JP2006149231A - Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation - Google Patents

Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation Download PDF

Info

Publication number
JP2006149231A
JP2006149231A JP2004341007A JP2004341007A JP2006149231A JP 2006149231 A JP2006149231 A JP 2006149231A JP 2004341007 A JP2004341007 A JP 2004341007A JP 2004341007 A JP2004341007 A JP 2004341007A JP 2006149231 A JP2006149231 A JP 2006149231A
Authority
JP
Japan
Prior art keywords
vitrification
biological specimen
solution
specimen
thin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004341007A
Other languages
Japanese (ja)
Inventor
Shojiro Ryu
正二郎 笠
Shuji Ueda
修二 上田
Yoshiyuki Mori
美幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefecture
Original Assignee
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefecture filed Critical Fukuoka Prefecture
Priority to JP2004341007A priority Critical patent/JP2006149231A/en
Publication of JP2006149231A publication Critical patent/JP2006149231A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/22Means for packing or storing viable microorganisms

Abstract

<P>PROBLEM TO BE SOLVED: To establish a freeze preservation technique of a biological specimen, keeping the simplicity of conventional technique, to perform the freeze preservation of a biological specimen of an animal in a narrow tube such as a straw, carry out the melting and dilution of the biological specimen in the narrow tube and keep high survival ratio of the biological specimen. <P>SOLUTION: The narrow tube for freeze preservation comprises the freeze preservation of a vitrifying preservation liquid containing a biological specimen of an animal and a dilution liquid, the melting of the preserved specimen and the transplantation of the biological specimen to an animal. The dilution liquid 5 is filled from one end of the narrow tube body 2 to the other end in frozen state, and a linear supporting tool 3 holding the vitrifying preservation liquid 4 containing the biological specimen on the tip end is placed in the narrow tube body 2 in a manner to place the tip end of the linear supporting tool 3 adjacent to the end face of the frozen layer of the diluting liquid 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、哺乳動物の人工授精技術に関し、詳しくは動物の卵子,胚,組織細胞等の生物学的標本を保存し移植するための凍結保存用細管と、これを使用した凍結保存方法、および凍結保存後の融解方法に関する。   The present invention relates to an artificial insemination technique for mammals, and more specifically, a cryopreservation tubule for storing and transplanting biological specimens such as animal eggs, embryos and tissue cells, a cryopreservation method using the same, and The present invention relates to a thawing method after cryopreservation.

現在、例えば牛の胚移植技術に用いられる胚は、受胚牛の発情周期に合わせて移植が行われている。この発情周期に胚の移植を合わせるために、生産した胚を液体窒素等の冷却物質の中で凍結した状態で保存し、その後に胚を融解して移植を行っている。胚を凍結した状態で保存するための凍結方法として、胚の保存液を概ね−30℃まで緩慢に凍結させて胚の細胞内の自由水を脱水しながらゆっくりと冷却する緩慢冷却法が知られている。この方法により凍結した胚を保存する際には、プラスチック製ストロー等の細管内において保存し、この細管内で融解した胚が移植に利用されている。このように、胚を凍結保存した細管は、動物の雌子宮内へ注入して胚を移植できるため、産業として多くの場で利用されている。   At present, for example, embryos used in bovine embryo transfer technology are transferred in accordance with the estrous cycle of the recipient cow. In order to match the embryo transfer with this estrous cycle, the produced embryo is stored in a frozen state in a cooling substance such as liquid nitrogen, and then the embryo is thawed and transplanted. As a freezing method for preserving the embryo in a frozen state, a slow cooling method is known in which the embryo preservation solution is slowly frozen to approximately −30 ° C. and slowly cooled while dehydrating free water in the cells of the embryo. ing. When preserving embryos frozen by this method, embryos that have been preserved in tubules such as plastic straws and thawed in the tubules are used for transplantation. Thus, tubules obtained by cryopreserving embryos can be injected into a female uterus of an animal and transplanted with embryos, so that they are used in many places as an industry.

しかし、牛胚、特に体外受精胚を緩慢冷却法で凍結して保存すると、融解後の胚の生存性が低下することが知られている。このため、凍結していない新鮮な胚と比較して、受胎率が低下するという問題がある。このような緩慢冷却法の問題を解消するための胚の凍結方法として、高濃度耐凍剤を含んだ胚の保存液を、胚とともに液体窒素等の冷却物質で急速に冷却して、ガラス状に固化するガラス化法が知られている。このガラス化法により凍結して保存した胚は、高い生存性を維持したまま長期間保存することが可能であり、ガラス化法により凍結した胚の保存方法や保存器具に関する発明が幾つかなされている(例えば、特許文献1〜3参照。)。   However, it is known that the viability of the embryo after thawing is reduced if the bovine embryo, especially in vitro fertilized embryo is frozen and stored by the slow cooling method. For this reason, there is a problem that the conception rate is reduced as compared with a fresh embryo that is not frozen. As a method of freezing embryos to solve the problem of such slow cooling method, embryo preservation solution containing high-concentration antifreeze agent is rapidly cooled with a cooling substance such as liquid nitrogen together with the embryo to form a glass. Vitrification methods that solidify are known. Embryos frozen and stored by this vitrification method can be stored for a long period of time while maintaining high viability, and several inventions relating to storage methods and storage devices for embryos frozen by vitrification have been made. (For example, refer to Patent Documents 1 to 3.)

特許文献1には、胚移植用ストローに希釈液を入れて冷却凍結し、この上にガラス化低温保存液を直接接するように注入し、それと同時あるいはその前後に胚を注入し、これを液体窒素で冷却しガラス化した哺乳動物胚移植用ストロー及びこのストローの製造法が記載されている。   In Patent Document 1, a diluted solution is put into a straw for embryo transfer and cooled and frozen, and a vitrification cryopreservation solution is injected directly on it, and an embryo is injected at the same time or before and after that. A straw for transplantation of a mammalian embryo that has been cooled and vitrified with nitrogen and a method for producing this straw are described.

特許文献2には、ストロー内において、内部に哺乳動物胚を有するガラス化保存液層と希釈液層とを隣接して設けるとともに、その両端部に空気層を配したストロー内希釈型の哺乳動物胚ガラス化保存ストローが記載されている。   Patent Document 2 discloses an intra-stray dilution type mammal in which a vitrification preservation liquid layer having a mammalian embryo inside and a dilution liquid layer are provided adjacent to each other in the straw, and an air layer is disposed at both ends thereof. An embryo vitrification storage straw is described.

特許文献3には、哺乳動物胚または卵子を滅菌処理した凍結ストロー、凍結バイアルまたは凍結チューブ等の凍結保存用容器の内面に、これらの胚または卵子を包被するに充分な最少量のガラス化液で貼り付け、この凍結保存用容器を密封し、この容器を液体窒素に接触させて急速に冷却した哺乳動物胚または卵子の保存方法が記載されている。また、この容器を液体窒素から取出し、容器の一端部を開口し、この容器内に希釈液を注入して胚または卵子の凍結を溶解する融解方法が記載されている。   In Patent Document 3, a minimum amount of vitrification sufficient to encapsulate these embryos or eggs on the inner surface of a cryopreservation container such as a frozen straw, a frozen vial or a freezing tube in which mammalian embryos or eggs are sterilized is disclosed. A method for preserving mammalian embryos or ova that has been affixed with a liquid, the cryopreservation container sealed, and the container brought into contact with liquid nitrogen and rapidly cooled is described. In addition, a melting method is described in which the container is taken out from liquid nitrogen, one end of the container is opened, and a diluent is injected into the container to dissolve the freezing of the embryo or egg.

特開平5−176946号公報JP-A-5-176946 特開平10−248860号公報JP-A-10-248860 特開2000−189155号公報JP 2000-189155 A

特許文献1に記載された哺乳動物胚移植用ストローを用いて凍結保存させた場合、胚にとって毒性の高いガラス化低温保存液の使用量が多く、この保存液に一旦浸漬してからガラス化するため、冷却に要する時間が長くなり、非ガラス化の状態で毒性の高いガラス化液に触れることになる。このため、胚の生存率が低下して不安定となる可能性がある。また、保存液が多いため、融解時においても希釈時間が長くなることにより、胚の生存率が低下して不安定となる可能性がある。   When cryopreserved using a straw for mammalian embryo transfer described in Patent Document 1, a large amount of vitrification cryopreservation solution that is highly toxic to the embryo is used, and it is vitrified after being immersed in this preservation solution. For this reason, the time required for cooling becomes long, and a highly toxic vitrification solution is touched in a non-vitrified state. For this reason, there is a possibility that the survival rate of the embryo decreases and becomes unstable. Moreover, since there are many preservation | save solutions, the survival time of an embryo may fall and it may become unstable by extending dilution time also at the time of a melt | dissolution.

特許文献2に記載された哺乳動物胚ガラス化保存ストローは、マウス胚の生存率を高めることができるとしているが、ガラス化までに行う操作が煩雑である。また、ガラス化までに時間を要するため、特許文献1のストローと同様に、胚の生存率が安定せず、生存率が低くなる可能性がある。   The mammalian embryo vitrification preservation straw described in Patent Document 2 is said to be able to increase the survival rate of mouse embryos, but the operation to be performed until vitrification is complicated. In addition, since it takes time to vitrify, the viability of the embryo is not stable and the viability may be lowered, as in the straw of Patent Document 1.

