JP2006149078A - Power supply instantaneous shutoff prevention system - Google Patents

Power supply instantaneous shutoff prevention system Download PDF

Info

Publication number
JP2006149078A
JP2006149078A JP2004335129A JP2004335129A JP2006149078A JP 2006149078 A JP2006149078 A JP 2006149078A JP 2004335129 A JP2004335129 A JP 2004335129A JP 2004335129 A JP2004335129 A JP 2004335129A JP 2006149078 A JP2006149078 A JP 2006149078A
Authority
JP
Japan
Prior art keywords
battery
power supply
power
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004335129A
Other languages
Japanese (ja)
Inventor
Hiroshi Kudo
宏 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004335129A priority Critical patent/JP2006149078A/en
Publication of JP2006149078A publication Critical patent/JP2006149078A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply instantaneous shutoff prevention system capable of being used by switching it to the internal battery of a battery drive apparatus without causing power supply instantaneous shutoff of a battery drive apparatus body when an external battery is removed from the battery drive apparatus body during using the external battery. <P>SOLUTION: In a power supply switching structure for supplying the power by switching the internal battery V1 and the attachable/detachable external battery V2 by switching circuits (1), (2), a clamping circuit comprising a diode 46 in which the output of a secondary battery 45 in the battery drive apparatus is as a voltage for clamping is connected to a power supply line O to prevent the instantaneous shutoff of the voltage of the power supply line caused by the attaching/detaching external battery V2. The voltage of the secondary battery used as a static memory and a backup battery of a clock or the like is used for the clamping. When the external battery is intentionally or suddenly removed, the power supply interruption can be prevented during use of the external battery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はセカンドバッテリ(外部バッテリ)の抜脱時の電源瞬断防止方式に関し、特に、外部バッテリを装着可能な携帯電話装置等のバッテリ電源により動作する電子機器(バッテリ駆動機器)の電源瞬断防止方式に関する。   TECHNICAL FIELD The present invention relates to a method for preventing power supply interruption when a second battery (external battery) is removed, and in particular, power supply interruption of an electronic device (battery drive device) that is operated by a battery power supply such as a mobile phone device to which an external battery can be attached. It relates to prevention methods.

近年、電池、PWB、LCD等の要素部品の薄型化、及び実装技術の向上により狭ピッチ部品の実装等が実現出来るようになり、クレジットカード型携帯電話等の小型薄型の携帯電話装置が実現できる状況に至っている。   In recent years, thinning of component parts such as batteries, PWBs, LCDs, etc., and improvement of mounting technology have made it possible to realize mounting of narrow pitch components, etc., and it has become possible to realize small and thin mobile phone devices such as credit card type mobile phones. The situation has been reached.

反面、携帯電話装置の小型薄型化の影響として、内部バッテリの容量の低下による通話時間の短縮等の懸念事項も挙げられており、これを解決する手段として、外部バッテリを携帯電話装置に適宜装着して使用し内部バッテリの消費を抑制することが考えられる。   On the other hand, as a result of the downsizing and thinning of the mobile phone device, there are also concerns such as shortening the call time due to the decrease in the capacity of the internal battery, and as a means to solve this, an external battery is appropriately attached to the mobile phone device It can be used to suppress the consumption of the internal battery.

ところが、このような2つの電源の切り換えによる電源供給においては、一方の電源の着脱により供給電圧が瞬断状態を起こすおそれがあり、瞬断を防止できる電源供給構成とすることが重要である。
かかる電源供給構成として2つの電源をそれぞれダイオードを介して電源供給ラインに供給する構成が知られている(特許文献1参照)。
However, in such power supply by switching between the two power sources, there is a possibility that the supply voltage may cause a momentary interruption due to the attachment / detachment of one of the power sources, and it is important to have a power supply configuration that can prevent the momentary interruption.
As such a power supply structure, a structure in which two power supplies are respectively supplied to a power supply line via a diode is known (see Patent Document 1).

図7はダイオードを使用する電源供給方式の回路原理を示す図である。電源V1、V2の双方よりそれぞれダイオードD1、D2を介して負荷対し常時電力を供給するようにダイオードOR構成とし、電源V1又はV2の一方を抜脱しても電源の瞬断を起こさないようにするものである。   FIG. 7 is a diagram showing a circuit principle of a power supply system using a diode. A diode OR configuration is adopted so that power is always supplied to the load from both the power sources V1 and V2 via the diodes D1 and D2, respectively, so that even if one of the power sources V1 or V2 is removed, the power source is not momentarily interrupted. Is.

しかし、図7に示す電源供給構成では、ダイオードの順方向電圧降下VF(0.4V〜0.8V程度)分だけ電源電圧から電圧降下が生じ、電圧値が低く且つ狭い使用範囲(例えば4.2V〜3.3V等)のバッテリ電源の場合にはVFは動作可能な電圧のロスとなりバッテリライフの短縮につながるという欠点があり、また、電源の供給を受ける機器側から見て電源V1、V2が独立せず、電源間で干渉し、また、内部バッテリか外部バッテリかにより例えば動作モードを変更する等の機器側の設計等が不可能であるという欠点もある。   However, in the power supply configuration shown in FIG. 7, a voltage drop is generated from the power supply voltage by the forward voltage drop VF (about 0.4 V to 0.8 V) of the diode, the voltage value is low, and a narrow usage range (for example, 4. In the case of a battery power source of 2V to 3.3V, etc., VF has a disadvantage that it causes a loss of operable voltage and leads to shortening of battery life, and power sources V1 and V2 as viewed from the device receiving power supply. Are not independent of each other, interfere with each other between power sources, and cannot be designed on the device side such as changing the operation mode depending on whether the battery is an internal battery or an external battery.

