles of WC, fine particles having an average particle size of 0.3 to 0.6 μm are 60 to 90% of the hard phase, and coarse particles having an average particle size of 0.8 to 2.5 μm are hard. It is characterized by 10-40% of the phase.

結合相にCr、V、Moを所定量添加することで、耐蝕性、硬質相粒子の粒成長抑制、被加工材との反応抑制を実現し、さらに硬質相に所定の微細粒子と粗大粒子を混合して用いることで、耐摩耗性と耐欠損性とを両立させることができる。   By adding a certain amount of Cr, V, and Mo to the binder phase, corrosion resistance, suppression of hard phase particle growth, suppression of reaction with the work material is achieved, and predetermined fine particles and coarse particles are added to the hard phase. By using a mixture, it is possible to achieve both wear resistance and fracture resistance.

本発明合金の結合相には、6〜20重量%のCoを用いる。Co量が6%未満では抗折力および破壊靭性値が低下するため好ましくない。一方、20%より多くなると硬度が低下し、このため耐摩耗性が低下する。この結合相量により、抗折力、破壊靭性値、耐摩耗性及び耐蝕性のバランスをとることができる。   6-20% by weight of Co is used for the binder phase of the alloy of the present invention. If the amount of Co is less than 6%, the bending strength and fracture toughness value are lowered, which is not preferable. On the other hand, if it exceeds 20%, the hardness decreases, and therefore the wear resistance decreases. The amount of the binder phase can balance the bending strength, fracture toughness value, wear resistance and corrosion resistance.

Crは耐蝕性を高める効果があり、Coの総量に対して3%未満では十分な耐蝕性が得られない。一方、15%より多くなると抗折力が低下し、耐欠損性が劣るため好ましくない。また、Crを添加すると、ワイヤー放電加工液で使用される酸性加工液に対する耐蝕性の向上が期待できる。Crのより好ましい含有量は、Coの総量に対して5〜12%である。これにより、耐蝕性と抗折力、耐欠損性がより好ましい範囲となる。   Cr has an effect of improving corrosion resistance, and if it is less than 3% with respect to the total amount of Co, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 15%, the bending strength is lowered and the fracture resistance is inferior. Addition of Cr can be expected to improve the corrosion resistance of the acid machining fluid used in the wire electric discharge machining fluid. The more preferable content of Cr is 5 to 12% with respect to the total amount of Co. Thereby, corrosion resistance, bending strength, and fracture resistance are more preferable ranges.

Vは、WCの粒成長を抑制する働きがある。そのため、微細粒子の硬質相が焼結時に粒成長して粗大な粒子になることを抑制できる。Co総量に対して2.5%未満であればWCの粒成長抑制効果が得られない。一方、5.0%より多くなるとVを含有する炭化物相が析出することによる抗折力の低下が起こるため好ましくない。Vのより好ましい含有量はCo総量に対して3〜4%である。これにより、WCの粒成長抑制効果と抗折力のバランスが取れたより好ましい範囲となる。   V has a function of suppressing WC grain growth. Therefore, it can suppress that the hard phase of a fine particle grows at the time of sintering, and becomes a coarse particle. If it is less than 2.5% of the total amount of Co, the effect of suppressing grain growth of WC cannot be obtained. On the other hand, if it exceeds 5.0%, the bending strength is reduced due to precipitation of a carbide phase containing V, such being undesirable. A more preferable content of V is 3 to 4% with respect to the total amount of Co. Thereby, it becomes a more preferable range in which the balance between the grain growth inhibiting effect of WC and the bending strength is balanced.

MoはCuに対する濡れ性が低く、適量含有することで被加工材との反応を抑制することができる。Moは、銅の拡散を抑制する働きがあり、Coの総量に対し1.0%未満であれば被加工物との反応抑制効果が得られない。一方、5.0%より多くなると抗折力の低下が起こるため好ましくない。Moのより好ましい含有量は、Coの総量に対して1.5〜3.0%である。これにより、Cuとの反応性を抑制し、抗折力もより好ましい範囲となる。   Mo has low wettability with respect to Cu, and when contained in an appropriate amount, the reaction with the workpiece can be suppressed. Mo has a function of suppressing copper diffusion, and if it is less than 1.0% with respect to the total amount of Co, the effect of suppressing reaction with the workpiece cannot be obtained. On the other hand, if it exceeds 5.0%, the bending strength is lowered, which is not preferable. A more preferable content of Mo is 1.5 to 3.0% with respect to the total amount of Co. Thereby, the reactivity with Cu is suppressed and the bending strength becomes a more preferable range.

一方、硬質相は、WC粒子として、微細粒子と粗大粒子の両方を用いる。微細粒子を用いることで、超硬合金の耐摩耗性を向上させ、粗大粒子を用いることで超硬合金における亀裂の進展に対する抵抗性を高めて、耐欠損性および靭性を改善することができる。特に、本発明超硬合金をワイヤー放電加工して金型を作製した場合、加工面に微細な亀裂が発生するが、金型使用時に、粗大粒子が微細な亀裂の進展を抑制することができる。   On the other hand, the hard phase uses both fine particles and coarse particles as WC particles. By using fine particles, the wear resistance of the cemented carbide can be improved, and by using coarse particles, the resistance to the progress of cracks in the cemented carbide can be increased, and the fracture resistance and toughness can be improved. In particular, when a die is produced by wire electric discharge machining of the cemented carbide of the present invention, fine cracks occur on the machined surface, but coarse particles can suppress the development of fine cracks when the die is used. .