特許文献3に記載された保存方法は、ストロー内にガラス化液と希釈液とを内蔵させた場合、ストローを液体窒素中に投入するため、ストロー内の希釈液は急速に冷却されて凍結することとなる。このとき、希釈液中に気泡を抱えて凍結する可能性があり、融解時にストロー内に多くの気泡が発生し、ガラス化液の希釈が不充分となって胚等の生存性が低下したり、融解時にストローが破損したりする危険性がある。また、ストローが細い場合、ガラス化液中の胚または卵子をストロー内面に貼り付けることは煩雑な作業のうえ、ガラス化液中の胚等が確実にストロー中に付着したかが不確実であり、付着を確かな物にするには多くのガラス化液を胚等とともに付着する必要がある。更に、液体窒素によるガラス化がストローを介して行われるため、冷却熱の伝達が鈍く生存性が落ちる可能性がある。   In the storage method described in Patent Document 3, when the vitrification solution and the diluent are incorporated in the straw, the straw is poured into the liquid nitrogen, so that the diluent in the straw is rapidly cooled and frozen. It will be. At this time, there is a possibility of freezing with bubbles in the diluted solution, many bubbles are generated in the straw at the time of melting, the vitrification solution is insufficiently diluted and the viability of the embryo etc. decreases There is a risk that the straw may break during melting. In addition, when the straw is thin, pasting the embryo or egg in the vitrification solution to the inner surface of the straw is a cumbersome operation and it is uncertain whether the embryo in the vitrification solution has adhered to the straw. It is necessary to attach a lot of vitrification solution together with the embryo etc. in order to ensure the attachment. Furthermore, since vitrification with liquid nitrogen is performed through a straw, there is a possibility that the transfer of cooling heat is dull and the viability is lowered.

以上のように、従来の牛胚を凍結して保存するためのストロー等の器具や保存方法では、保存融解後の胚の生存性を維持できず、移植後の受胎率が低下する等の問題がある。このような問題は、牛胚のみならず哺乳動物胚等の生物学的標本においても同様に生じている問題である。   As described above, conventional devices such as straws for freezing and storing bovine embryos and storage methods cannot maintain the viability of embryos after storage and thawing, and the conception rate after transplantation is reduced. There is. Such a problem is similarly caused not only in bovine embryos but also in biological specimens such as mammalian embryos.

本発明が解決しようとする課題は、従来のストローを利用するという点での簡便性を維持した上で、動物の生物学的標本をストロー等の細管内で凍結保存し、この細管内において生物学的標本の融解、希釈を行い、生物学的標本の生存性を高く維持することができる、生物学的標本の凍結保存技術を確立することにある。   The problem to be solved by the present invention is that a biological specimen of an animal is cryopreserved in a thin tube such as a straw while maintaining the convenience in that a conventional straw is used, and the biological sample is stored in the thin tube. The objective is to establish a cryopreservation technique for biological specimens that can thaw and dilute biological specimens and maintain high viability of biological specimens.

本発明の生物学的標本の凍結保存用細管は、動物の生物学的標本を含むガラス化保存液と希釈液とを凍結状態で保存し、その後融解して生物学的標本を動物へ移植するための凍結保存用細管であって、凍結状態において、希釈液が細管本体内の一端側から他端側に向けて充填され、生物学的標本を含むガラス化保存液を先端部に付着させた線状支持具が、同線状支持具の先端側が希釈液凍結層の終端面に隣接するように細管本体内に配置されていることを特徴とする。   The tubule for cryopreservation of a biological specimen of the present invention stores a vitrification preservation solution and a diluent containing a biological specimen of an animal in a frozen state, and then thaws to transplant the biological specimen to an animal. For cryopreservation, in a frozen state, the diluent is filled from one end side to the other end side in the capillary body, and a vitrification storage solution containing a biological specimen is attached to the tip portion The linear support is characterized in that it is arranged in the thin tube main body so that the front end side of the linear support is adjacent to the end face of the diluted solution frozen layer.

動物の生物学的標本(以下、「標本」と称する。)を含むガラス化保存液を線状支持具の先端部に付着させることにより、使用するガラス化保存液量を標本の包被に必要な最小限の量とすることができるため、標本をガラス化保存液に含ませてからガラス化するまでの時間を短縮することができる。更に、凍結保存後の融解時には、ガラス化保存液を素早く融解して希釈液で確実に希釈することが可能となる。従って、凍結や融解に要する時間が短く、融解後の希釈も確実であることから、標本の生存性を高く維持することができる。   The amount of vitrification solution to be used is required to cover the specimen by attaching a vitrification solution containing biological specimens of animals (hereinafter referred to as “specimen”) to the tip of the linear support. Therefore, it is possible to shorten the time until the specimen is vitrified after being included in the vitrification preservation solution. Furthermore, at the time of thawing after cryopreservation, the vitrification stock solution can be quickly thawed and reliably diluted with a diluent. Therefore, since the time required for freezing and thawing is short and the dilution after thawing is reliable, the viability of the specimen can be kept high.

ここで、細管本体内に、希釈液を分断する空気層を設ければ、希釈後から移植までの間、標本を含んだ希釈液は確実に細管本体内で隔離された状態とすることができ、細管下部等からの不純物の混入を確実に防ぐことができる。   Here, if an air layer that divides the diluent is provided in the capillary body, the diluent including the specimen can be reliably isolated in the capillary body from the time after dilution until transplantation. Further, it is possible to reliably prevent impurities from entering from the lower part of the thin tube.

本発明の標本の凍結保存方法は、凍結状態のもとで細管に内蔵された動物の標本を含むガラス化保存液と希釈液とを凍結保存する方法であって、細管本体内に希釈液を吸引し凍結する希釈液凍結工程と、標本を含むガラス化保存液を線状支持具の先端部に付着させて急速凍結するガラス化凍結工程と、ガラス化凍結工程後の線状支持具を同線状支持具の先端側が細管本体内にある希釈液凍結層の終端面に隣接するように細管本体内に配置する支持具配置工程と、凍結状態の標本を含むガラス化保存液と希釈液とを内蔵する細管を封閉する封閉工程と、封閉工程後の細管を冷却物質中に浸漬して低温保存する保存工程と、を含むことを特徴とする。   The specimen cryopreservation method of the present invention is a method of cryopreserving a vitrification preservation solution containing a specimen of an animal contained in a thin tube under a frozen state and a diluting solution, wherein the diluting solution is placed in the main body of the thin tube. The diluting solution freezing step that sucks and freezes, the vitrification freezing step in which the vitrification preserving solution containing the specimen is attached to the tip of the linear support tool and rapidly freezes, and the linear support tool after the vitrification freezing process are the same. A support arrangement process in which the tip side of the linear support is arranged in the thin tube main body so as to be adjacent to a terminal surface of the dilution liquid freezing layer in the thin tube main body, a vitrification storage solution containing the frozen specimen, and a dilution solution; A sealing step of sealing the narrow tube containing the gas, and a storage step of storing the thin tube after the sealing step in a cooling substance and storing it at a low temperature.

本発明に係る凍結保存方法は、前記の凍結保存用細管を使用して標本を凍結保存する方法である。凍結保存にあたっては、まず細管本体内に希釈液を吸引して凍結させる。その後に、ガラス化保存液を付着させ凍結させた線状支持具を細管本体内に配置する。これにより、標本を確実に細管本体内に導入することができるとともに、細管本体内で標本を含むガラス化保存液と希釈液とを凍結状態で確実に分離させて配置することができる。また、前記の凍結保存用細管を使用することによって得られる前述の作用効果があることはもちろんである。   The cryopreservation method according to the present invention is a method for cryopreserving a specimen using the aforementioned cryopreservation capillary. In cryopreservation, first, the diluted solution is sucked into the thin tube body and frozen. Then, the linear support tool which made the vitrification preservation solution adhere and frozen is arrange | positioned in a thin tube main body. Accordingly, the specimen can be reliably introduced into the thin tube main body, and the vitrification preserving solution and the diluent containing the sample can be reliably separated and arranged in the frozen state within the thin tube main body. In addition, it goes without saying that the above-mentioned effects can be obtained by using the cryopreservation capillary.

ここで、前記の支持具配置工程における線状支持具の細管本体内での移動を、一部または全部が強磁性体からなる線状支持具を磁石によって誘導することにより行えば、細管本体内での線状支持具の移動を容易に且つ確実に行うことができる。   Here, if the movement of the linear support tool in the thin tube main body in the support tool arranging step is performed by guiding a linear support tool made of a ferromagnetic material partially or entirely with a magnet, The linear support tool can be easily and reliably moved.

本発明の標本の融解方法は、前記凍結保存用細管を使用し、前記凍結保存方法によって凍結保存した動物の標本を融解するにあたり、あらかじめ冷却物質中に浸漬した細管の封閉部を空気中に引き出した状態で直立させ、封閉部を加温して緩めることで融解時に発生するガスの封閉部からの排出を可能とし、その後細管を冷却物質中から取り出して加温して、凍結した標本を含むガラス化保存液と希釈液とを融解するとともに、ガラス化保存液を希釈液にて希釈することを特徴とする。   The specimen thawing method of the present invention uses the cryopreservation tubule, and when thawing an animal specimen cryopreserved by the cryopreservation method, the sealed portion of the tubule previously immersed in a cooling substance is drawn out into the air. In this state, it is possible to discharge the gas generated during melting from the sealed part by heating and loosening the sealed part. After that, the tubule is taken out of the cooled substance and heated to contain the frozen specimen. The vitrification storage solution and the dilution solution are melted, and the vitrification storage solution is diluted with the dilution solution.

本発明に係る融解方法には、前記の凍結保存用細管を使用して標本を凍結保存した後に融解する方法である。凍結保存後の細管を加温して融解する前に、細管の封閉部を緩めておくことで、融解時に発生するガスの排出が容易となり、融解時に細管内のガスが膨張することにより起こる封閉物の突出や細管の破損を防止することができる。また、前記の凍結保存用細管を使用することによって得られる前述の作用効果があることはもちろんである。   The thawing method according to the present invention is a method in which a specimen is cryopreserved and then thawed using the cryopreservation capillary described above. Before the tubules after cryopreservation are heated and thawed, the capillaries of the capillaries are loosened to facilitate the discharge of the gas generated during thawing, and the clogging that occurs when the gas in the capillaries expands during thawing. It is possible to prevent protrusions of objects and breakage of thin tubes. In addition, it goes without saying that the above-mentioned effects can be obtained by using the cryopreservation capillary.