図8は、2つの電源V1、V2を独立させるように使用することが可能な電源切り換え回路構成を示す図である(非特許文献1参照)。図7に示す回路のダイオードについて、ソースを互いに接続した2つのPチャンネル絶縁ゲートトランジスタ(PMOSトランジスタ)からなるスイッチ回路に置き換えた構成としたものである。この回路構成によれば、電源V1、V2の入力端子の電圧値等に基づいてコントローラ31及び制御回路32から制御信号を出力し、各スイッチ回路のオン/オフ状態を互いに逆方向に制御することにより2つの電源V1、V2を独立して切り換えるようにすることが可能である。   FIG. 8 is a diagram showing a power supply switching circuit configuration that can be used so that the two power supplies V1 and V2 are independent (see Non-Patent Document 1). The diode of the circuit shown in FIG. 7 is replaced with a switch circuit composed of two P-channel insulated gate transistors (PMOS transistors) whose sources are connected to each other. According to this circuit configuration, a control signal is output from the controller 31 and the control circuit 32 based on the voltage values of the input terminals of the power supplies V1 and V2, and the on / off states of the switch circuits are controlled in opposite directions. Thus, the two power sources V1 and V2 can be switched independently.

特開2003−9424号公報JP 2003-9424 A 「LINEAR technology、製品速報、最終電気的仕様LTC4412 第9ページ」インターネットホームページhttp : //www.linear-tech.co.jp/datasheet/html/jp_pdf/j4412f.pdf"LINEAR technology, Product Bulletin, Final Electrical Specification LTC4412 9th page" Internet homepage http://www.linear-tech.co.jp/datasheet/html/jp_pdf/j4412f.pdf

前述のように2つのスイッチ回路を使用することにより2つの電源からバッテリ駆動機器に電力を供給するように構成することが可能であるが、このような電源切り換え方式においては一方の電源を着脱可能とした場合、スイッチ回路の切り替え時の動作遅延により、バッテリを切り換えて出力するべきスイッチ回路が直ちにオン状態とならず、電源供給ラインへの供給電圧が途絶え、電源の瞬断状態を起こすおそれがある。   As described above, it is possible to supply power from two power supplies to battery-powered equipment by using two switch circuits. In such a power supply switching system, one power supply can be attached or detached. If the switch circuit is switched, the switch circuit that should switch and output the battery may not be turned on immediately due to a delay in operation when switching the switch circuit. is there.

例えば、この電源切り換え方式を携帯端末装置等の内部バッテリと外部バッテリ等に適用した場合、外部バッテリV2が携帯端末装置本体から不意に外れた瞬間、内部バッテリV1への切り替えも瞬時に行われず電源供給が瞬断し、電源供給ラインの電圧が0Vまで下がり回路が動かなくなる。このため内部バッテリV1への切り替えも自動的に行われず、携帯電話装置等の電源を再度投入しなければならないような状況に陥るという問題がある。
(目的)
本発明の目的は、外部バッテリの使用時にバッテリ駆動機器本体より外部バッテリを取り外した時に、電源の瞬断を起こさずにバッテリ駆動機器の内部バッテリに確実に切り換えて使用できる電源瞬断防止方式を提供することにある。
For example, when this power supply switching method is applied to an internal battery and an external battery of a mobile terminal device or the like, the power supply is not instantaneously switched to the internal battery V1 when the external battery V2 is unexpectedly removed from the mobile terminal device body. The supply is momentarily interrupted, the voltage of the power supply line drops to 0V, and the circuit does not move. For this reason, switching to the internal battery V1 is not automatically performed, and there is a problem that the mobile phone device or the like needs to be turned on again.
(the purpose)
An object of the present invention is to provide an instantaneous power supply prevention method that can be used by reliably switching to an internal battery of a battery-driven device without causing an instantaneous power supply interruption when the external battery is removed from the battery-driven device main body when using the external battery. It is to provide.

本発明の他の目的は、外部バッテリと内部バッテリを互いに干渉しないで独立して切り換え可能とするとともに、外部バッテリの抜脱時に電源の瞬断を防止できる電源瞬断防止方式を提供することにある。   Another object of the present invention is to provide a power supply interruption prevention system that enables an external battery and an internal battery to be switched independently without interfering with each other, and can prevent an interruption of the power supply when the external battery is removed. is there.

本発明の電源瞬断防止方式は、内部バッテリ(例えば図1のV1)と着脱可能な外部バッテリ(例えば図1のV2)により電源供給ライン(例えば図1のO)への電源供給が可能なバッテリ駆動機器(例えば図1の4)の電源瞬断防止方式において、バッテリ駆動機器の内部の2次電池(例えば図1の45)の出力電圧により前記電源供給ラインをクランプするクランプ回路を備えることを特徴とし、前記クランプ回路は、前記2次電池の出力と前記電源供給ラインの間に接続したダイオード(例えば図1の46)により構成したことを特徴とする。   The power supply interruption prevention system of the present invention can supply power to a power supply line (for example, O in FIG. 1) by an internal battery (for example, V1 in FIG. 1) and a removable external battery (for example, V2 in FIG. 1). In a method for preventing instantaneous power interruption of a battery-driven device (for example, 4 in FIG. 1), a clamp circuit that clamps the power supply line by an output voltage of a secondary battery (for example, 45 in FIG. 1) inside the battery-driven device is provided. The clamp circuit is constituted by a diode (for example, 46 in FIG. 1) connected between the output of the secondary battery and the power supply line.

また、前記バッテリ駆動機器は、前記内部バッテリ又は外部バッテリからの電源の供給を切り換える切り換えスイッチ(例えば図1のスイッチ回路(1)、(2))と、前記切り換えスイッチの制御回路(例えば図1の3)と、を備え、前記制御回路は、前記外部バッテリの接続時に前記外部バッテリから優先的に電力を供給するように切り換えることを特徴とし、前記2次電池は、前記内部バッテリ又は外部バッテリから充電されることを特徴とし、前記2次電池は、バッテリ駆動機器の電源停止時にも内部回路の少なくともスタティックメモリ及び時計回路を含む論理処理部(例えば図1の41)に電源を供給するバックアップ電池であることを特徴とする。   In addition, the battery-driven device includes a changeover switch (for example, switch circuits (1) and (2) in FIG. 1) for switching power supply from the internal battery or an external battery, and a control circuit for the changeover switch (for example, FIG. 1). 3), and the control circuit switches to supply power preferentially from the external battery when the external battery is connected, and the secondary battery is the internal battery or the external battery. The secondary battery is backed up to supply power to a logic processing unit (for example, 41 in FIG. 1) including at least a static memory and a clock circuit of an internal circuit even when the power of the battery-powered device is stopped. It is a battery.