この亀裂抑制のメカニズムは次のように推定される。図1は超硬合金における亀裂の進展状態を示す説明図である。この図において、超硬合金はWCの微細粒子1、粗大粒子2および結合相3からなっている。亀裂の形態としては、結合相の中のみを進展していく結合相内亀裂4、WC粒子と結合相の中を進展していくWC内亀裂5、結合相とWCの界面を通る結合相-WC粒界亀裂6に分類することができる。WCの粒径が小さいときは、亀裂が結合相-WC粒界を進展したり、WC粒子を迂回したりして通り抜ける。そのため、結合相内亀裂4、WC内亀裂5、結合相-WC粒界亀裂6のいずれの亀裂も生じやすい。これに対して、WCの粒径が大きいと、進展しようとする結合相内亀裂4や結合相-WC粒界亀裂6が粗大なWC粒子に突き当たり、しかもWC内亀裂5が生じない程度にWC粒子が大きいため、亀裂の進展が止められる。その結果、耐欠損性が向上できると考えられる。   The crack suppression mechanism is estimated as follows. FIG. 1 is an explanatory view showing the progress of cracks in a cemented carbide. In this figure, the cemented carbide is composed of WC fine particles 1, coarse particles 2 and a binder phase 3. As for the form of cracks, cracks in the bonded phase 4 that propagate only in the bonded phase 4, cracks 5 in the WC that propagate in the WC particles and the bonded phase, bonded phases that pass through the interface between the bonded phase and WC- It can be classified as WC grain boundary crack 6. When the particle size of WC is small, cracks pass through the binder phase-WC grain boundary or bypass the WC particles. Therefore, any of cracks in the binder phase crack 4, the WC crack 5, and the binder phase-WC grain boundary crack 6 is likely to occur. On the other hand, when the grain size of WC is large, the cracks in the binder phase 4 and the binder phase-WC grain boundary cracks 6 that are going to propagate hit the coarse WC particles, and the WC cracks 5 are not generated. Since the particles are large, the crack growth is stopped. As a result, it is considered that the fracture resistance can be improved.

上述した耐摩耗性と耐欠損性を両立するには、具体的には、平均粒径が0.3〜0.6μmの微細粒子が硬質相の60〜90%、平均粒径が0.8〜2.5μmの粗大粒子が硬質相の10〜40%含まれる硬質相を用いる。   To achieve both the above-mentioned wear resistance and fracture resistance, specifically, fine particles having an average particle size of 0.3 to 0.6 μm are 60 to 90% of the hard phase and coarse particles having an average particle size of 0.8 to 2.5 μm. A hard phase containing 10 to 40% of the hard phase is used.

このような微細粒子は、超硬合金の耐摩耗性の改善と強度向上に寄与する。また、粒子間隔を狭くして結合相の厚みを小さくできるため、被加工材と結合相の相互拡散を抑制することもできる。さらに、粒径が小さいため、金型に加工した際、金型のエッジをよりシャープに加工することができる。   Such fine particles contribute to improvement of wear resistance and strength of the cemented carbide. In addition, since the particle spacing can be reduced to reduce the thickness of the binder phase, mutual diffusion between the workpiece and the binder phase can also be suppressed. Furthermore, since the particle size is small, the edge of the mold can be processed more sharply when processed into a mold.

微細粒子の平均粒径が0.3μmより小さければ破壊靭性値が低下するため金型製作時に亀裂が進展しやすく、また金型使用時の耐チッピング性にも劣るために好ましくない。逆に0.6μmより大きくなると硬度が低下するため耐摩耗性に劣る。   If the average particle size of the fine particles is smaller than 0.3 μm, the fracture toughness value is lowered, so that cracks are likely to develop at the time of mold production, and chipping resistance at the time of mold use is also unfavorable. On the other hand, if it exceeds 0.6 μm, the hardness decreases and the wear resistance is poor.

一方、粗大粒子は金型製作時および金型使用時の亀裂の進展防止に寄与する。粗大粒子の粒径が0.8μmより小さければ破壊靭性値が低くなり、十分な亀裂進展防止効果が得られない。逆に、2.5μmより大きければ、硬度低下のため耐摩耗性に劣り、また粒子間の隙間が大きくなることにより結合相の厚みが大きくなるため被加工物との反応抑制効果が得られない。さらに、金型製作時、特に精密加工する際に金型先端のシャープエッジ加工が難しくなり精密な寸法精度が得られない。   On the other hand, coarse particles contribute to the prevention of crack propagation during mold manufacture and mold use. If the particle size of the coarse particles is smaller than 0.8 μm, the fracture toughness value becomes low, and a sufficient crack growth preventing effect cannot be obtained. On the other hand, if it is larger than 2.5 μm, the hardness is inferior and the wear resistance is inferior, and the gap between the particles is increased and the thickness of the binder phase is increased, so that the effect of suppressing reaction with the workpiece cannot be obtained. Furthermore, when manufacturing the mold, particularly when performing precision machining, it becomes difficult to sharpen the edge of the mold, and precise dimensional accuracy cannot be obtained.

上述した微細粒子と粗大粒子の構成比率は、微細粒子が90%より多く粗大粒子が10%より少なくなれば、破壊靭性値が低下し、耐亀裂進展抑制効果が得られないことや、耐チッピング性が劣るため好ましくない。一方、微細粒子が60%より少なく粗大粒子が40%よりも多ければ、硬度が低下し、耐摩耗性が得られないため好ましくない。   The composition ratio of the fine particles and coarse particles described above indicates that if the fine particles are larger than 90% and the coarse particles are smaller than 10%, the fracture toughness value is lowered and the crack growth resistance suppressing effect cannot be obtained, and chipping resistance is not obtained. It is not preferable because of poor properties. On the other hand, if the number of fine particles is less than 60% and the number of coarse particles is more than 40%, the hardness decreases and wear resistance cannot be obtained, which is not preferable.