ここで、細管を加温して、凍結した生物学的標本を含むガラス化保存液と希釈液とを融解しガラス化保存液を希釈液にて希釈する際に、融解した希釈液中に線状支持具を移動することにより、線状支持具に付着しているガラス化保存液を確実に融解した希釈液にて希釈することができる。   Here, when the thin tube is heated to melt the vitrification stock solution and the diluted solution containing the frozen biological specimen, and the vitrification stock solution is diluted with the diluting solution, a line is drawn in the thawed dilution solution. By moving the shaped support, the vitrification preservation solution adhering to the linear support can be diluted with a surely melted diluent.

また、線状支持具の融解した希釈液中への移動を、一部または全部が強磁性体からなる線状支持具を磁石によって誘導することにより行えば、線状支持具を確実に融解した希釈液中に移動させることができ、ガラス化保存液の融解と希釈をさらに確実にすることができる。また、ガラス化保存液が完全に除去された後の線状支持具を細管内から取り出す際にも、磁石により細管外へ誘導して取り出すことも可能である。   In addition, if the linear support device is moved into the melted diluted liquid by guiding the linear support device, which is partially or entirely made of a ferromagnetic material, with a magnet, the linear support device is reliably melted. It can be moved into the diluting solution, further ensuring the melting and dilution of the vitrification stock solution. Further, when the linear support after the vitrification preservation solution is completely removed is taken out from the thin tube, it can be taken out by being guided out of the thin tube by a magnet.

本発明における最大の特徴は、標本を含むガラス化保存液を線状支持具の先端部に付着させ、これを急速凍結してガラス化した状態で、希釈液を吸引して凍結させた細管内に線状支持具とともに導入することにある。このように、標本を含むガラス化保存液を線状支持具の先端部に付着させ、凍結させて、これを細管内に導入する方式とすることにより、使用するガラス化保存液量を必要最小限の量とすることができるため、凍結時には凍結所要時間を短縮することができ、融解時には融解所要時間を短縮することができ、更に、融解後の希釈液による希釈を短時間でかつ確実に達成することができる。凍結や融解に要する時間が短く、融解後の希釈も確実であることから、標本の生存性を高く維持することができる。   The greatest feature of the present invention is that the vitrification preserving solution containing the specimen is attached to the tip of the linear support, and is rapidly frozen and vitrified. It is to be introduced together with a linear support tool. In this way, the vitrification preservation solution containing the specimen is attached to the tip of the linear support, frozen, and introduced into the narrow tube, thereby reducing the amount of vitrification preservation solution used. The amount of time required for freezing can be reduced during freezing, the time required for thawing can be reduced during thawing, and dilution with a diluted solution after thawing can be performed in a short time and reliably. Can be achieved. Since the time required for freezing and thawing is short and the dilution after thawing is reliable, the viability of the specimen can be kept high.

図1は、本発明の第1の実施形態である凍結保存用細管1を示す図である。図1に示すように、本実施形態における凍結保存用細管(以下、「細管」と称する。)1は、凍結状態において、希釈液5が細管本体2内の一端側から他端側に向けて充填され、標本を含むガラス化保存液4を先端部3aに付着させた線状支持具3が、同線状支持具3の先端側が希釈液5の凍結層の終端面に隣接するように細管本体2内に配置されている。   FIG. 1 is a diagram showing a cryopreservation capillary 1 according to a first embodiment of the present invention. As shown in FIG. 1, a cryopreservation capillary (hereinafter referred to as “capillary”) 1 in the present embodiment has a dilute solution 5 directed from one end to the other end in the capillary body 2 in a frozen state. The linear support 3 filled with the vitrification preservation solution 4 containing the sample attached to the tip 3a is a capillary tube so that the tip of the linear support 3 is adjacent to the end surface of the frozen layer of the diluent 5. Arranged in the main body 2.

細管1は、細管本体2の希釈液5が充填されている側の一端は綿栓8により塞がれており、線状支持具3が配置されている側の他端側は封閉部材7により塞がれて、細管本体2全体が封閉されて、凍結された状態にある。綿栓8付近の希釈液5の充填側には空気層6が2箇所設けられており、希釈液5は、この空気層6a,6bにより分断されて、少量の希釈液5a,5bとが設けられている。   One end of the thin tube 1 on the side of the thin tube main body 2 on which the diluent 5 is filled is closed with a cotton plug 8, and the other end on the side on which the linear support 3 is disposed is covered with a sealing member 7. The entire narrow tube body 2 is sealed and frozen. Two air layers 6 are provided on the filling side of the diluting solution 5 near the cotton plug 8, and the diluting solution 5 is divided by the air layers 6a and 6b to provide a small amount of diluting solutions 5a and 5b. It has been.

ここで、線状支持具3について図2を用いて説明する。図2は線状支持具3を示す図であって、(a)は側面図、(b)は平面図、(c)はガラス化保存液4で包被した標本Eを保持した状態を示す側面図、(d)はガラス化保存液4で包被した標本Eを保持した状態を示す平面図である。線状支持具3は、標本Eを含むガラス化保存液4を凍結したうえで細管本体2内に導入するための用具であって、図2に示すように、本体部3b、先端部3aおよび金属部3cにより構成されている。   Here, the linear support tool 3 is demonstrated using FIG. 2A and 2B are diagrams showing the linear support 3, wherein FIG. 2A is a side view, FIG. 2B is a plan view, and FIG. 2C shows a state in which a specimen E encapsulated with the vitrification preservation solution 4 is held. A side view and (d) are top views which show the state which hold | maintained the sample E covered with the vitrification preservation | save liquid 4. FIG. The linear support tool 3 is a tool for freezing the vitrification preservation solution 4 containing the specimen E and introducing it into the thin tube main body 2, and as shown in FIG. 2, as shown in FIG. It is comprised by the metal part 3c.

本体部3bは、耐低温性、液体窒素耐性、耐伸縮性かつ耐変質性を有するポリアミド繊維(例えば、表面円滑ナイロン等)からなる直線糸状の繊維素材である。この本体部3bの全長は5〜40mm、直径は0.2〜0.4mmである。先端部3aは、本体部3bの延長であり、本体部3bの一端に20〜40°の勾配を設けて平面状に形成されたものである。先端部3aの幅は、0.3〜0.6mm、長さは0.5〜2.0mmである。なお、先端部3aの内側(本体部3bとのなす角が鈍角である面の側)は平面状とする。また、先端部3aは、本体部3bと同じ材質であり、先端部3aの厚さは約0.1mmである。   The main body portion 3b is a linear yarn-like fiber material made of polyamide fiber (for example, smooth surface nylon, etc.) having low temperature resistance, liquid nitrogen resistance, stretch resistance, and alteration resistance. The main body 3b has a total length of 5 to 40 mm and a diameter of 0.2 to 0.4 mm. The distal end portion 3a is an extension of the main body portion 3b, and is formed in a flat shape by providing a gradient of 20 to 40 ° at one end of the main body portion 3b. The width | variety of the front-end | tip part 3a is 0.3-0.6 mm, and length is 0.5-2.0 mm. In addition, the inner side of the front-end | tip part 3a (The side of the surface where the angle | corner with the main-body part 3b is an obtuse angle) is made into planar shape. Moreover, the front-end | tip part 3a is the same material as the main-body part 3b, and the thickness of the front-end | tip part 3a is about 0.1 mm.

本体部3bに対して先端部3aの反対側の他端には、強磁性体製の金属部3cが設けられている。金属部3cは、外径0.5〜0.8mm、内径0.3〜0.5mmの1〜2mm長の鋼製管を、本体部3bの末端部に包被装着したものである。なお、この金属部3cは磁石等に引き寄せられるため、磁石等を利用して線状支持具3を細管本体2内へ容易に誘導することができる。   A metal part 3c made of a ferromagnetic material is provided at the other end opposite to the tip part 3a with respect to the main body part 3b. The metal part 3c is a steel pipe having an outer diameter of 0.5 to 0.8 mm and an inner diameter of 0.3 to 0.5 mm and having a length of 1 to 2 mm wrapped around the end part of the main body part 3b. In addition, since this metal part 3c is attracted | sucked to a magnet etc., the linear support tool 3 can be easily guide | induced into the thin tube main body 2 using a magnet etc.

従って、この線状支持具3では、本体部3bの一端に平面状の先端部3aが勾配を設けて形成されているため、この平面状の先端部3aの平面が略水平となるように本体部3bを斜め下向きに保持した状態を維持したまま、平面状の先端部3aの上面にガラス化保存液4で包被した標本Eを滴下して保持し、冷却物質である液体窒素の中へ浸漬することにより、標本Eを含むガラス化保存液4のガラス化を行うことができる。   Therefore, in this linear support tool 3, since the flat tip portion 3a is formed with a gradient at one end of the main body portion 3b, the main body is set so that the plane of the flat tip portion 3a is substantially horizontal. While maintaining the state in which the portion 3b is held obliquely downward, the specimen E encapsulated with the vitrification preservation solution 4 is dropped and held on the upper surface of the flat tip portion 3a, and into the liquid nitrogen which is a cooling substance. By soaking, the vitrification preservation solution 4 containing the specimen E can be vitrified.