特に、前記バッテリ駆動機器は携帯電話機であり、前記2次電池の電圧値は携帯電話機で規定するバッテリ電源としての使用する電圧範囲の下限側の検出閾値である規定値よりも低く、かつ、回路動作が保てる電圧値として設定され、前記切り換えスイッチは、前記内部バッテリ及び外部バッテリと電源供給ラインとの間にドレイン−ソース電流路が直列接続され、ゲート電極が前記制御回路により制御される2つのPチャンネル型MOSトランジスタ(例えば図1のD10〜D21)で構成されることを特徴とする。   In particular, the battery-powered device is a mobile phone, and the voltage value of the secondary battery is lower than a specified value which is a detection threshold value on the lower limit side of a voltage range used as a battery power source specified by the mobile phone, and the circuit A voltage value that can be maintained is set, and the changeover switch includes two drain-source current paths connected in series between the internal battery and external battery and a power supply line, and a gate electrode controlled by the control circuit. It is characterized by comprising P-channel MOS transistors (for example, D10 to D21 in FIG. 1).

(作用)
携帯電話機等のバッテリ駆動機器内部の2次電池の出力をクランプ用の電圧とするクランプ回路を電源供給ラインに接続することにより、バッテリ駆動機器に着脱する外部バッテリに起因する電源供給ラインの電圧の瞬断を防止する。内部バッテリと外部バッテリを制御して電力供給を行う構成において、外部バッテリの使用時にバッテリ駆動機器本体より外れた時でも、電源瞬断が起こさずに使用できる。バッテリ駆動機器内のスタティックメモリ、時計回路等のバックアップ電池として用いられている2次電池の電圧をクランプに利用する。外部バッテリの使用中において該外部バッテリが故意及び不意に外れた時の電源瞬断を防止することができる。
(Function)
By connecting a clamp circuit that uses the output of a secondary battery in a battery-powered device such as a cellular phone as a clamping voltage, the voltage of the power-supply line caused by an external battery attached to or detached from the battery-powered device can be reduced. Prevent momentary interruptions. In the configuration in which power is supplied by controlling the internal battery and the external battery, even when the external battery is disconnected from the battery-driven device main body, it can be used without causing a power interruption. The voltage of a secondary battery used as a backup battery for a static memory, a clock circuit or the like in a battery-driven device is used for clamping. During use of the external battery, it is possible to prevent an instantaneous power interruption when the external battery is intentionally and unexpectedly disconnected.

本発明によれば、バッテリ駆動機器の内部の2次電池の出力電圧をクランプ電圧とするクランプ回路を電源供給ラインに備えることにより、装着した外部バッテリを故意又は不意に外した場合にも電源供給ラインへの電源供給が維持されるので、バッテリ駆動機器の電源瞬断による弊害を防止することが可能である。   According to the present invention, the power supply line is provided with a clamp circuit that uses the output voltage of the secondary battery inside the battery-driven device as a clamp voltage, so that power can be supplied even when the attached external battery is intentionally or unexpectedly removed. Since the power supply to the line is maintained, it is possible to prevent the harmful effects caused by the instantaneous power interruption of the battery-driven device.

また、クランプ回路は2次電池と電源供給ラインの間にダイオードを設けるだけの簡単な構成により実現することが可能である。   The clamp circuit can be realized with a simple configuration in which a diode is provided between the secondary battery and the power supply line.

更に、電源切り換え回路として、2つのPチャンネル型MOSトランジスタで構成される切り換えスイッチ等により内部バッテリ又は外部バッテリからの電源の供給を切り換えるように構成することにより、バッテリ間の干渉を防止することが可能である。   Furthermore, as a power supply switching circuit, it is possible to prevent the interference between batteries by switching the supply of power from the internal battery or the external battery by a changeover switch or the like composed of two P-channel MOS transistors. Is possible.

また、2次電池としては、内部バッテリ又は外部バッテリから充電され、電源停止状態でもスタティックメモリ及び時計回路等の内部回路に電源を供給するバックアップ電池を利用することが可能である。   As the secondary battery, it is possible to use a backup battery that is charged from an internal battery or an external battery and supplies power to internal circuits such as a static memory and a clock circuit even when the power is stopped.

特に、携帯電話装置に適用することにより外部バッテリの着脱によりPCMCIA型の携帯電話機でも充分な使用可能時間を実現することが可能である。   In particular, by applying to a mobile phone device, it is possible to realize a sufficient usable time even with a PCMCIA type mobile phone by attaching and detaching an external battery.

(構成の説明)
図1は本発明の電源瞬断防止方式の一実施の形態の電源切り替え回路を示す構成図である。
(Description of configuration)
FIG. 1 is a block diagram showing a power supply switching circuit according to an embodiment of the present invention.

本実施の形態は、バッテリ電源で動作するバッテリ駆動機器4と、バッテリ駆動機器4に対し2つの電力供給用のバッテリであって、例えば電子機器4に内蔵する内部バッテリ1(以下、V1)と、電子機器4の外部から接続端子Iにより取り付ける着脱可能な外部バッテリ2(以下、V2)と、バッテリV1、V2の何れかからバッテリ駆動機器4に電力を供給するための4つのPチャンネルMOSトランジスタPMOS10、PMOS11、PMOS20及びPMOS21で構成されたスイッチング回路と、各PMOSトランジスタのゲートを制御しそれぞれの導通/非導通を制御する制御回路3とを備える。   The present embodiment is a battery-driven device 4 that operates with a battery power source, and two batteries for supplying power to the battery-driven device 4, for example, an internal battery 1 (hereinafter referred to as V 1) built in the electronic device 4. A detachable external battery 2 (hereinafter referred to as V2) attached from the outside of the electronic device 4 via the connection terminal I, and four P-channel MOS transistors for supplying power to the battery-driven device 4 from any one of the batteries V1 and V2. A switching circuit including PMOS 10, PMOS 11, PMOS 20, and PMOS 21, and a control circuit 3 that controls the gate of each PMOS transistor and controls conduction / non-conduction of each of the PMOS transistors are provided.