以下、本発明のさらに好ましい範囲について詳細に説明する。   Hereinafter, more preferable ranges of the present invention will be described in detail.

本発明超硬合金は結合相のCoの一部をNiに置換してもよい。そのNiの含有量はCo量と等しくなる量までである。NiはCoより耐蝕性の高い元素であり、耐蝕性が高くなる。その上、NiはCrとの相性がよく、Crをより多く固溶させるには、Niを上記の規定量含有させることが有効である。Crも前記したとおり耐蝕性を高める働きがあるが、Crを添加することで特に酸に対する耐蝕性が高くなる。CoとNiの総量に対して、NiがCoの量より多くなれば抗折力が低下するため好ましくない。   In the cemented carbide of the present invention, a part of Co in the binder phase may be replaced with Ni. The Ni content is up to an amount equal to the Co content. Ni is an element having higher corrosion resistance than Co and has higher corrosion resistance. In addition, Ni has a good compatibility with Cr, and it is effective to contain Ni in the above specified amount in order to dissolve more Cr. As described above, Cr also has a function of improving the corrosion resistance. However, the addition of Cr increases the corrosion resistance especially against acids. If Ni is larger than the amount of Co with respect to the total amount of Co and Ni, the bending strength is lowered, which is not preferable.

Coの一部をNiに置換した場合、Cr、V、Moの含有量の基準となる「Coの総量」も「CoとNiの総量」に置換する。つまり、Cr、V、Moは、CoとNiの総量に対して、各々3〜15%、2.5〜5.0%、1.0〜5.0%含有させればよい。   When a part of Co is replaced with Ni, the “total amount of Co” which is a reference for the content of Cr, V, and Mo is also replaced with “total amount of Co and Ni”. That is, Cr, V, and Mo may be contained in amounts of 3 to 15%, 2.5 to 5.0%, and 1.0 to 5.0%, respectively, with respect to the total amount of Co and Ni.

より好ましい硬質相の粒径と構成比率は、平均粒径が0.4〜0.6μmの微細粒子が硬質相の70〜85%とし、平均粒径が1.0〜2.0μmの粗大粒子を硬質相の15〜30%とすることである。この構成により、粗大粒子と微細粒子を混合した効果がよりよく現れるからである。   More preferable hard phase particle size and composition ratio are such that fine particles having an average particle size of 0.4 to 0.6 μm are 70 to 85% of the hard phase, and coarse particles having an average particle size of 1.0 to 2.0 μm are 15 to 30%. This is because the effect of mixing coarse particles and fine particles is better exhibited by this configuration.

一方、より好ましい結合相量は超硬合金に対して8〜14%である。より優れた耐摩耗性と耐欠損性を併せ持つ超硬合金とすることができる。   On the other hand, a more preferable binder phase amount is 8 to 14% with respect to the cemented carbide. It can be a cemented carbide having both superior wear resistance and fracture resistance.

また、本発明金型は、上記の本発明超硬合金からなり、ワイヤー放電加工により仕上げ加工されてなることを特徴とする。金型を作製する際、ワイヤー放電加工が利用されることは既に述べたが、本発明超硬合金は耐蝕性、耐摩耗性、耐欠損性にバランスよく優れるため、ワイヤー放電加工により仕上げ加工された金型として利用される。   Moreover, this invention metal mold | die consists of said invention cemented carbide alloy, and is finish-processed by wire electric discharge machining, It is characterized by the above-mentioned. It has already been mentioned that wire electric discharge machining is used when making molds. However, the cemented carbide of the present invention has a good balance of corrosion resistance, wear resistance, and fracture resistance, so it is finished by wire electric discharge machining. Used as a mold.

特に、本発明超硬合金で構成された金型は、ワイヤー放電加工により仕上げ加工したそのままで金型として使用できる。本発明超硬合金は、耐蝕性や亀裂の進展抑制特性に優れているため、変質層をミクロンオーダーに薄くできる。従って、従来は熟練者などが手作業で行っていたワイヤー放電加工液による腐食層の除去作業、ワイヤー放電加工による微細な亀裂を含む脆化層の除去作業を行うことなく金型として利用することができる。   In particular, a mold composed of the cemented carbide of the present invention can be used as a mold as it is after being finished by wire electric discharge machining. Since the cemented carbide of the present invention is excellent in corrosion resistance and crack growth suppressing properties, the deteriorated layer can be thinned to the micron order. Therefore, it can be used as a mold without removing the corrosive layer by wire electric discharge machining fluid, which has been done manually by skilled workers, and removing the brittle layer including fine cracks by wire electric discharge machining. Can do.

この金型の好適な加工対象としては、銅または銅合金が考えられる。より具体的には、本発明合金でタイバーカットパンチを構成し、半導体素子のリード加工に利用することが挙げられる。本発明合金は、銅との耐反応性に優れるため、銅あるいは銅合金を加工する金型に用いても、結合相が銅と反応して変質層を形成することを抑制でき、長寿命の金型として利用することができる。   Copper or copper alloy can be considered as a suitable processing object of this metal mold | die. More specifically, a tie bar cut punch is constituted by the alloy of the present invention and used for lead processing of a semiconductor element. Since the alloy of the present invention is excellent in resistance to copper, even if it is used in a mold for processing copper or a copper alloy, the binder phase can be prevented from reacting with copper to form a deteriorated layer, resulting in a long life. Can be used as a mold.