また、標本Eを含むガラス化保存液4を線状支持具3の先端部3aに付着させることにより、使用するガラス化保存液量を標本Eの包被に必要な最小限の量とすることができるため、標本Eをガラス化保存液4に含ませてからガラス化するまでの時間を短縮することができる。更に、標本Eを含むガラス化保存液4と希釈液5とを凍結状態で保存した後、融解する際には、線状支持具3を希釈液5内に容易に誘導することができるため、ガラス化保存液4を素早く融解して希釈液5で確実に希釈することが可能となる。従って、凍結や融解に要する時間が短く、融解後の希釈も確実であることから、標本Eの生存性を高く維持することができ、簡便性を維持した上で受胎率を向上させることが可能となる。なお、本実施形態では図2に示した形状、材質の線状支持具3を用いているが、標本Eを含むガラス化保存液4を付着させて細管本体2内外に誘導できるものであれば、これに限定するものではない。また、冷却物質として液体窒素を利用しているが、その他の物質を利用できる可能性があるため、これに限定するものではない。   Further, the vitrification preservation solution 4 containing the specimen E is attached to the tip 3a of the linear support 3 so that the amount of the vitrification preservation liquid used is the minimum amount necessary for the covering of the specimen E. Therefore, the time until the specimen E is vitrified after being included in the vitrification preservation solution 4 can be shortened. Furthermore, since the vitrification preservation solution 4 containing the specimen E and the diluent 5 are stored in a frozen state and then melted, the linear support 3 can be easily guided into the diluent 5, The vitrification stock solution 4 can be quickly melted and reliably diluted with the diluent 5. Therefore, since the time required for freezing and thawing is short and the dilution after thawing is reliable, the viability of the specimen E can be maintained high, and the conception rate can be improved while maintaining simplicity. It becomes. In this embodiment, the linear support tool 3 having the shape and material shown in FIG. 2 is used. However, as long as the vitrification preservation solution 4 including the specimen E can be adhered and guided to the inside and outside of the thin tube main body 2. However, the present invention is not limited to this. Moreover, although liquid nitrogen is used as a cooling substance, since there is a possibility that other substances can be used, it is not limited to this.

更に、空気層6bを設けることで、希釈後から移植までの間、標本Eを含んだ希釈液5は確実に細管本体2内で分断された状態とすることができ、また、綿栓8の綿繊維等の夾雑物を綿栓8に直近の希釈液5bが保持するため、希釈液5への夾雑物の混入を確実に防ぐことができ、移植時にこの希釈液5bの動物体内への流出を防止することが可能となる。また、標本Eは重力により沈降して希釈液5の下端付近に存在する場合、空気層6aと希釈液5aを設けることで、細管1内での極端な下降を防止することができ、標本Eを上方に位置させることができる。このため、移植時に希釈液5を押し出す時に、標本Eを細管1から押し出しやすくなり、受胎率の低下を抑制することができる。また、移植時に標本Eを含む希釈液5を押し出した後に、希釈液5aを更に押し出せば、細管本体2の内壁に付着した希釈液5を確実に押し出すことが可能となる。ここで、希釈液5aの量は、標本Eの細管1内での極端な下降を防止できれば良く、本実施形態では希釈液5の略20%としている。   Furthermore, by providing the air layer 6b, the diluted solution 5 including the specimen E can be surely divided in the thin tube main body 2 from the time after dilution until the transplantation. Since the nearest dilution liquid 5b retains contaminants such as cotton fibers in the cotton plug 8, contamination of the dilution liquid 5 can be reliably prevented, and the dilution liquid 5b flows into the animal body at the time of transplantation. Can be prevented. In addition, when the specimen E is sedimented by gravity and is present near the lower end of the diluent 5, the air layer 6 a and the diluent 5 a can be provided to prevent an extreme descent in the narrow tube 1. Can be positioned upward. For this reason, when extruding the diluent 5 at the time of transplantation, it becomes easy to extrude the specimen E from the tubule 1 and a decrease in conception rate can be suppressed. Further, if the diluent 5a is further pushed out after the diluent 5 containing the specimen E is pushed out at the time of transplantation, the diluent 5 attached to the inner wall of the thin tube main body 2 can be pushed out reliably. Here, the amount of the diluent 5a is only required to prevent the specimen E from being extremely lowered in the narrow tube 1, and is approximately 20% of the diluent 5 in this embodiment.

(標本の凍結保存方法)
標本の凍結保存方法について、図3を用いて説明する。図3は、標本Eを含むガラス化保存液4と希釈液5とを細管1に内蔵した状態で凍結保存する工程を示す図である。本凍結保存方法は、細管本体2内に希釈液5を吸引し凍結する希釈液凍結工程と、線状支持具3に付着させた標本Eを含むガラス化保存液4をガラス化するガラス化凍結工程と、線状支持具3を細管本体2内に導入配置する支持具配置工程と、細管本体2を封閉する封閉工程と、この細管1を低温保存する保存工程とを含む凍結保存方法である。以下、詳細について説明する。
(Method for cryopreserving specimens)
A method for cryopreserving a specimen will be described with reference to FIG. FIG. 3 is a diagram showing a step of cryopreserving the vitrification preservation solution 4 and the dilution solution 5 containing the specimen E in a state where they are built in the thin tube 1. In this cryopreservation method, a diluting solution freezing step in which the diluting solution 5 is sucked into the thin tube body 2 and frozen, and a vitrification freezing solution in which the vitrification preserving solution 4 including the specimen E attached to the linear support 3 is vitrified is used. This is a cryopreservation method including a process, a support arrangement process for introducing and arranging the linear support 3 in the thin tube main body 2, a sealing step for sealing the thin tube main body 2, and a storage step for preserving the thin tube 1 at a low temperature. . Details will be described below.

1)希釈液凍結工程(希釈液の吸引と凍結)
まず、0.25ml容の細管本体2の一端側の綿栓8に希釈液5を吸収させて、綿栓8の反体側に15mm〜20mm長の空気層6をとれるように希釈液5を吸引する。次に、図3(a)に示すように、容器11内の液体窒素12に浮かせた略10mm厚発泡スチロール板13上に、細管本体2を横にした状態で静置して、希釈液5を液体窒素ガス12a内で緩慢に凍結した後、液体窒素12中に浸漬する。希釈液5を緩慢に凍結することにより、希釈液5中に気泡を含むことなく凍結することができ、融解時の気泡の発生を抑制することができる。
ここで、希釈液5は、0.5Mシュクロースおよび20%仔牛血清(以下、仔牛血清を「CS」と称する。)を添加したダルベッコリン酸緩衝液(以下、「D−PBS」と称する。)である。また、希釈液5a,5bの濃度は、希釈液5の濃度と同一である。
1) Diluent freezing step (dilution liquid aspiration and freezing)
First, the diluted solution 5 is absorbed by the cotton plug 8 on one end side of the 0.25 ml-capillary main body 2, and the diluted solution 5 is sucked so that the air layer 6 having a length of 15 mm to 20 mm can be taken on the opposite side of the cotton plug 8. To do. Next, as shown in FIG. 3 (a), the dilute solution 5 is placed on the approximately 10 mm-thick polystyrene foam plate 13 floated on the liquid nitrogen 12 in the container 11 with the thin tube main body 2 lying sideways. After slowly freezing in the liquid nitrogen gas 12 a, it is immersed in the liquid nitrogen 12. By slowly freezing the diluent 5, the diluent 5 can be frozen without containing bubbles, and the generation of bubbles at the time of melting can be suppressed.
Here, the diluent 5 is referred to as Dulbecco's phosphate buffer (hereinafter referred to as “D-PBS”) to which 0.5 M sucrose and 20% calf serum (hereinafter referred to as “CS”) are added. ). The concentrations of the diluents 5a and 5b are the same as the concentration of the diluent 5.

2)ガラス化凍結工程(標本を含むガラス化保存液の線状支持具への付着とガラス化)
標本Eを、後述する前処理A液と前処理B液に各5分間ずつ浸漬する。更に、標本Eをガラス化保存液4に浸漬してパスツールピペット9に吸引し、実体顕微鏡下で確認しながら、図3(b)に示すように、ピンセット14で把持しながら線状支持具3の先端部3aに標本Eを含んだガラス化保存液4を滴下する。この後、図3(c)に示すように、標本Eをガラス化保存液4へ浸漬してから30秒後に、線状支持具3を、素早く液体窒素12に投入しガラス化保存液4のガラス化を行う。ここで、各液の組成について以下に示す。
前処理A液は、10%グリセロール、0.1Mシュクロース、0.1Mキシロースおよび1%ポリエチレングリコールを添加したD−PBSであり、前処理B液は、10%グリセロール、10%エチレングリコール、0.2Mシュクロース、0.2Mキシロースおよび2%ポリエチレングリコールを添加したD−PBSである。ガラス化保存液4は、20%グリセロール、20%エチレングリコール、0.3Mシュクロース、0.3Mキシロースおよび3%ポリエチレングリコールを添加したD−PBSである。
2) Vitrification freezing process (attachment and vitrification of the vitrification preservation solution including the specimen to the linear support)
The specimen E is immersed in a pretreatment A solution and a pretreatment B solution described later for 5 minutes each. Further, the specimen E is immersed in the vitrification preservation solution 4 and sucked into a Pasteur pipette 9, and while being confirmed with a stereomicroscope, as shown in FIG. The vitrification preservation solution 4 containing the specimen E is dropped on the tip portion 3a of 3. Thereafter, as shown in FIG. 3 (c), 30 seconds after the specimen E is immersed in the vitrification preservative 4, the linear support 3 is quickly put into the liquid nitrogen 12 and the vitrification preservative 4 Vitrification is performed. Here, it shows below about the composition of each liquid.
Pretreatment A solution is D-PBS supplemented with 10% glycerol, 0.1 M sucrose, 0.1 M xylose and 1% polyethylene glycol, and Pretreatment B solution is 10% glycerol, 10% ethylene glycol, 0% D-PBS supplemented with 2M sucrose, 0.2M xylose and 2% polyethylene glycol. Vitrification stock solution 4 is D-PBS supplemented with 20% glycerol, 20% ethylene glycol, 0.3M sucrose, 0.3M xylose and 3% polyethylene glycol.