前記スイッチング回路は、各バッテリV1、V2に対しそれぞれソース−ドレイン間に寄生ダイオードを有する2つのPチャンネルMOSトランジスタがソース−ドレイン間を直列接続した2つのスイッチ回路PMOS10、PMOS11及びPMOS20、PMOS21として構成され、それぞれのスイッチ回路の出力側PMOSトランジスタPMOS11、PMOS21のドレインが共通接続されてバッテリ駆動機器4の電源供給ラインOに接続されている。また、スイッチング回路は、内部バッテリV1、外部バッテリV2が互いに干渉しないで独立して動作させるため寄生ダイオードを通して回路ブロックに電流が流れないように寄生ダイオードD10とD11及びD20とD21が逆接続となるようにソース同士の接続構成としている。   The switching circuit is configured as two switch circuits PMOS10, PMOS11, PMOS20, and PMOS21 in which two P-channel MOS transistors each having a parasitic diode between the source and the drain are connected in series between the source and the drain for each of the batteries V1 and V2. The drains of the output side PMOS transistors PMOS11 and PMOS21 of each switch circuit are connected in common and connected to the power supply line O of the battery drive device 4. Also, since the internal battery V1 and the external battery V2 operate independently without interfering with each other in the switching circuit, the parasitic diodes D10 and D11 and D20 and D21 are reversely connected so that no current flows through the circuit block through the parasitic diode. In this way, the source is connected to each other.

また、バッテリ駆動機器4は、携帯電子機器としての各種の回路ブロック47と、2つのスイッチ回路の電源供給ラインOの電圧を入力しディジタル信号に変換するAD変換回路ADC(アナログディジタルコンバータ)(1)42と、外部バッテリV2の接続端子Iの電圧を入力しディジタル信号に変換するAD変換回路ADC(2)43と、ADC42、43の出力を入力するとともに、時計回路としての処理を含む各種の処理を行う中央処理装置及び論理回路CPU/Logicで構成された論理処理部41と、バックアップ電源としての2次電池45と、前記電源供給ラインOの電圧を入力とし前記2次電池45を充電する充電IC44と、前記2次電池45の出力を前記電源供給ラインO及び論理処理部(CPU/Logic)41等のバッテリ駆動機器4内に供給するダイオード46と、を備える。   In addition, the battery-driven device 4 includes various circuit blocks 47 as portable electronic devices and an AD conversion circuit ADC (analog-digital converter) (1) that inputs the voltages of the power supply lines O of the two switch circuits and converts them into digital signals. ) 42, an AD converter circuit ADC (2) 43 that inputs the voltage of the connection terminal I of the external battery V2 and converts it into a digital signal, and outputs of the ADCs 42 and 43, and various processes including processing as a clock circuit A central processing unit for processing and a logic processing unit 41 constituted by a logic circuit CPU / Logic, a secondary battery 45 as a backup power source, and a voltage of the power supply line O are inputted to charge the secondary battery 45. The output of the charging IC 44 and the secondary battery 45 is supplied to the power supply line O and the logic processing unit (CPU / Logic) 4. It comprises a supply diode 46 to the battery-driven device 4 etc., the.

ここで論理処理部41は、前記電源供給ラインO及び外部バッテリV2の接続端子Iの電圧に応じて制御回路に制御信号を出力し、制御回路3は4つのPチャンネルMOSトランジスタのゲート電極を制御して、2つのスイッチ回路の何れかを導通させ、外部バッテリV2の装着状態ではスイッチ回路(2)PMOS20、PMOS21のみを導通(オン)させ、内部バッテリV1に優先して電力を供給するように制御し、また、外部バッテリV2の取り外した状態ではスイッチ回路(1)PMOS10、PMOS11のみを導通(オン)させ、内部バッテリV1から電力を供給するように制御する。   Here, the logic processing unit 41 outputs a control signal to the control circuit according to the voltage of the power supply line O and the connection terminal I of the external battery V2, and the control circuit 3 controls the gate electrodes of the four P-channel MOS transistors. Then, one of the two switch circuits is turned on, and when the external battery V2 is attached, only the switch circuit (2) PMOS 20 and PMOS 21 are turned on and power is supplied with priority over the internal battery V1. In a state where the external battery V2 is removed, only the switch circuit (1) PMOS10 and PMOS11 are made conductive (ON) and power is supplied from the internal battery V1.

以上の制御のため、論理処理部41は、AD変換回路ADC(1)42からの電源供給ラインOの電圧VOと、AD変換回路ADC(2)43からの外部バッテリV2の接続端子Iの電圧VIとを入力して、バッテリ電源としての使用する電圧範囲の下限側の検出閾値である規定値を低電圧検出電圧値とし、電圧VO及び電圧VIに基づき以下の制御信号を出力する演算処理機能を有する。   For the above control, the logic processing unit 41 detects the voltage VO of the power supply line O from the AD conversion circuit ADC (1) 42 and the voltage of the connection terminal I of the external battery V2 from the AD conversion circuit ADC (2) 43. An arithmetic processing function that inputs VI and sets a specified value, which is a detection threshold on the lower limit side of the voltage range used as a battery power supply, as a low voltage detection voltage value and outputs the following control signals based on the voltage VO and the voltage VI Have

(a)端子Iの電圧が低電圧検出電圧値を超える場合に、スイッチ回路1をオフ状態、スイッチ回路2をオン状態にする制御信号を制御回路3に出力する。
(b)端子Iの電圧が低電圧検出電圧値以下の場合に、スイッチ回路1をオン状態、スイッチ回路2をオフ状態にする制御信号を制御回路3に出力する。
(c)スイッチ回路1がオフ状態、スイッチ回路2がオン状態において、電源供給ラインOの電圧VO(端子Iの電圧)が低電圧検出電圧値まで低下した時、スイッチ回路1をオン状態、スイッチ回路2をオフ状態に切り換える制御信号を制御回路3に出力する。
(A) When the voltage at the terminal I exceeds the low voltage detection voltage value, a control signal for turning off the switch circuit 1 and turning on the switch circuit 2 is output to the control circuit 3.
(B) When the voltage at the terminal I is equal to or lower than the low voltage detection voltage value, a control signal for turning on the switch circuit 1 and turning off the switch circuit 2 is output to the control circuit 3.
(C) When the switch circuit 1 is in the off state and the switch circuit 2 is in the on state, when the voltage VO (voltage at the terminal I) of the power supply line O drops to the low voltage detection voltage value, the switch circuit 1 is turned on. A control signal for switching the circuit 2 to the OFF state is output to the control circuit 3.