本発明超硬合金は、次の効果を奏することができる。
(1)Cr、V、Moを適量添加することで、主として耐蝕性、粒成長抑制および被加工材との反応抑制を実現することができる。
(2)硬質相に所定の微細粒子と粗大粒子を混合して用いることで、耐摩耗性と耐欠損性とを両立させることができる。
The cemented carbide of the present invention can exhibit the following effects.
(1) By adding appropriate amounts of Cr, V, and Mo, it is possible to achieve mainly corrosion resistance, suppression of grain growth, and suppression of reaction with the workpiece.
(2) By using a mixture of predetermined fine particles and coarse particles in the hard phase, both wear resistance and fracture resistance can be achieved.

また、本発明金型は次の効果を奏することができる。
(1)本発明超硬合金を用いたことで、耐蝕性、耐摩耗性、耐欠損性をバランスよく具えた金型とすることができる。
(2)被加工材との反応性が低い結合相と、微細粒子を含有した硬質相とを用いることで、角部がシャープに加工された金型とすることができる。
(3)変質層が極めて僅かしかなため、ワイヤー放電加工したままで金型として利用することができる。
Moreover, this invention metal mold | die can have the following effects.
(1) By using the cemented carbide of the present invention, it is possible to obtain a mold having a balanced balance of corrosion resistance, wear resistance, and fracture resistance.
(2) By using a binder phase having low reactivity with the workpiece and a hard phase containing fine particles, a mold having sharp corners can be obtained.
(3) Since the deteriorated layer is extremely small, it can be used as a mold while being subjected to wire electric discharge machining.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

各種の平均粒径を持つWC粉末および平均粒径1.3μmのCo粉末、平均粒径3μmのNi粉末、平均粒径7μmのCr粉末、平均粒径1.6μmのVC粉末および平均粒径0.9μmのMo粉末を準備した。これらの粉末を表1に示す組成になるように秤量し、これを超硬合金製ボールと共にアトライターに仕込み、混合と粉砕を行って原料粉末を調整した。表1において、CoとNiの欄はCoとNiが出発原料に占める割合を重量%で示したものである。また、Cr、VおよびMoの含有量は「Co+Ni」に対する重量%で示している。Niを含んでいない場合は、Coに対する割合で示している。なおここで、VC粉末で添加したものの一部が金属成分VとしてCo+Niに固溶し添加の効果を発揮するので、表1ではV/(Co+Ni)の値で含有量を示した。   WC powder with various average particle size and Co powder with average particle size of 1.3μm, Ni powder with average particle size of 3μm, Cr powder with average particle size of 7μm, VC powder with average particle size of 1.6μm and average particle size of 0.9μm Mo powder was prepared. These powders were weighed so as to have the composition shown in Table 1, and charged together with cemented carbide balls into an attritor, mixed and pulverized to prepare raw material powders. In Table 1, the Co and Ni columns show the proportion of Co and Ni in the starting material in weight percent. Further, the contents of Cr, V and Mo are shown by weight% with respect to “Co + Ni”. When Ni is not included, it is shown as a percentage of Co. In addition, since a part of what was added with VC powder was dissolved in Co + Ni as the metal component V and exhibited the effect of addition, Table 1 shows the content by the value of V / (Co + Ni). .

Figure 2006152409
Figure 2006152409

調整した原料粉末を加圧成形して粉末成形体を作製し、これを真空中で1400℃、1時間保持することにより焼結した。さらに98MPaのアルゴンガス中で、1320℃、1時間保持してHIP処理し、試料番号1-1〜1-5の本発明と2-1〜2-7の比較例を得た。得られた焼結体を研削して、12.5×12.5×4mmに仕上げた。   The adjusted raw material powder was pressure-molded to produce a powder compact, which was sintered by holding it at 1400 ° C. in a vacuum for 1 hour. Furthermore, it was kept at 1320 ° C. for 1 hour in an argon gas of 98 MPa and subjected to HIP treatment to obtain the present inventions of sample numbers 1-1 to 1-5 and comparative examples 2-1 to 2-7. The obtained sintered body was ground and finished to 12.5 × 12.5 × 4 mm.

得られた焼結体の硬度と、抗折力および破壊靭性値および酸による腐食層厚みを測定し、その結果を表2に示した。この中で腐食層を以下のようにして測定した。焼結体の12.5×12.5mm面をダイヤモンドペースト#3000によりラッピング加工し、PH3.5の溶液に浸漬し60℃で36時間浸漬したもの(表2の「PH3.5])、およびPH5.5の液に浸漬し40℃で59時間保持したもの(表2の「PH5.5」)を作製した。ワイヤー放電加工に用いられる加工液には、PHが3.5〜5.5の酸性の強いものも使用されているので、上記の条件で耐蝕性を調べた。このようにして得られた試料の12.5×12.5mmのラッピング面からの腐食層の厚みを測定した。具体的には、ラッピング面に一定の角度を持つ面で切断し、その切断面をラッピングして腐食層の厚みを顕微鏡で測定した。   The hardness, bending strength, fracture toughness value, and acid corrosion layer thickness of the obtained sintered body were measured, and the results are shown in Table 2. In this, the corrosion layer was measured as follows. 12.5 × 12.5mm surface of sintered body was lapped with diamond paste # 3000, immersed in PH3.5 solution and immersed at 60 ° C for 36 hours ("PH3.5" in Table 2), and PH5.5 A solution ("PH5.5" in Table 2) was prepared by dipping in the solution and holding at 40 ° C for 59 hours. As the machining fluid used for wire electric discharge machining, a highly acidic one having a pH of 3.5 to 5.5 is used, and the corrosion resistance was examined under the above conditions. The thickness of the corrosion layer from the 12.5 × 12.5 mm lapping surface of the sample thus obtained was measured. Specifically, the wrapping surface was cut with a surface having a certain angle, the cut surface was lapped, and the thickness of the corrosion layer was measured with a microscope.