3)支持具配置工程(細管本体内への導入)
液体窒素12中で細管本体2を水平に静置した状態で保持し、標本Eを含むガラス化保存液4をガラス化した線状支持具3を先端部3a側から細管本体2の開口部へ挿入し、線状支持具3を細管本体2内の希釈液5の凍結層の終端面まで、磁石15により外部から間接的に誘導する。磁石15はピンセット14を用いて操作することができる。
3) Support tool placement process (introduction into the narrow tube body)
The thin tube main body 2 is held in a state of standing still horizontally in the liquid nitrogen 12, and the linear support tool 3 vitrified with the vitrification preservation solution 4 including the specimen E is passed from the distal end portion 3a side to the opening of the thin tube main body 2. Then, the linear support 3 is indirectly guided from the outside by the magnet 15 to the end face of the frozen layer of the diluent 5 in the thin tube body 2. The magnet 15 can be operated using tweezers 14.

4)封閉工程
図3(d)に示すように、予め別のデュワー瓶16に、細管本体2長より15mm程度短い長さに相当する深さとなるように液体窒素12を満たしておく。このデュワー瓶16に、線状支持具3を挿入した細管本体2の綿栓8側を下にして、ピンセット14を用いて細管本体2を素早く移す。細管本体2内に存在する液体窒素を気化させて、パウダー糊と封閉部材7とで封閉し、凍結保存用細管1とする。ここで、封閉部材7は、耐凍性で0.25ml容プラスチックストローに押し込み可能で、且つパウダー糊で固定可能な物であれば良く、ポリプロピレン等の耐低温性のものが好ましい。
4) Sealing step As shown in FIG. 3 (d), the liquid nitrogen 12 is previously filled in another dewar bottle 16 so as to have a depth corresponding to a length of about 15 mm shorter than the length of the thin tube main body 2. The thin tube body 2 is quickly transferred to the dewar 16 using the tweezers 14 with the cotton plug 8 side of the thin tube body 2 into which the linear support 3 is inserted. The liquid nitrogen present in the thin tube main body 2 is vaporized and sealed with the powder paste and the sealing member 7 to obtain the cryopreservation thin tube 1. Here, the sealing member 7 should just be a thing which can be pushed into a 0.25 ml plastic straw with frost resistance, and can be fixed with powder glue, and a thing with low temperature resistance, such as a polypropylene, is preferable.

5)保存工程
この細管1は綿栓8側を下にし、液体窒素ボンベ(図示せず)に移し変えて、この液体窒素ボンベ内で保存する。
5) Storage step The capillary tube 1 is placed with the cotton plug 8 side down, transferred to a liquid nitrogen cylinder (not shown), and stored in the liquid nitrogen cylinder.

以上のような方法により、標本Eを確実に細管本体2内に導入することができるとともに、細管本体2内で標本Eを含むガラス化保存液4と希釈液5とを凍結状態で確実に分離させて配置し、凍結保存することができる。なお、本実施形態で使用される希釈液5やガラス化保存液4等の成分組成については、一例を示したものであり、状況に応じて成分や濃度を調整することができる。   By the method as described above, the specimen E can be reliably introduced into the thin tube main body 2 and the vitrification preservation solution 4 and the diluent 5 containing the specimen E are reliably separated in the thin tube main body 2 in a frozen state. Can be placed and stored frozen. In addition, about component composition, such as the dilution liquid 5 used in this embodiment, the vitrification preservation | save liquid 4, etc., an example is shown and a component and a density | concentration can be adjusted according to a condition.

(標本の融解方法)
標本Eの融解方法について、図4を用いて説明する。図4は、標本Eを細管1内で融解する工程を示す図である。この融解方法は、細管1の封閉部を空気中に引き出した状態で直立させ、封閉部を加温して緩めることで融解時に発生するガスの封閉部からの排出を可能とし、その後細管1を加温して、ガラス化保存液4と希釈液5とを融解するとともに、ガラス化保存液4を希釈液5にて希釈する方法である。以下、詳細について説明する。
(Method of melting specimen)
A method for melting specimen E will be described with reference to FIG. FIG. 4 is a diagram illustrating a process of melting the specimen E in the thin tube 1. In this melting method, the sealed portion of the thin tube 1 is brought upright in a state where it is drawn out into the air, and the sealed portion is heated and loosened to allow the gas generated during melting to be discharged from the sealed portion. In this method, the vitrification preservation solution 4 and the dilution solution 5 are melted by heating, and the vitrification preservation solution 4 is diluted with the dilution solution 5. Details will be described below.

1)余剰ガスの排出工程
図4(a)に示すように、凍結保存したボンベ(図示せず)の液体窒素から細管1の封閉部のみをつまみ出し、空気中に引き出した状態で直立させ、指21で封閉部を保持しながら封閉部材7の糊を暖めて緩め、融解時に発生するガスの封閉部からの排出を可能とする。
1) Excess gas discharge step As shown in FIG. 4 (a), only the sealed portion of the thin tube 1 is picked up from the liquid nitrogen of a cryopreserved cylinder (not shown), and is brought upright in a state of being drawn out into the air. While holding the sealing part with the finger 21, the glue of the sealing member 7 is warmed and loosened, and the gas generated during melting can be discharged from the sealing part.

2)融解工程
図4(b)に示すように、細管1を直立させたまま20〜25℃の微温湯23に浸し、希釈液5を融解させる。このとき、ガラス化保存液4も融解する。
2) Melting step As shown in FIG. 4B, the diluting solution 5 is melted by immersing it in the warm water 23 at 20 to 25 ° C. while keeping the narrow tube 1 upright. At this time, the vitrification preservation solution 4 also melts.

3)希釈工程
図4(c)に示すように、線状支持具3を細管本体2の外側から磁石15で誘導して、線状支持具3の先端部3aを融解した希釈液5に浸漬させ、標本Eの融解およびガラス化保存液4の希釈を行う。このとき、標本Eを含むガラス化保存液4が融解直後に細管本体2の内壁面に付着して希釈されない場合が考慮されるので、図4(d)に示すように、微温湯23から細管1を取り出し、綿栓8を押し金具24で5mm程度押し入れることで希釈液5を押し上げ、ガラス化保存液4を完全に希釈液5に浸すようにすると確実に希釈することができる。また、標本Eを含むガラス化保存液4が希釈液5よりも比重が高ければ、自ら下降し、希釈液5の中でガラス化保存液5が希釈される。
3) Dilution step As shown in FIG. 4 (c), the linear support 3 is guided by the magnet 15 from the outside of the thin tube body 2 and immersed in the diluted solution 5 in which the tip 3a of the linear support 3 is melted. The specimen E is melted and the vitrification stock solution 4 is diluted. At this time, since the case where the vitrification preservation solution 4 including the specimen E adheres to the inner wall surface of the thin tube main body 2 immediately after melting and is not diluted is considered, as shown in FIG. Then, the diluted solution 5 is pushed up by pushing the cotton plug 8 about 5 mm with the metal fitting 24, and the vitrification storage solution 4 is completely immersed in the diluted solution 5, so that it can be surely diluted. Further, if the vitrification preservation solution 4 including the specimen E has a specific gravity higher than that of the dilution solution 5, the vitrification preservation solution 5 is lowered by itself and the vitrification preservation solution 5 is diluted in the dilution solution 5.

4)線状支持具の吊り出し工程
線状支持具3から標本Eを含むガラス化保存液4が完全に離脱して希釈液5内に移行したのを確認した後、図4(e)に示すように、細管1の封閉部をカッターで切断し、磁石15を使い線状支持具3を誘導して細管1外に取り出す。
4) Lifting step of the linear support tool After confirming that the vitrification preservation solution 4 including the specimen E completely separated from the linear support tool 3 and moved into the dilution liquid 5, it is shown in FIG. 4 (e). As described above, the sealing portion of the thin tube 1 is cut with a cutter, and the linear support 3 is guided using the magnet 15 to be taken out of the thin tube 1.

以上のように、凍結保存後の細管1を加温する前に、細管1の封閉部を緩めておくことで、融解時に発生するガスの排出が容易となり、融解時に細管1内のガスが膨張することにより起こる細管1の破損を防止することができる。また、標本Eを含むガラス化保存液4を少量付着させて凍結させた線状支持具3を用いての融解、希釈により、ガラス化保存液4を素早く融解、希釈させることができる。これにより、標本Eの生存性を高く維持しながら、生産現場においても融解、希釈と移植作業を行うことが可能となる。   As described above, by loosening the sealing portion of the thin tube 1 before heating the thin tube 1 after cryopreservation, the gas generated during melting can be easily discharged, and the gas in the thin tube 1 expands during melting. This makes it possible to prevent the thin tube 1 from being damaged. Moreover, the vitrification preservative 4 can be rapidly thawed and diluted by melting and dilution using the linear support 3 that has been frozen by attaching a small amount of the vitrification preservative 4 containing the specimen E. Thereby, it is possible to perform melting, dilution and transplantation work even at the production site while maintaining the viability of the specimen E high.

次に、図5を用いて本発明の第2の実施形態である細管31について説明する。図5に示すように、細管31は、凍結状態において、希釈液25,25a,25b以外は符号が同一であるため、説明を省略する。希釈液25は希釈液5(第1の実施形態)と同一組成液であり、希釈液25a,25bは、0.5Mシュクロースを含有していない希釈液25であり、濃度が低いものである。   Next, the thin tube 31 which is the 2nd Embodiment of this invention is demonstrated using FIG. As shown in FIG. 5, since the thin tube 31 has the same reference numerals in the frozen state except for the diluents 25, 25a, and 25b, description thereof is omitted. The dilution liquid 25 is the same composition liquid as the dilution liquid 5 (first embodiment), and the dilution liquids 25a and 25b are the dilution liquid 25 that does not contain 0.5M sucrose and have a low concentration. .