制御回路3は論理処理部41からの制御信号により各スイッチ回路を構成するPMOSトランジスタのゲート電極を制御し、前記スイッチ回路(1)、(2)のオン/オフ状態を(a)〜(c)のように切り換える。   The control circuit 3 controls the gate electrodes of the PMOS transistors constituting each switch circuit by the control signal from the logic processing unit 41, and sets the on / off states of the switch circuits (1) and (2) to (a) to (c). ).

(動作の説明)
最初に、図1に示す電源切り換え回路に関して、本発明の特徴とするクランプ回路を有しない場合の動作について説明する。
図2は、クランプ回路を有しない場合の電源切り換え回路構成を示す図である。図1に示す回路構成において充電IC44、2次電池45及びダイオード46からなる回路を除いた構成でなる。
(Description of operation)
First, with respect to the power supply switching circuit shown in FIG. 1, the operation when the clamping circuit, which is a feature of the present invention, is not provided will be described.
FIG. 2 is a diagram showing a power supply switching circuit configuration when no clamp circuit is provided. In the circuit configuration shown in FIG. 1, the circuit composed of the charging IC 44, the secondary battery 45 and the diode 46 is excluded.

外部バッテリV2が低電圧検出電圧値を超える電圧をバッテリ駆動機器4に正常に供給している状態で、接続端子Iから外れると、上記(b)の状態から外部バッテリV2が外れることになるから、論理処理部41の(a)の演算処理によりスイッチ回路(1)がオン状態、スイッチ回路(2)がオフ状態に切り替わるはずである。しかし通常の回路遅延によっても、スイッチ回路(1)自体又は論理処理部41等を含むスイッチ回路(1)のオン状態への切り換え動作には遅れが生じるため、内部バッテリV1からスイッチ回路(1)を介する電源供給ラインOへの電力供給も遅れ、瞬断状態が生じる。   When the external battery V2 normally supplies a voltage exceeding the low voltage detection voltage value to the battery-driven device 4 and is disconnected from the connection terminal I, the external battery V2 is disconnected from the state (b). The operation circuit (a) of the logic processing unit 41 should switch the switch circuit (1) to the on state and switch circuit (2) to the off state. However, since the switching operation of the switch circuit (1) including the switch circuit (1) itself or the logic processing unit 41 or the like to the ON state is delayed even by a normal circuit delay, the switch circuit (1) is switched from the internal battery V1. The power supply to the power supply line O via the delay is also delayed, and an instantaneous interruption occurs.

図3は、クランプ回路を有しない回路で外部バッテリV2が不意に外れた場合の電源供給ラインの電圧変化を示すタイムチャートである。
バッテリ駆動機器4に外部バッテリV2が装着された後、電源供給ラインOがスイッチ回路(2)を介して外部バッテリV2から電力が供給されている状態で、外部バッテリV2が外れた場合(t1)、スイッチ回路の動作遅れ、特に、スイッチ回路(1)が瞬時にオン状態とならない結果、図2に示す過度特性のように電源供給ラインOの電圧値が0Vに瞬間的に低下する。この結果、バッテリ駆動機器4への電源供給が停止し、バッテリ駆動機器4の電源瞬断態に陥る。この後はユーザの新たな電源投入等により、内部バッテリV1でバッテリ駆動機器4を動作させることになる。
FIG. 3 is a time chart showing a voltage change of the power supply line when the external battery V2 is unexpectedly disconnected in a circuit having no clamp circuit.
When the external battery V2 is disconnected after the external battery V2 is attached to the battery-driven device 4 and the power supply line O is supplied with power from the external battery V2 via the switch circuit (2) (t1) As a result of the operation delay of the switch circuit, in particular, the switch circuit (1) is not instantaneously turned on, the voltage value of the power supply line O is instantaneously lowered to 0V as shown in the excessive characteristic shown in FIG. As a result, the power supply to the battery-powered device 4 is stopped, and the battery-powered device 4 enters an instantaneous power interruption state. Thereafter, the battery-powered device 4 is operated by the internal battery V1 when the user turns on the new power.

次に、図1に示す本実施の形態の電源切り換え回路で外部バッテリV2が外れた場合の電源瞬断の防止動作について説明する。
図4は、本実施の形態の動作のタイミングチャートを示す図である。
Next, the operation for preventing the instantaneous power interruption when the external battery V2 is disconnected in the power supply switching circuit of the present embodiment shown in FIG. 1 will be described.
FIG. 4 is a diagram illustrating a timing chart of the operation of the present embodiment.

本実施の形態では、電源供給ラインOから常時充電IC44により充電されるバックアップ電源としての2次電池の出力電圧をダイオード46を介して論理処理部41に供給するとともに電源供給ラインOに供給可能な接続構成を有している。ここで、2次電池によるクランプ電圧は、2次電池の出力電圧からダイオードの順方向電圧降下VF分差し引いた電圧値であり、バッテリ駆動機器4で設定された低電圧検出電圧値よりも低い電圧値であるが、バッテリ駆動機器4の各部の回路が正常に動作する電圧値に設定される。
この構成及び設定電圧により、前記瞬断時以外の電源供給ラインOの電圧値が低電圧検出電圧値より高い正常動作状態では、ダイオード44は常に逆バイアス状態でオフ状態である。
In the present embodiment, the output voltage of the secondary battery as a backup power source charged by the constant charging IC 44 from the power supply line O can be supplied to the logic processing unit 41 via the diode 46 and supplied to the power supply line O. It has a connection configuration. Here, the clamp voltage by the secondary battery is a voltage value obtained by subtracting the forward voltage drop VF of the diode from the output voltage of the secondary battery, and is a voltage lower than the low voltage detection voltage value set by the battery drive device 4. Although it is a value, it is set to a voltage value at which the circuit of each part of the battery-driven device 4 operates normally.
With this configuration and the set voltage, the diode 44 is always in the reverse bias state and in the off state in the normal operation state where the voltage value of the power supply line O other than the momentary interruption is higher than the low voltage detection voltage value.