また、表2の抗折力測定用の試験片は、焼結体の各側面を研削した4×5×25mmの大きさとした。図2は、抗折力の測定方法を説明する正面図である。支持丸棒13を所定間隔に設置し、その上に抗折試験片10を置く。次に、抗折試験片10の上に配置された押さえ具14により抗折試験片10が破壊されるまで圧力をかけて抗折力を測定した。なお、図2において11はワイヤー放電加工面、12は研削面を示すが、この実施例では11、12共に研削面である。硬度と破壊靭性値は従来の公知の方法で測定した。   Further, the specimen for measuring the bending strength shown in Table 2 was a size of 4 × 5 × 25 mm obtained by grinding each side surface of the sintered body. FIG. 2 is a front view for explaining a method for measuring the bending strength. Supporting round bars 13 are installed at predetermined intervals, and the bending test piece 10 is placed thereon. Next, the bending force was measured by applying pressure until the bending test piece 10 was broken by the presser 14 disposed on the bending test piece 10. In FIG. 2, 11 indicates a wire electric discharge machining surface and 12 indicates a grinding surface. In this embodiment, both 11 and 12 are grinding surfaces. The hardness and fracture toughness values were measured by a conventionally known method.

Figure 2006152409
Figure 2006152409

平均粒径が0.5μmのWC粉末で適量のCrとVを添加した試料番号1-1〜1-5、2-6は、硬度と抗折力は高い水準を保つ。しかしながら、PH3.5の腐食層の厚みを見ると、本発明の試料番号1-1〜1-5は4.5〜8.3μmと薄く、耐蝕性が高いのに対し、試料番号2-6は、PH5.5までは本発明の試料と遜色がないが、PH3.5になると耐蝕性に劣ることが明確に判明した。   Sample Nos. 1-1 to 1-5 and 2-6, in which appropriate amounts of Cr and V are added with WC powder having an average particle size of 0.5 μm, maintain high levels of hardness and bending strength. However, when looking at the thickness of the corrosion layer of PH3.5, sample numbers 1-1 to 1-5 of the present invention are as thin as 4.5 to 8.3 μm and high in corrosion resistance, whereas sample number 2-6 is PH5 Up to .5, it was not inferior to the sample of the present invention, but it was clearly found that the corrosion resistance was inferior at PH 3.5.

次に、ワイヤー放電加工の条件と、変質層の厚さとの関係を調べた。実施例1の試料番号1-3、2-3および2-6と同じ条件で、4×5×25mmの複数の全面研削された試料を準備した。次に、後述する図3に示す方法でワイヤー放電加工により5×25mmの面を10μm以上加工して、研削面の影響を取り除き、ワイヤー放電加工だけの影響を表面に残した。   Next, the relationship between the conditions of wire electric discharge machining and the thickness of the altered layer was examined. A plurality of 4 × 5 × 25 mm ground samples were prepared under the same conditions as Sample Nos. 1-3, 2-3, and 2-6 of Example 1. Next, a surface of 5 × 25 mm was machined by 10 μm or more by wire electric discharge machining by the method shown in FIG. 3 to be described later, the influence of the ground surface was removed, and the influence of only wire electric discharge machining was left on the surface.

図3は、ワイヤー放電加工による加工方法の説明図である。抗折試験片10の右上角部を原点とし抗折試験片の水平、垂直出しを行い、-X軸方向を抗折試験片の長手方向、-Y軸方向を厚み方向とした。放電加工用ワイヤー20は、原点の右上、すなわち、座標上のX=0.5mm、Y=0.01mmにZ軸方向にセットした。抗折試験片10とワイヤー20を相対的に-X軸方向に移動させて抗折試験片を全長にわたりワイヤー放電加工し、次に-Y軸方向に移動させて試料を切り込む位置まで移動して、X軸方向に移動させてワイヤー放電加工した。このような工程を繰り返して、抗折試験片の表面から研削の効果を除去し、ワイヤー放電加工の影響のみ残した。   FIG. 3 is an explanatory diagram of a machining method by wire electric discharge machining. The bending test piece was horizontally and vertically placed with the upper right corner of the bending test piece 10 as the origin, the -X axis direction was the longitudinal direction of the bending test piece, and the -Y axis direction was the thickness direction. The electric discharge machining wire 20 was set in the Z-axis direction at the upper right of the origin, that is, X = 0.5 mm and Y = 0.01 mm on the coordinates. Move the bending test specimen 10 and the wire 20 relatively in the -X-axis direction, wire-discharge machining the bending test specimen over the entire length, and then move it in the -Y-axis direction to the position where the sample is cut. Then, it was moved in the X-axis direction and wire EDM was performed. Such a process was repeated to remove the grinding effect from the surface of the bending test specimen, leaving only the influence of wire electric discharge machining.

上記のワイヤー放電加工は、表3に記載されている4つの条件で加工した。ワイヤー放電加工の条件は、複雑なので表4において、加工された被削材の面粗さで加工条件を示した。詳細には、加工条件1は微細仕上げ加工用FS3電源を用い、加工条件2は仕上げを細かくするFM電源を使用した。加工条件3、4は微細加工可能なFS4電源を用い、加工条件4では加工条件3より印加電圧を小さくして、さらに微細仕上げとなる条件で加工した。   The wire electric discharge machining was performed under the four conditions described in Table 3. Since the conditions of wire electric discharge machining are complicated, the machining conditions are shown in Table 4 by the surface roughness of the machined work material. Specifically, FS3 power supply for fine finishing was used for processing condition 1, and FM power supply for fine finishing was used for processing condition 2. For processing conditions 3 and 4, an FS4 power source capable of microfabrication was used. In processing condition 4, the applied voltage was lower than in processing condition 3, and processing was performed under conditions that resulted in further fine finishing.