本実施形態では、希釈液25と希釈液25aとを略同容量(液長ア=液長イ)に設定している。融解時に、第1段階としてガラス化保存液4の希釈が希釈液25で行われ、移植まで標本Eは希釈液25内に留まっている。次に第2段階として、動物体内に押し出された時点(子宮内)で希釈液25と希釈液25aとが混合されることとなる。ここで、標本Eを含むガラス化保存液4の希釈は、濃い希釈液25から、段階的に濃度の低い希釈液25と希釈液25aとの混合液に移ることにより、標本Eの浸透圧ストレスを解消して、生存性を高めることができる。さらに、各希釈液量はこれに限定されるものではなく、各希釈液の組成および液量を変えることができ、各標本に相応しい希釈が可能となる。   In the present embodiment, the dilution liquid 25 and the dilution liquid 25a are set to substantially the same volume (liquid length A = liquid length A). At the time of melting, the vitrification preservation solution 4 is diluted with the diluent 25 as a first step, and the specimen E remains in the diluent 25 until transplantation. Next, as a second stage, the diluent 25 and the diluent 25a are mixed at the time of being pushed out into the animal body (in the uterus). Here, the vitrification preservation solution 4 containing the specimen E is diluted from the thick dilution liquid 25 to the mixed liquid of the dilution liquid 25 and the dilution liquid 25a having a low concentration step by step, thereby osmotic stress of the specimen E. Can be eliminated and the survival can be improved. Further, the amount of each diluted solution is not limited to this, and the composition and the amount of each diluted solution can be changed, and dilution suitable for each specimen becomes possible.

本発明の第1実施形態における細管1を用い、ガラス化法により、標本である牛体外受精胚を含んだガラス化保存液のガラス化を行って凍結保存、融解し、牛体外受精胚の生存性を調査した。対照として、緩慢冷却法により、牛体外受精胚を含んだ緩慢冷却保存液を凍結させた後に凍結保存、融解した牛体外受精胚の生存性について調査した。   By virtue of vitrification using the tubule 1 in the first embodiment of the present invention, the vitrification preservation solution containing the in vitro fertilized embryo as a specimen is vitrified, cryopreserved, thawed, and survival of the in vitro fertilized embryo The sex was investigated. As a control, the slow-cooling method was used to investigate the viability of the in vitro fertilized embryos that had been frozen and stored after thawing the slow-chilled preservation solution containing the in vitro fertilized embryos.

(1)体外受精胚生産
雌牛の卵巣からと畜6時間以内に、牛血清アルブミンを添加したD−PBSとともに、卵丘細胞卵子複合体を吸引した。形態的に良好な卵丘細胞卵子複合体を、CSを添加した199培地(以下、「卵子成熟液」と称する。)で数回洗浄後、この卵子成熟液で20時間から22時間体外成熟した。
体外受精は、融解した凍結精液をテオフィリンおよびカフェインを添加したブラケット・オリファント液で希釈して遠心分離を2回施して洗浄濃縮し、牛血清アルブミンおよびヘパリンを添加したブラケット・オリファント液で精子濃度を調製して、成熟卵子を導入し4時間実施した。
体外受精した卵子は、受精8日まで発生培養した。胚生産に掛かる培養気相条件は5%CO2、95%空気および38.5℃で行った。
(1) In vitro fertilized embryo production Within 6 hours of slaughter from cow ovaries, cumulus cell ovum complex was aspirated together with D-PBS supplemented with bovine serum albumin. Morphologically good cumulus cell ovary complex was washed several times in 199 medium supplemented with CS (hereinafter referred to as “ovum maturation liquid”) and then matured in vitro with this oocyte maturation liquid for 20 to 22 hours. .
For in vitro fertilization, thawed frozen semen was diluted with bracket orphanant solution supplemented with theophylline and caffeine, centrifuged twice, washed and concentrated, and sperm concentration with bracket orphanant solution supplemented with bovine serum albumin and heparin Was prepared, and mature eggs were introduced for 4 hours.
Oocytes fertilized in vitro were developed and cultured until 8 days of fertilization. The culture gas phase conditions for embryo production were 5% CO 2 , 95% air and 38.5 ° C.

(2)供試胚
体外受精胚については、体外受精後7日または8日において、形態的に栄養膜細胞が単層で均一に発育した上、充実した内部細胞塊を有している拡張胚盤胞期胚を標本とし、20%CS添加D−PBS(以下、「保存液」と称する。)で洗浄後、緩慢冷却法およびガラス化法による凍結保存に供試した。
体内受精胚については、過排卵処理後人工授精して採取した良質な体内受精胚を保存液で洗浄後、緩慢冷却法およびガラス化法による凍結保存に供試した。
(2) Test Embryo For in vitro fertilized embryos, expanded embryos with morphologically uniform monolayers of trophoblast cells and a solid inner cell mass on the 7th or 8th day after in vitro fertilization A blastocyst stage embryo was used as a specimen, washed with 20% CS-added D-PBS (hereinafter referred to as “preservation solution”), and then subjected to cryopreservation by a slow cooling method and a vitrification method.
As for in-vivo fertilized embryos, high-quality in-vivo fertilized embryos collected by artificial insemination after superovulation were washed with a preservation solution, and then subjected to freezing preservation by a slow cooling method and a vitrification method.

(3A)緩慢冷却法による胚の凍結保存方法
前述により得られた各胚(体外受精胚,体内受精胚)を緩慢冷却保存液に導入し、15分間平衡後、0.25ml容細管本体(プラスチック製ストローであり、以下、「ストロー」と称する。)吸引封入した。プログラムフリーザを用い、−7℃の冷媒中にストローをセットし、2分経過後に液体窒素で冷却したピンセットを用い強制植氷した。強制植氷し10分経過後、0.3℃/分で緩慢冷却して、−30℃に到達した後、ストローを液体窒素へ導入し保存した。
ここで、緩慢冷却保存液は、10%エチレングリコール、0.1Mシュクロースを添加した保存液(20%CS添加D−PBS)であるが、状況に応じて濃度等を変更することができる。
(3A) Embryo cryopreservation method by slow cooling method Each embryo (in vitro fertilized embryo, in vivo fertilized embryo) obtained as described above is introduced into a slow cooling preservation solution, equilibrated for 15 minutes, and then a 0.25 ml tubule body (plastic) (This is a straw made and referred to as “straw” hereinafter.) Using a program freezer, a straw was set in a refrigerant at −7 ° C., and forced ice planting was performed using tweezers cooled with liquid nitrogen after 2 minutes. After 10 minutes of forced ice planting, the mixture was slowly cooled at 0.3 ° C./min. After reaching −30 ° C., a straw was introduced into liquid nitrogen and stored.
Here, the slow cooling storage solution is a storage solution (20% CS-added D-PBS) added with 10% ethylene glycol and 0.1M sucrose, but the concentration and the like can be changed depending on the situation.

(3B)ガラス化法による胚の凍結保存方法
前述により得られた各胚(体外受精胚,体内受精胚)を、前述の標本の凍結保存方法で行った。
(3B) Embryo cryopreservation method by vitrification Each embryo (in vitro fertilized embryo, in vivo fertilized embryo) obtained as described above was subjected to the above-described specimen cryopreservation method.

(4A)緩慢冷却法により凍結保存した胚(緩慢冷却凍結胚)の融解方法
融解後の胚の生存性を調査するため、緩慢冷却法により凍結保存したストローを液体窒素から取り出し、室温で6秒間保持し、その後30℃温湯中で20秒間維持することで緩慢冷却保存液とともに胚を融解した。次に融解したストローを室温で5分間保持し、封閉側をストローカッターで切断後、ストローの綿栓側から圧力をかけ、シャーレに緩慢冷却保存液とともに胚を押し出し、胚を37℃の保存液に導入して緩慢冷却保存液を希釈した。
(4A) Thawing method of embryos cryopreserved by the slow cooling method (slow cooling frozen embryos) In order to investigate the viability of the embryos after thawing, the straws cryopreserved by the slow cooling method were taken out from liquid nitrogen and kept at room temperature for 6 seconds. Then, the embryo was thawed with a slow cooling preservation solution by maintaining it in 30 ° C. hot water for 20 seconds. Next, hold the thawed straw at room temperature for 5 minutes, cut the sealed side with a straw cutter, apply pressure from the cotton plug side of the straw, push the embryo into the petri dish with a slow cooling stock solution, and store the embryo at 37 ° C. Was introduced to dilute the slow cooling stock solution.

(4B)ガラス化法により凍結保存した胚(ガラス化凍結胚)の融解方法
前述の標本の融解方法で行った。なお、生存性調査のために、融解開始(液体窒素ボンベからストローを取り出した時)から5分後に綿栓に圧力をかけ、シャーレに希釈液とともに胚を押し出して、胚を37℃の保存液に導入し保存した。
(4B) Thawing Method of Embryo Cryopreserved by Vitrification Method (Vitrified Frozen Embryo) Thawing was performed by the above-described method for thawing a specimen. In order to investigate viability, pressure was applied to the cotton plug 5 minutes after the start of melting (when the straw was taken out from the liquid nitrogen cylinder), the embryo was pushed into the petri dish with the diluent, and the embryo was stored at 37 ° C. Introduced and saved.

(5)融解胚の培養
融解希釈した緩慢冷却凍結胚およびガラス化凍結胚は、培養液で洗浄後、1胚あたり20μlの培養液ドロップで72時間培養した。培養の気相条件は5%CO2、95%空気および38.5℃で行った。
ここで、培養液は、100μMβメルカプトエタノールおよび20%牛胎仔血清を添加した199培地である。
(5) Thawed Embryo Culture Thawed and diluted slow-chilled frozen embryos and vitrified frozen embryos were washed with a culture solution and cultured for 72 hours in a culture solution drop of 20 μl per embryo. The culture gas phase conditions were 5% CO 2 , 95% air and 38.5 ° C.
Here, the culture solution is a 199 medium supplemented with 100 μM β-mercaptoethanol and 20% fetal calf serum.