電源供給ラインOがスイッチ回路(2)を介して外部バッテリV2から電力が供給されている状態で、外部バッテリV2が外れた場合(t1)、スイッチ回路の動作遅れ、特に、スイッチ回路(1)が瞬時にオン状態とならないことにより、電源供給ラインOの電圧が急激に低下する。しかし、電源供給ラインOの電圧が前記クランプ電圧に達するとダイオード44がオン状態となり、それ以下への低下が防止される。   When the external battery V2 is disconnected while the power supply line O is supplied with power from the external battery V2 via the switch circuit (2) (t1), the operation delay of the switch circuit, in particular, the switch circuit (1) Is not instantaneously turned on, the voltage of the power supply line O rapidly decreases. However, when the voltage of the power supply line O reaches the clamp voltage, the diode 44 is turned on, and a decrease to the lower level is prevented.

以上のクランプ動作により、外部バッテリV2の使用中に故意又は不意に外部バッテリV2を外しても、内部バッテリV1に切り替わる過渡的な短時間の期間はダイオード44が導通して、2次電池の出力電圧が電源供給ラインOの電圧の低下を抑えることにより、バッテリ駆動機器4の動作が維持される。   With the above clamping operation, even if the external battery V2 is intentionally or unintentionally removed while the external battery V2 is in use, the diode 44 becomes conductive during a transient short period of time when the external battery V2 is switched to, and the output of the secondary battery The operation of the battery-powered device 4 is maintained when the voltage suppresses the decrease in the voltage of the power supply line O.

また、電源の断状態でも2次電池の出力電圧は論理処理部41等の主要な回路に供給されているから前記短期間以内の時刻(t2)にスイッチ回路(1)がオン状態に切り替わり、その後、内部バッテリV1からバッテリ駆動機器4に電力が供給される。   In addition, since the output voltage of the secondary battery is supplied to the main circuit such as the logic processing unit 41 even in the power-off state, the switch circuit (1) is switched on at time (t2) within the short period, Thereafter, power is supplied from the internal battery V <b> 1 to the battery-driven device 4.

図4に示す本実施の形態の設定例では、バッテリV1、V2は初期値(充電状態初期値の電圧値)を4.2V、バッテリ駆動回路の低電圧検出電圧値は3.6V、2次電池電圧は順方向電圧降下VFを0.4Vとして3.7V(クランプ電圧は3.3V)に設定されている。本例ではバッテリが外れた時(t1)、電源供給ラインは0Vに低下しようとするが、2次電池の出力電圧3.7Vがダイオードを介して電源供給ラインOを3.3Vにクランプすることにより両スイッチ回路から電源供給がなくても電源供給ラインOは3.3Vに維持される。その後、論理処理部41が低電圧検出電圧値3.6V以下への低下をADC42の出力により検出して、制御回路3に対する制御信号を出力し、制御回路3はスイッチ回路(1)、(2)を制御しバッテリV2から内部バッテリV1への切り換えを行い(t2)、本来の内部バッテリV1による電源供給状態とすることにより、電源供給ラインの0Vへの瞬断は防止される。   In the setting example of the present embodiment shown in FIG. 4, the batteries V1 and V2 have an initial value (voltage value of the charge state initial value) of 4.2V, the low voltage detection voltage value of the battery drive circuit is 3.6V, and the secondary The battery voltage is set to 3.7V (clamping voltage is 3.3V) with the forward voltage drop VF being 0.4V. In this example, when the battery is disconnected (t1), the power supply line tries to drop to 0V, but the output voltage of the secondary battery 3.7V clamps the power supply line O to 3.3V through the diode. Thus, the power supply line O is maintained at 3.3 V even when no power is supplied from both switch circuits. Thereafter, the logic processing unit 41 detects a decrease in the low voltage detection voltage value of 3.6 V or less from the output of the ADC 42 and outputs a control signal to the control circuit 3, and the control circuit 3 switches the switch circuits (1), (2 ) Is controlled to switch from the battery V2 to the internal battery V1 (t2), and the power supply state of the original internal battery V1 is set to prevent the power supply line from being momentarily cut to 0V.

図5は本発明の電源瞬断防止方式を適用した携帯電話機を示すブロック図であり、図6は外部バッテリとして薄型リチュームイオンバッテリを着脱自在に構成したPCMCIAカードサイズの携帯電話機を示す斜視図である。   FIG. 5 is a block diagram showing a mobile phone to which the instantaneous power interruption prevention system of the present invention is applied, and FIG. 6 is a perspective view showing a PCMCIA card size mobile phone in which a thin lithium ion battery is detachably configured as an external battery. is there.

図5に示すように、携帯電話機本体5は通話等のアンテナ及び高周波回路RF、メモリ回路55、表示部LCD、キー入力部KEY、着信時等のレシーバ/バイブレータ、送受話用のマイク/スピーカ及び時計表示等と接続され、それぞれの処理を行う中央処理装置CPU、論理回路LOGICで構成された論理処理部BB51を備える。   As shown in FIG. 5, the mobile phone main body 5 includes an antenna for a telephone call and a high frequency circuit RF, a memory circuit 55, a display unit LCD, a key input unit KEY, a receiver / vibrator for incoming calls, a microphone / speaker for transmission and reception, A central processing unit CPU that is connected to a clock display or the like and performs each processing, and a logic processing unit BB51 that includes a logic circuit LOGIC.