Figure 2006152409
Figure 2006152409

次に、ワイヤー放電加工による変質層の厚みを、以下に示す方法で測定した。まず、全面研削された試料の抗折力を測定する。次に、試料の5×25mmの面の1つをワイヤー放電加工し、その面を一定厚さづつ研削し、そのたびに図2に示す方法で抗折力を測定した。このとき、ワイヤー放電加工面を下側にして、加工面の影響が強度に反映されるようにして測定した。そして、図4に示すグラフを作成し、全面研削された試料の抗折力と同等の抗折力が得られたときの研削量を算出して表3に記載した。   Next, the thickness of the deteriorated layer by wire electric discharge machining was measured by the method shown below. First, the bending strength of the sample ground on the whole surface is measured. Next, one of the 5 × 25 mm surfaces of the sample was subjected to wire electric discharge machining, the surface was ground at a constant thickness, and the bending strength was measured by the method shown in FIG. 2 each time. At this time, the measurement was performed such that the influence of the processed surface was reflected in the strength with the wire electric discharge processed surface facing down. Then, the graph shown in FIG. 4 was prepared, and the grinding amount when the bending force equivalent to the bending force of the sample ground on the whole surface was obtained was calculated and listed in Table 3.

図4は、横軸に研削量、縦軸に抗折力を示すグラフであり、全面研削試料の抗折力30が点線で記載されている。そして、ワイヤー放電加工された面を研削して変質層を取り除いたときの抗折力31を測定してグラフに書き込む。この作業を繰り返し、全面研削試料の抗折力30と同じ抗折力になったとき、変質層を完全に除去できたと判断し、これを変質層の厚さとした。図4に示すグラフの場合は、変質層の厚さは約6μmということができる。   FIG. 4 is a graph showing the grinding amount on the horizontal axis and the bending force on the vertical axis, and the bending force 30 of the entire ground sample is indicated by a dotted line. Then, the bending strength 31 when the wire-discharge processed surface is ground to remove the deteriorated layer is measured and written on the graph. This operation was repeated, and when the bending strength was the same as the bending strength 30 of the whole ground sample, it was judged that the deteriorated layer was completely removed, and this was defined as the thickness of the deteriorated layer. In the case of the graph shown in FIG. 4, the thickness of the altered layer can be about 6 μm.

表3の加工条件3、4から明らかなように、本発明の超硬合金を表面粗さが1μm以下になるような加工条件でワイヤー放電加工すると、表面変質層の厚さが1μm前後になる。この程度の厚さに変質層の厚さを抑えられると、ワイヤー放電加工した面を研削することなくそのまま金型面として使用できる。しかしながら、従来の超硬合金は、例え面粗さが小さくなる条件でワイヤー放電加工しても、変質層の厚さが2μmより小さくならない。従って、ワイヤー放電加工面を仕上げ面とすることができない。   As is clear from the processing conditions 3 and 4 in Table 3, when the electric discharge machining is performed on the cemented carbide of the present invention under the processing conditions such that the surface roughness is 1 μm or less, the thickness of the surface damaged layer becomes about 1 μm. . If the thickness of the deteriorated layer is suppressed to such a thickness, the surface subjected to wire electric discharge machining can be used as it is as a mold surface without grinding. However, the thickness of the deteriorated layer of the conventional cemented carbide does not become smaller than 2 μm even if wire electric discharge machining is performed under the condition that the surface roughness is reduced. Therefore, the wire electric discharge machining surface cannot be a finished surface.

実施例1の試料番号1-3、2-3および2-6と同じ材料を用いて、樹脂封止したリードフレームのタイバーカット用パンチを製作した。このときのパンチ先端部は加工液として水を使用し、ワイヤー放電加工した。ワイヤー放電加工したままの金型により、樹脂封止したリードフレームを10万ショット、100万ショットしたときのパンチの摩耗量を測定し、表4に示した。なお、リードフレームは、銅を99%以上含有する銅合金であった。   Using the same material as Sample Nos. 1-3, 2-3, and 2-6 of Example 1, a tie bar cutting punch for a resin-sealed lead frame was manufactured. At this time, the tip of the punch was subjected to wire electric discharge machining using water as a machining liquid. Table 4 shows the amount of wear of the punch when a resin-encapsulated lead frame was shot with 100,000 shots and 1 million shots using a wire-discharge-processed die. The lead frame was a copper alloy containing 99% or more of copper.

Figure 2006152409
Figure 2006152409

試料番号2-3のものは、摩耗が激しく100万ショットできなかった。試料番号2-3の硬質相は粗大粒子のみで、微細なWC粒子を含んでいない。このために耐摩耗性に劣り、被加工材との反応による摩耗を起こし易いから100万ショットまでの寿命がなかったと考えられる。試料番号2-6の硬質相は、逆に微細な粒子のみで粗大粒子を含んでいないので、耐摩耗性は高いが耐チッピング性に劣るので20μmの摩耗となった。本発明の試料番号1-3は、100万ショットでも10μmの摩耗量しかなく、耐摩耗性に優れたものであった。   Sample No. 2-3 was so worn that 1 million shots could not be made. The hard phase of Sample No. 2-3 is only coarse particles and does not contain fine WC particles. For this reason, it is inferior in wear resistance, and is prone to wear due to reaction with the workpiece. The hard phase of Sample No. 2-6, on the contrary, has only fine particles and no coarse particles, so it has high wear resistance but is inferior in chipping resistance, resulting in 20 μm wear. Sample Nos. 1 to 3 of the present invention had only 10 μm of wear even after 1 million shots, and had excellent wear resistance.