(6)融解胚の生存性
培養開始から24時間後、48時間後および72時間後での融解した体外受精胚の生存、発育および状態を観察した。また、融解後72時間後での透明帯脱出完了胚のうち、栄養膜細胞および内部細胞塊の発育が良好なものを良質透明帯脱出胚とした。
(6) Survivability of thawed embryos Survival, development and status of thawed in vitro fertilized embryos were observed 24 hours, 48 hours and 72 hours after the start of culture. Of the embryos with zona pellucida escape completed 72 hours after thawing, those with good growth of trophoblast cells and inner cell mass were designated as high quality zona pellucida escape embryos.

(7)胚の移植
緩慢冷却凍結胚(体外受精胚,体内受精胚)およびガラス化凍結胚(体外受精胚,体内受精胚)を前述のように融解後、移植器にストローを装着して融解開始後約5分前後に、発情7日後のホルスタイン種乳牛の排卵した黄体側子宮角内に移植した。なお、1本のストローに対して、体外受精胚の場合は2胚を、体内受精胚の場合は1胚を、凍結保存時にそれぞれ封入しており、これらを移植した。
(7) Embryo transfer After thawing slow-cooled frozen embryos (in vitro fertilized embryos, in vivo fertilized embryos) and vitrified frozen embryos (in vitro fertilized embryos, in vivo fertilized embryos), attach a straw to the transplanter and thaw About 5 minutes after the start, the ovarian uterine horn was transplanted into the uterine horn of the luteal side 7 days after estrus. In addition, two embryos in the case of in vitro fertilized embryos and one embryo in the case of in vivo fertilized embryos were encapsulated at the time of cryopreservation and transferred to one straw.

(8)保存胚の融解後生存
表1に、保存胚の加温または融解後の胚生存率を示す。ガラス化法によるガラス化凍結した体外受精胚の経時的生存率は、緩慢冷却法による緩慢冷却凍結胚と比較して、培養24時間で96%(緩慢冷却:69%)、48時間で96%(緩慢冷却:69%)および72時間で94%(緩慢冷却:66%)と有意に高く推移した。

Figure 2006149231
(8) Survival after thawing of preserved embryos Table 1 shows the survival rate of embryos after warming or thawing of preserved embryos. The survival rate over time of in vitro fertilized embryos vitrified and frozen by vitrification is 96% (slow cooling: 69%) in culture for 24 hours and 96% in 48 hours compared to slow-cooled frozen embryos by slow cooling (Slow cooling: 69%) and 94% (slow cooling: 66%) at 72 hours.
Figure 2006149231

(9)保存胚の融解後透明帯脱出
表2に、体外受精胚の融解後透明帯脱出率を示す。ストロー内で融解希釈したガラス化胚の透明帯脱出率は、緩慢冷却法と比較して、培養48時間で67%(緩慢冷却:29%)、72時間で89%(緩慢冷却:51%)と有意に高く、発育が良好であった。また、透明帯脱出胚の形態も有意に良質透明帯脱出率が高かった(良質透明帯脱出率;84%:32%)。

Figure 2006149231
(9) Zona pellucida escape after thawing of preserved embryos Table 2 shows the zona pellucida escape rate after thawing of in vitro fertilized embryos. The zona pellucida escape rate of vitrified embryos thawed and diluted in a straw is 67% (slow cooling: 29%) at 48 hours of culture and 89% (slow cooling: 51%) at 72 hours compared to the slow cooling method. It was significantly higher and the growth was good. Also, the morphology of zona pellucida escaped embryos had a significantly high quality zona pellucida escape rate (quality zona pellucida escape rate; 84%: 32%).
Figure 2006149231

(10)胚の移植による受胎成績
表3に、体外受精胚のストロー内融解移植による受胎成績を示す。緩慢冷却またはガラス化した2胚の牛体外受精胚をストローで保存後、移植現場で融解移植した受胎成績は、緩慢冷却で35%(15/43)、ガラス化が61%(17/28)とガラス化が有意に高い受胎率を得た。
また、表4に体内受精胚のストロー内融解移植による受胎成績を示す。緩慢冷却またはガラス化した1胚の牛体内受精胚を、体外受精胚と同様に、ストロー内で保存後、移植現場で融解移植した成績は、緩慢冷却で54%(7/13)、ガラス化が50%(4/8)であり、有意な差は見られないものの、本手法により、ガラス化した牛胚をストロー内で融解希釈および移植することで高い受胎率を得た。

Figure 2006149231
Figure 2006149231
(10) Conception Result by Embryo Transfer Table 3 shows the conception result by in-situ melting transplantation of in vitro fertilized embryos. The results of fertilization of thawed embryos after 2 cold-cooled or vitrified embryos were stored in a straw and then thawed at the transplantation site were 35% (15/43) for slow cooling and 61% (17/28) for vitrification. And vitrification got significantly higher conception rate.
In addition, Table 4 shows the results of conception by in-situ melting transplantation of in-vivo fertilized embryos. As in the case of in vitro fertilized embryos, the results of thawing and transplanting one in-bovine fertilized embryo that had been slowly cooled or vitrified were 54% (7/13) with slow cooling and vitrification. Is 50% (4/8), and no significant difference is seen, but by this method, a high fertility rate was obtained by thawing and transplanting vitrified bovine embryos in a straw.
Figure 2006149231
Figure 2006149231

本発明の凍結保存用細管は、生物学的標本の生存性を高く維持したまま、哺乳動物への移植に広く利用することができ、牛胚移植に利用する場合において特に有効である。   The cryopreservation tubule of the present invention can be widely used for transplantation into mammals while maintaining high viability of biological specimens, and is particularly effective when used for transplantation of bovine embryos.

本発明の第1の実施形態である細管を示す図である。It is a figure which shows the thin tube which is the 1st Embodiment of this invention. 線状支持具を示す図であって、(a)は側面図、(b)は平面図、(c)はガラス化保存液で包被した標本を保持した状態を示す側面図、(d)はガラス化保存液で包被した標本を保持した状態を示す平面図である。It is a figure which shows a linear support, Comprising: (a) is a side view, (b) is a top view, (c) is a side view which shows the state holding the specimen covered with the vitrification preservation solution, (d) FIG. 3 is a plan view showing a state in which a specimen encapsulated with a vitrification preservation solution is held. 標本を含むガラス化保存液と希釈液とを細管に内蔵した状態で凍結保存する工程を示す図である。It is a figure which shows the process of cryopreserving in the state which contained the vitrification preservation | save liquid containing a sample, and a dilution liquid in the thin tube. 標本を細管内で融解する工程を示す図である。It is a figure which shows the process of melt | dissolving a sample within a thin tube. 本発明の第2の実施形態である細管を示す図である。It is a figure which shows the thin tube which is the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,31 凍結保存用細管
2 細管本体
3 線状支持具
3a 先端部
3b 本体部
3c 金属部
4 ガラス化保存液
5,5a,5b,25,25a,25b 希釈液
6a,6b 空気層
7 封閉部材
8 綿栓
9 パスツールピペット
11 容器
12 液体窒素
12a 液体窒素ガス
13 発泡スチロール板
14 ピンセット
15 磁石
16 デュワー瓶
21 指
22 ガス
23 微温湯
24 押し金具
DESCRIPTION OF SYMBOLS 1,31 Narrow tube for cryopreservation 2 Narrow tube main body 3 Linear support 3a Tip part 3b Main body part 3c Metal part 4 Vitrification preservation solution 5, 5a, 5b, 25, 25a, 25b Dilution liquid 6a, 6b Air layer 7 Sealing member 8 Cotton plug 9 Pasteur pipette 11 Container 12 Liquid nitrogen 12a Liquid nitrogen gas 13 Styrofoam plate 14 Tweezers 15 Magnet 16 Dewar bottle 21 Finger 22 Gas 23 Mild hot water 24 Press fitting

Claims (7)