また、携帯電話機5は内蔵バッテリ(V1)56と、該内蔵バッテリ56と携帯電話 端末装置5に着脱可能な外部バッテリ(V2)6と接続される電源切り換え回路57と、該電源切り換え回路57の出力により各ブロックに電源を供給する電源制御回路58を備える。   The mobile phone 5 includes a built-in battery (V 1) 56, a power switching circuit 57 connected to the built-in battery 56 and an external battery (V 2) 6 that can be attached to and detached from the mobile phone terminal device 5, and the power switching circuit 57 A power control circuit 58 that supplies power to each block by output is provided.

更に、携帯電話機本体内には、電源遮断時(電源オフ時)のバックアップ電源としての2次電池53と、該2次電池53を内蔵バッテリ56又は外部バッテリ6から充電する充電IC52と、前記2次電池53の出力電圧をダイオード54を介して論理処理部51、メモリ55に加えるとともに、電源切り換え回路57の出力側の図示しない電源供給ラインに印加する構成を備える。   Further, in the mobile phone main body, a secondary battery 53 as a backup power source when the power is cut off (when the power is off), a charging IC 52 for charging the secondary battery 53 from the built-in battery 56 or the external battery 6, and the 2 The output voltage of the secondary battery 53 is applied to the logic processing unit 51 and the memory 55 via the diode 54, and applied to a power supply line (not shown) on the output side of the power supply switching circuit 57.

以上の構成により携帯電話機の小型化、薄型化による内部バッテリの容量の低下による通話時間の短縮等の問題が解決されるとともに、外部バッテリの着脱による電源供給ラインの瞬断の弊害が排除できる。   With the above configuration, problems such as a reduction in call time due to a reduction in the capacity of the internal battery due to a reduction in the size and thickness of the mobile phone can be solved, and an adverse effect of a momentary interruption of the power supply line due to the attachment / detachment of the external battery can be eliminated.

本発明の電源瞬断防止方式の一実施の形態の電源切り替え回路を示す構成図である。It is a block diagram which shows the power supply switching circuit of one Embodiment of the power supply instantaneous interruption prevention system of this invention. クランプ回路を有しない場合の電源切り換え回路構成を示す図である。It is a figure which shows the power supply switching circuit structure when not having a clamp circuit. クランプ回路を有しない回路で外部バッテリV2が外れた場合の電源供給ラインの電圧変化を示すタイムチャートである。It is a time chart which shows the voltage change of the power supply line when the external battery V2 comes off in the circuit which does not have a clamp circuit. 本実施の形態の動作のタイミングチャートを示す図である。It is a figure which shows the timing chart of the operation | movement of this Embodiment. 本発明の電源瞬断防止方式を適用した携帯電話機を示すブロック図であり、It is a block diagram showing a mobile phone to which the instantaneous power interruption prevention method of the present invention is applied, 外部バッテリとして薄型リチュームイオンバッテリを着脱自在に構成したPCMCIAカードサイズの携帯電話機を示す斜視図である。It is a perspective view which shows the mobile telephone of the PCMCIA card size which comprised the thin lithium ion battery detachably as an external battery. ダイオードを使用する電源供給方式の回路原理を示す図である。It is a figure which shows the circuit principle of the power supply system which uses a diode. 2つの電源V1、V2を独立させるように使用することが可能な電源切り換え回路構成を示す図であるIt is a figure which shows the power supply switching circuit structure which can be used so that two power supplies V1 and V2 may become independent.

符号の説明Explanation of symbols

1、56 内部バッテリ
2、6 外部バッテリ
3 制御回路
4 バッテリ駆動機器
5 携帯電話機
41、51 CPU/Logic(論理処理部)
42、43 ADC
44、52 充電IC(充電集積回路)
45、53 2次電池
46、54 ダイオード
47 各回路ブロック
51 論理処置部
57 電源切り換え回路
58 電源制御回路
D10、D11、D20、D21 寄生ダイオード
PMOS10、PMOS11、PMOS20、PMOS21 PチャネルMOSトランジスタ
DESCRIPTION OF SYMBOLS 1,56 Internal battery 2, 6 External battery 3 Control circuit 4 Battery drive apparatus 5 Cellular phone 41, 51 CPU / Logic (logic processing part)
42, 43 ADC
44, 52 Charging IC (Charge Integrated Circuit)
45, 53 Secondary battery 46, 54 Diode 47 Each circuit block 51 Logic treatment unit 57 Power switching circuit 58 Power control circuit D10, D11, D20, D21 Parasitic diode PMOS10, PMOS11, PMOS20, PMOS21 P channel MOS transistor

Claims (9)