次に、銅と超硬合金の親和性を調べた。具体的には、純度99.9%の銅板を、研磨した超硬合金で挟んだ試料を2個製作した。これをそれぞれ、空気中では900℃、30分保持、真空中では900℃、10時間保持して、銅の超硬合金の中への拡散を調べた。次に、試料を取り出し、超硬合金を切断し、その断面を研磨して超硬合金の結合相と銅が反応して形成された拡散層の厚みを測定した。この測定は、断面のSEM観察にて行った。測定結果を表5に示す。   Next, the affinity between copper and cemented carbide was examined. Specifically, two samples were produced, in which a 99.9% pure copper plate was sandwiched between polished cemented carbides. Each of these was held in air at 900 ° C. for 30 minutes and in vacuum at 900 ° C. for 10 hours to examine the diffusion of copper into the cemented carbide. Next, the sample was taken out, the cemented carbide was cut, the cross section was polished, and the thickness of the diffusion layer formed by the reaction between the cemented carbide binder phase and copper was measured. This measurement was performed by SEM observation of the cross section. Table 5 shows the measurement results.

Figure 2006152409
Figure 2006152409

本発明の試料1-1の拡散層は、大気中でも真空中でも、比較例である試料番号2-6よりはるかに薄いことが分かる。従って、本発明の超硬合金は銅との反応性が低く、カットワイヤーとの親和性も低いと言える。   It can be seen that the diffusion layer of Sample 1-1 of the present invention is much thinner than Sample No. 2-6, which is a comparative example, in the air or in vacuum. Therefore, it can be said that the cemented carbide of the present invention has low reactivity with copper and low affinity with cut wires.

本発明超硬合金は、耐チッピング性が高く、耐摩耗性も高いので、通常の金型のほかに機械部品、銅系合金のスタンピング加工用金型の用途が期待される。特に、耐蝕性が求められる部品、放電加工によって仕上げ加工される金型部品、機械部品などに好適に使用できる。   Since the cemented carbide of the present invention has high chipping resistance and high wear resistance, it is expected to be used as a stamping die for machine parts and copper alloys in addition to ordinary dies. In particular, it can be suitably used for parts that require corrosion resistance, mold parts that are finished by electrical discharge machining, machine parts, and the like.

本発明の超硬合金は、亀裂が進展しにくい構造であることを説明する模式断面図である。The cemented carbide of the present invention is a schematic cross-sectional view for explaining that the structure has a structure in which cracks hardly develop. 抗折力の測定方法を説明する正面図である。It is a front view explaining the measuring method of a bending strength. ワイヤー放電加工による加工方法の説明図である。It is explanatory drawing of the processing method by wire electric discharge machining. 研削量と抗折力との関係を示すグラフである。It is a graph which shows the relationship between grinding amount and bending strength.

符号の説明Explanation of symbols

1 WCの微細粒子 2 WCの粗大粒子
3 結合相 4 結合相内亀裂
5 WC内亀裂 6 結合相ーWC粒界亀裂
10 抗折試験片 11 ワイヤー放電加工面
12 研削面 13 支持丸棒
14 押さえ具
20 ワイヤー
30 全面研削試料の抗折力
31 変質層を取り除いたときの抗折力
1 WC fine particles 2 WC coarse particles
3 Bond phase 4 Crack in bond phase
5 Cracks in WC 6 Bonded phase-WC grain boundary cracks
10 Folding specimen 11 Wire EDM surface
12 Grinding surface 13 Support round bar
14 Presser
20 wires
30 Folding force of whole surface grinding sample
31 Folding force when the altered layer is removed

Claims (6)

結合相と硬質相と不可避不純物とからなる金型用の超硬合金であって、
前記結合相は、
超硬合金に対して6〜20重量%(以下%と記す)のCoと、
Coの総量に対して、3〜15%のCrと、2.5〜5.0%のVと、1.0〜5.0%のMoとからなり、
前記硬質相は、
微細粒子と粗大粒子のWCで構成され、
平均粒径が0.3〜0.6μmの微細粒子が硬質相の60〜90%、平均粒径が0.8〜2.5μmの粗大粒子が硬質相の10〜40%であることを特徴とする金型用超硬合金。
A cemented carbide alloy for molds composed of a binder phase, a hard phase and inevitable impurities,
The binder phase is
6 to 20% by weight (hereinafter referred to as%) of Co with the cemented carbide,
Consists of 3 to 15% Cr, 2.5 to 5.0% V, and 1.0 to 5.0% Mo with respect to the total amount of Co,
The hard phase is
Consists of WC of fine particles and coarse particles,
Ultra-die for molds characterized in that fine particles with an average particle size of 0.3-0.6 μm are 60-90% of the hard phase and coarse particles with an average particle size of 0.8-2.5 μm are 10-40% of the hard phase Hard alloy.
前記結合相のCoの一部がNiに置換され、
そのNiの含有量はCo量と等しくなる量までであり、
Cr、V、Moは、CoとNiの総量に対して、各々3〜15%、2.5〜5.0%、1.0〜5.0%含有されることを特徴とする請求項1に記載の金型用超硬合金。
A portion of Co in the binder phase is replaced with Ni;
The Ni content is up to an amount equal to the Co amount,
The cemented carbide for mold according to claim 1, wherein Cr, V, and Mo are contained in amounts of 3 to 15%, 2.5 to 5.0%, and 1.0 to 5.0%, respectively, based on the total amount of Co and Ni. alloy.
前記硬質相は、平均粒径が0.4〜0.6μmの微細粒子が硬質相の70〜85%、平均粒径が1.0〜2.0μmの粗大粒子が硬質相の15〜30%であることを特徴とする請求項1または2に記載の金型用超硬合金。   The hard phase is characterized in that fine particles having an average particle diameter of 0.4 to 0.6 μm are 70 to 85% of the hard phase, and coarse particles having an average particle diameter of 1.0 to 2.0 μm are 15 to 30% of the hard phase. The cemented carbide for molds according to claim 1 or 2. 前記結合相量は超硬合金に対して8〜14%であることを特徴とする請求項1〜3のいずれかに記載の金型用超硬合金。   The cemented carbide for molds according to any one of claims 1 to 3, wherein the amount of the binder phase is 8 to 14% with respect to the cemented carbide. 請求項1〜4のいずれかに記載の金型用超硬合金からなり、ワイヤー放電加工により仕上げ加工されてなることを特徴とする金型。   A mold comprising the cemented carbide for a mold according to any one of claims 1 to 4, and being finished by wire electric discharge machining. 前記金型の被加工材が銅または銅合金であることを特徴とする請求項5に記載の金型。   6. The mold according to claim 5, wherein the workpiece of the mold is copper or a copper alloy.
JP2004347806A 2004-11-30 2004-11-30 Mold Expired - Fee Related JP4746310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347806A JP4746310B2 (en) 2004-11-30 2004-11-30 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347806A JP4746310B2 (en) 2004-11-30 2004-11-30 Mold