動物の生物学的標本を含むガラス化保存液と希釈液とを凍結状態で保存し、その後融解して生物学的標本を動物へ移植するための凍結保存用細管であって、
凍結状態において、希釈液が細管本体内の一端側から他端側に向けて充填され、生物学的標本を含むガラス化保存液を先端部に付着させた線状支持具が、同線状支持具の先端側が希釈液凍結層の終端面に隣接するように細管本体内に配置されていることを特徴とする生物学的標本の凍結保存用細管。
A cryopreservation tubule for storing a vitrification preservation solution and a diluent containing an animal biological specimen in a frozen state, and then thawing and transplanting the biological specimen to the animal,
In the frozen state, the linear support is filled with the dilute solution from one end to the other end in the main body of the capillary tube, and the vitrification solution containing the biological specimen is attached to the tip. A thin tube for cryopreservation of a biological specimen, characterized in that the distal end side of the device is disposed in the thin tube main body so as to be adjacent to the end surface of the frozen layer of the diluent.
前記細管本体内には、前記希釈液を分断する空気層が設けられている請求項1記載の生物学的標本の凍結保存用細管。   The thin tube for cryopreservation of a biological specimen according to claim 1, wherein an air layer for dividing the diluent is provided in the thin tube main body. 凍結状態のもとで細管に内蔵された動物の生物学的標本を含むガラス化保存液と希釈液とを凍結保存する方法であって、
細管本体内に希釈液を吸引し凍結する希釈液凍結工程と、生物学的標本を含むガラス化保存液を線状支持具の先端部に付着させて急速凍結するガラス化凍結工程と、ガラス化凍結工程後の線状支持具を同線状支持具の先端側が細管本体内にある希釈液凍結層の終端面に隣接するように細管本体内に配置する支持具配置工程と、凍結状態の生物学的標本を含むガラス化保存液と希釈液とを内蔵する細管を封閉する封閉工程と、封閉工程後の細管を冷却物質中に浸漬して低温保存する保存工程と、を含むことを特徴とする生物学的標本の凍結保存方法。
A method for cryopreserving a vitrification preservation solution and a diluting solution containing a biological specimen of an animal contained in a capillary under a frozen state,
Dilution freezing process that sucks and freezes the diluting liquid in the thin tube body, vitrification freezing process that rapidly freezes by attaching a vitrification preservation solution containing biological specimens to the tip of the linear support, and vitrification A supporting tool arranging step of placing the linear support after the freezing process in the thin tube main body so that the tip side of the linear support tool is adjacent to the end surface of the diluent freezing layer in the thin tube main body, and the living organism in the frozen state A sealing step of sealing a capillary tube containing a vitrification preservation solution containing a biological specimen and a diluent, and a storage step of storing the capillary tube after the sealing step in a cooling substance and storing it at a low temperature. To cryopreserve biological specimens.
支持具配置工程における線状支持具の細管本体内での移動を、一部または全部が強磁性体からなる線状支持具を磁石によって誘導することにより行う請求項3記載の生物学的標本の凍結保存方法。   4. The biological specimen according to claim 3, wherein the movement of the linear support in the thin tube main body in the support placement step is performed by guiding a linear support made of a ferromagnetic material partially or entirely by a magnet. Cryopreservation method. 請求項1記載の凍結保存用細管を使用し、請求項3または4記載の凍結保存方法によって凍結保存した動物の生物学的標本を融解するにあたり、あらかじめ冷却物質中に浸漬した細管の封閉部を空気中に引き出した状態で直立させ、封閉部を加温して緩めることで融解時に発生するガスの封閉部からの排出を可能とし、その後細管を冷却物質中から取り出して加温して、凍結した生物学的標本を含むガラス化保存液と希釈液とを融解するとともに、ガラス化保存液を希釈液にて希釈することを特徴とする凍結保存後の生物学的標本の融解方法。   In thawing the biological specimen of an animal cryopreserved by the cryopreservation method according to claim 3 or 4 using the cryopreservation capillary according to claim 1, a sealed portion of the capillary previously immersed in a cold substance is used. By letting it stand upright in the air and warming and loosening the sealing part, the gas generated during melting can be discharged from the sealing part, and then the capillary tube is taken out of the cooling substance and heated to freeze. A method for thawing a biological specimen after cryopreservation, characterized by melting a vitrification preservation solution and a diluent containing the biological specimen prepared, and diluting the vitrification preservation solution with the diluent. 細管を加温して、凍結した生物学的標本を含むガラス化保存液と希釈液とを融解しガラス化保存液を希釈液にて希釈する際に、融解した希釈液中に線状支持具を移動させる請求項5記載の凍結保存後の生物学的標本の融解方法。   When a thin tube is heated to melt the vitrification stock solution and the diluted solution containing the frozen biological specimen and dilute the vitrification stock solution with the diluting solution, the linear support is in the thawed dilution solution. The method for thawing a biological specimen after cryopreservation according to claim 5, wherein 前記線状支持具の融解した希釈液中への移動を、一部または全部が強磁性体からなる線状支持具を磁石によって誘導することにより行う請求項6記載の凍結保存後の生物学的標本の融解方法。   The biological support after cryopreservation according to claim 6, wherein the linear support is moved into the melted diluent by inducing a linear support made of a ferromagnetic material partially or entirely by a magnet. How to melt the specimen.
JP2004341007A 2004-11-25 2004-11-25 Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation Pending JP2006149231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341007A JP2006149231A (en) 2004-11-25 2004-11-25 Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341007A JP2006149231A (en) 2004-11-25 2004-11-25 Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation

Publications (1)

Publication Number Publication Date
JP2006149231A true JP2006149231A (en) 2006-06-15

Family

ID=36628240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341007A Pending JP2006149231A (en) 2004-11-25 2004-11-25 Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation

Country Status (1)

Country Link
JP (1) JP2006149231A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302567A (en) * 2006-05-08 2007-11-22 Nipro Corp Container for freeze preservation and method of freeze preservation
JP2009005584A (en) * 2007-06-26 2009-01-15 Miyazaki Prefecture Gelling agent, cryopreservation agent, container for cell preservation, method for fusing cell and mammalian cell
JP2009148221A (en) * 2007-12-21 2009-07-09 National Agriculture & Food Research Organization Freeze preservation vessel for reproductive cell and method for freeze preservation of reproductive cell
JP2010263801A (en) * 2009-05-12 2010-11-25 Hitachi Plant Technologies Ltd Freezing preservation method, freezing device, freezing preservation system
KR101290803B1 (en) 2012-03-28 2013-07-29 충북대학교 산학협력단 Method for freezing, thawing and transferring of mammalian fertilized embryo using single general straw
JP2014143950A (en) * 2013-01-29 2014-08-14 Akita Prefecture Vitrification-preserving and embryo-containing straw for transplantation, and production method thereof
JP2014184056A (en) * 2013-03-25 2014-10-02 Yamagata Prefecture Mammalian embryo storing device and mammalian embryo implantation straw, and application thereof
CN104222070A (en) * 2014-09-19 2014-12-24 河南省农业科学院畜牧兽医研究所 Adjustable embryo freezing tubule scaleplate rack
KR20210045203A (en) * 2019-10-16 2021-04-26 대한민국(농촌진흥청장) Frozen gene source melting apparatus and sample melting method using the same
CN114403126A (en) * 2021-12-06 2022-04-29 起源细胞技术(滁州)有限公司 Closed embryo freezing tube and using method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302567A (en) * 2006-05-08 2007-11-22 Nipro Corp Container for freeze preservation and method of freeze preservation
JP2009005584A (en) * 2007-06-26 2009-01-15 Miyazaki Prefecture Gelling agent, cryopreservation agent, container for cell preservation, method for fusing cell and mammalian cell
JP2009148221A (en) * 2007-12-21 2009-07-09 National Agriculture & Food Research Organization Freeze preservation vessel for reproductive cell and method for freeze preservation of reproductive cell
JP2010263801A (en) * 2009-05-12 2010-11-25 Hitachi Plant Technologies Ltd Freezing preservation method, freezing device, freezing preservation system
KR101290803B1 (en) 2012-03-28 2013-07-29 충북대학교 산학협력단 Method for freezing, thawing and transferring of mammalian fertilized embryo using single general straw
JP2014143950A (en) * 2013-01-29 2014-08-14 Akita Prefecture Vitrification-preserving and embryo-containing straw for transplantation, and production method thereof
JP2014184056A (en) * 2013-03-25 2014-10-02 Yamagata Prefecture Mammalian embryo storing device and mammalian embryo implantation straw, and application thereof
CN104222070A (en) * 2014-09-19 2014-12-24 河南省农业科学院畜牧兽医研究所 Adjustable embryo freezing tubule scaleplate rack
KR20210045203A (en) * 2019-10-16 2021-04-26 대한민국(농촌진흥청장) Frozen gene source melting apparatus and sample melting method using the same
WO2021075893A3 (en) * 2019-10-16 2021-06-17 대한민국(농촌진흥청장) Device for thawing frozen genetic resource sample and thawing method using same
KR102292078B1 (en) 2019-10-16 2021-08-23 대한민국 Frozen gene source melting apparatus and sample melting method using the same
CN114403126A (en) * 2021-12-06 2022-04-29 起源细胞技术(滁州)有限公司 Closed embryo freezing tube and using method thereof

Similar Documents

Publication Publication Date Title
Mukaida et al. Blastocyst cryopreservation: ultrarapid vitrification using cryoloop technique
JP5278978B2 (en) Tubular for vitrification preservation of animal embryos or eggs
Hafez Preservation and cryopreservation of gametes and embryos
EP2605644B1 (en) Method of forming vitrification droplets
US20140308655A1 (en) Device for Manipulating Biological Materials in a Process of Cryopreservation and a Use of Such a Device
US20100099171A1 (en) Vitrification apparatus for microdrop vitrification of cells and a method of microdrop vitrification of cells using the apparatus
JP2016124819A (en) Reproductive cell preservation container and vitrification preservation method of reproductive cell
US20150313211A1 (en) A Method of Vitrification
JP2006149231A (en) Narrow tube for freeze preservation of biological specimen, freeze preservation method for biological specimen and method for melting after freeze preservation
JP4431754B2 (en) Vitrification preservation tool of embryo and vitrification preservation method of embryo using the same
Vieira et al. In-straw cryoprotectant dilution of IVP bovine blastocysts vitrified in hand-pulled glass micropipettes
JP3044323B1 (en) Cell cryopreservation method
JP5953643B2 (en) Straw for transplantation with vitrified preserved embryo and method for producing the same
JP6101992B2 (en) Mammalian embryo storage device, mammalian embryo transfer straw, and use thereof
EP1131998A1 (en) Cell-cryopreservation method
JPH10248860A (en) N-straw dilution type mammal embryo vitrification preserving straw
JP4359670B2 (en) Freezing tool
Nagy et al. The human embryo: vitrification
JP6734524B2 (en) Straws for preservation, thawing, dilution, and transplantation of vitrified mammalian embryos and methods of using the same
Yang et al. Stepwise in-straw dilution and direct transfer using open pulled straws (OPS) in the mouse: a potential model for field manipulation of vitrified embryos
WO1999011121A1 (en) Method and auxiliaries for cryopreservation of biological material such as egg cells
JP2001226201A (en) Frozen mammalian prevesicular ovarian follicle and method for cryopreserving mammalian prevesicular ovarian follicle
Jones Cryopreservation of bovine embryos
Chen et al. B. Vitrification of oocytes: various procedures
JP2023140984A (en) Embryo thawing instrument and embryo thawing transfer technique using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217