内部バッテリと着脱可能な外部バッテリにより電源供給ラインへの電源供給が可能なバッテリ駆動機器の電源瞬断防止方式において、
バッテリ駆動機器の内部の2次電池の出力電圧により前記電源供給ラインをクランプするクランプ回路を備えることを特徴とする電源瞬断防止方式。
In the power supply prevention method for battery-powered equipment that can supply power to the power supply line with an internal battery and a removable external battery,
A power supply interruption prevention system comprising: a clamp circuit that clamps the power supply line by an output voltage of a secondary battery inside a battery-driven device.
前記クランプ回路は、前記2次電池の出力と前記電源供給ラインの間に接続したダイオードにより構成したことを特徴とする請求項1記載の電源瞬断防止方式。   2. The instantaneous power interruption prevention system according to claim 1, wherein the clamp circuit comprises a diode connected between an output of the secondary battery and the power supply line. 前記バッテリ駆動機器は、前記内部バッテリ又は外部バッテリからの電源の供給を切り換える切り換えスイッチと、前記切り換えスイッチの制御回路と、を備え、前記制御回路は、前記外部バッテリの接続時に前記外部バッテリから優先的に電力を供給するように切り換えることを特徴とする請求項1又は2記載の電源瞬断防止方式。   The battery-powered device includes a changeover switch for switching supply of power from the internal battery or an external battery, and a control circuit for the changeover switch. The control circuit has priority from the external battery when the external battery is connected. 3. The power supply interruption prevention method according to claim 1, wherein switching is performed so as to supply electric power. 前記2次電池は、前記内部バッテリ又は外部バッテリから充電されることを特徴とする請求項1、2又は3記載の電源瞬断防止方式。   4. The power supply interruption prevention method according to claim 1, wherein the secondary battery is charged from the internal battery or an external battery. 前記2次電池は、バッテリ駆動機器の電源停止状態でも内部回路に電源を供給するバックアップ電池であることを特徴とする請求項1〜4の何れかの請求項記載の電源瞬断防止方式。   5. The instantaneous power interruption prevention system according to claim 1, wherein the secondary battery is a backup battery that supplies power to an internal circuit even in a power-off state of a battery-driven device. 前記内部回路は、バッテリ駆動機器の少なくともスタティックメモリ及び時計回路であることを特徴とする請求項5記載の電源瞬断防止方式。   6. The power supply interruption prevention system according to claim 5, wherein the internal circuit is at least a static memory and a clock circuit of a battery-driven device. 前記2次電池の電圧値は、バッテリ電源としての使用する電圧範囲の下限側の検出閾値である規定値よりも低く、かつ、回路動作が保てる電圧値として設定されることを特徴とする請求項1〜6の何れかの請求項記載の電源瞬断防止方式。   The voltage value of the secondary battery is set as a voltage value that is lower than a specified value that is a detection threshold value on a lower limit side of a voltage range to be used as a battery power source and that can maintain circuit operation. The power supply interruption prevention method according to any one of claims 1 to 6. 前記バッテリ駆動機器は携帯電話装置であることを特徴とする請求項1〜7の何れかの請求項記載の電源瞬断防止方式。   The power supply interruption prevention method according to any one of claims 1 to 7, wherein the battery-powered device is a mobile phone device. 前記切り換えスイッチは、前記内部バッテリ及び外部バッテリと電源供給ラインとの間にドレイン−ソース電流路が直列接続され、ゲートが前記制御回路により制御される2つのPチャンネル型MOSトランジスタで構成されることを特徴とする請求項3〜8の何れかの請求項記載の電源瞬断防止方式。   The changeover switch is composed of two P-channel MOS transistors in which a drain-source current path is connected in series between the internal battery and the external battery and a power supply line, and a gate is controlled by the control circuit. The instantaneous power interruption prevention method according to any one of claims 3 to 8.
JP2004335129A 2004-11-18 2004-11-18 Power supply instantaneous shutoff prevention system Pending JP2006149078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335129A JP2006149078A (en) 2004-11-18 2004-11-18 Power supply instantaneous shutoff prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335129A JP2006149078A (en) 2004-11-18 2004-11-18 Power supply instantaneous shutoff prevention system

Publications (1)

Publication Number Publication Date
JP2006149078A true JP2006149078A (en) 2006-06-08

Family

ID=36628121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335129A Pending JP2006149078A (en) 2004-11-18 2004-11-18 Power supply instantaneous shutoff prevention system

Country Status (1)

Country Link
JP (1) JP2006149078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282305B1 (en) 2013-03-20 2013-07-10 (주)이씨스 Multi-terminal assembly with uninterruptible power supply function
JP2013207998A (en) * 2012-03-29 2013-10-07 Asahi Kasei Electronics Co Ltd Voltage switching circuit
DE112017006039T5 (en) 2016-12-27 2019-09-05 Fujifilm Corporation ELECTRONIC DEVICE, IMAGE RECORDING DEVICE AND METHOD FOR CHANGING OR BZW. SWITCHING ON A POWER SOURCE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207998A (en) * 2012-03-29 2013-10-07 Asahi Kasei Electronics Co Ltd Voltage switching circuit
KR101282305B1 (en) 2013-03-20 2013-07-10 (주)이씨스 Multi-terminal assembly with uninterruptible power supply function
DE112017006039T5 (en) 2016-12-27 2019-09-05 Fujifilm Corporation ELECTRONIC DEVICE, IMAGE RECORDING DEVICE AND METHOD FOR CHANGING OR BZW. SWITCHING ON A POWER SOURCE
US10644533B2 (en) 2016-12-27 2020-05-05 Fujifilm Corporation Electronic device, imaging apparatus, and method of switching power source
DE112017006039B4 (en) 2016-12-27 2023-04-27 Fujifilm Corporation SWITCHING ELECTRONIC DEVICE, IMAGE CAPTURE DEVICE AND METHOD SWITCHING A POWER SOURCE

Similar Documents

Publication Publication Date Title
US11108246B2 (en) Charging system and charging circuit thereof
US7812582B2 (en) System and method of power distribution control of an integrated circuit
WO2010074055A1 (en) Power supply device
US7759915B2 (en) System with linear and switching regulator circuits
CN100430855C (en) Constant voltage power supply
US20190222047A1 (en) Fast charging circuit
KR100480261B1 (en) Apparatus for supplying power to mobile phone using earphone-microphone connector
KR20110080672A (en) A circuit for power supply and supplying method thereof
EP1646123A1 (en) Switching device and protection circuit using the same
US7834588B2 (en) Charging device capable of providing backflow current and inrush current protection
JP4221665B2 (en) Mobile terminal device
US7482877B2 (en) Power protecting apparatus and method for power amplifier
EP2025059B1 (en) System and method of power distribution control of an integrated circuit
JP2006149078A (en) Power supply instantaneous shutoff prevention system
US7482781B2 (en) Controlling power supply between a voltage generator, a load and a rechargeable battery
KR101332039B1 (en) Power generating circuit and switching circuit having the same
JP2006081369A (en) Electronic equipment
JP2005045873A (en) Power supply
US10228660B2 (en) Electronic apparatus and control method
JP2005261142A (en) Charging circuit
JP2005287171A (en) Power unit for portable equipment, and method of power for portable equipment
US8238981B2 (en) Managing power supply transients
JPH11289689A (en) Power supply switch circuit and portable telephone
KR100379616B1 (en) Backup Battery Power Circuit Of Mibile Telephone
JP2006296044A (en) Pulse signal output circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091009

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104