Publications (2)

Publication Number Publication Date
JP2006152409A true JP2006152409A (en) 2006-06-15
JP4746310B2 JP4746310B2 (en) 2011-08-10

Family

ID=36631042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347806A Expired - Fee Related JP4746310B2 (en) 2004-11-30 2004-11-30 Mold

Country Status (1)

Country Link
JP (1) JP4746310B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188654A (en) * 2009-02-19 2010-09-02 Autonetworks Technologies Ltd Mold and method of manufacturing the same
JP2011149048A (en) * 2010-01-21 2011-08-04 Sanyo Special Steel Co Ltd Precision die for hot press and method for manufacturing the same
CN105861903A (en) * 2016-05-30 2016-08-17 中南大学 Hard alloy
JP2017039954A (en) * 2015-08-17 2017-02-23 オーエスジー株式会社 Cemented carbide
WO2019181453A1 (en) * 2018-03-22 2019-09-26 日本電産株式会社 Raw material powder, sintered gear production method, and sintered gear
WO2019181452A1 (en) * 2018-03-22 2019-09-26 日本電産株式会社 Raw material powder, sintered gear production method, and sintered gear
CN114302780A (en) * 2019-08-27 2022-04-08 日立金属株式会社 WC-based cemented carbide powder, WC-based cemented carbide member, and method for producing WC-based cemented carbide member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176646A (en) * 1984-09-21 1986-04-19 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy
JPH10298699A (en) * 1997-04-25 1998-11-10 Sumitomo Electric Ind Ltd Cemented carbide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176646A (en) * 1984-09-21 1986-04-19 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy
JPH10298699A (en) * 1997-04-25 1998-11-10 Sumitomo Electric Ind Ltd Cemented carbide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188654A (en) * 2009-02-19 2010-09-02 Autonetworks Technologies Ltd Mold and method of manufacturing the same
JP2011149048A (en) * 2010-01-21 2011-08-04 Sanyo Special Steel Co Ltd Precision die for hot press and method for manufacturing the same
JP2017039954A (en) * 2015-08-17 2017-02-23 オーエスジー株式会社 Cemented carbide
CN105861903A (en) * 2016-05-30 2016-08-17 中南大学 Hard alloy
WO2019181453A1 (en) * 2018-03-22 2019-09-26 日本電産株式会社 Raw material powder, sintered gear production method, and sintered gear
WO2019181452A1 (en) * 2018-03-22 2019-09-26 日本電産株式会社 Raw material powder, sintered gear production method, and sintered gear
CN114302780A (en) * 2019-08-27 2022-04-08 日立金属株式会社 WC-based cemented carbide powder, WC-based cemented carbide member, and method for producing WC-based cemented carbide member

Also Published As

Publication number Publication date
JP4746310B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
KR101867104B1 (en) Sintered cubic boron nitride tool
EP2835195B1 (en) Sintered cubic boron nitride tool
CN106457415B (en) Composite component and cutting element
WO2019116614A1 (en) Cemented carbide and cutting tool
JP4746310B2 (en) Mold
JP2014094423A (en) Insert made of cubic crystal boron nitride superhigh pressure sintered material
JP6687231B2 (en) Polishing tool, method for manufacturing the same, and method for manufacturing an abrasive
Miao et al. Influence of graphite addition on bonding properties of abrasive layer of metal-bonded CBN wheel
JP6459042B2 (en) Joining brazing material, composite member using the same, and cutting tool
JP6213935B1 (en) Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide
JP5464493B2 (en) Cutting insert
Li et al. Ultrathin diamond blades for dicing single crystal SiC developed using a novel bonding method
JP6489505B2 (en) Diamond coated cemented carbide cutting tool with improved cutting edge strength
JP5663807B2 (en) Cubic boron nitride sintered tool
JP3077699B1 (en) Rotary cutting tool
JP7205213B2 (en) TiW alloy target and manufacturing method thereof
JP5062541B2 (en) Cutting edge replacement type cutting tool
JP2020158811A (en) TaWSi TARGET AND METHOD FOR MANUFACTURING THE SAME
Clauß et al. Influence of SiC particle volume fraction and texture on the surface properties in milling of AMCs with MCD-tipped tools
KR102178996B1 (en) Cutting insert for heat resistant alloy
JP6900099B1 (en) Cemented carbide and mold
Kikuchi et al. Machinability of experimental Ti-Cu alloys
JP2009191336A (en) Wc based fine grained cemented carbide member
JPH09207008A (en) Wc group cemented carbide alloy tip for cutting ultra heat resistant alloy
JP2001020029A (en) Cemented carbide material for hob

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees