JP2006147342A - Fuel cell cooling system - Google Patents

Fuel cell cooling system Download PDF

Info

Publication number
JP2006147342A
JP2006147342A JP2004335624A JP2004335624A JP2006147342A JP 2006147342 A JP2006147342 A JP 2006147342A JP 2004335624 A JP2004335624 A JP 2004335624A JP 2004335624 A JP2004335624 A JP 2004335624A JP 2006147342 A JP2006147342 A JP 2006147342A
Authority
JP
Japan
Prior art keywords
cooling water
ion filter
passing
conductivity
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004335624A
Other languages
Japanese (ja)
Inventor
Hidetaka Nishimura
英高 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004335624A priority Critical patent/JP2006147342A/en
Publication of JP2006147342A publication Critical patent/JP2006147342A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To correctly calculate a utilization rate of an ion exchange resin with a simple system constitution. <P>SOLUTION: A controller 10 switches a flow passage of cooling water to be branched into a bypass flow passage 6 before passing through an ion filter 4 and that after passing through the ion filter, measures the conductivity of the cooling water before passing through the ion filter 4 and that of the cooling water after passing through the ion filter 4, calculates a reduction rate of the conductivity depending on a result of the measurement, and calculates the utilization rate of the ion exchange resin depending on the result of above calculation. By the above, the utilization rate of the ion exchange resin can be correctly calculated with a simple system constitution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システムから冷却水中に溶出したイオンを除去するイオンフィルタを備える燃料電池冷却システムに関する。   The present invention relates to a fuel cell cooling system including an ion filter that removes ions eluted from a fuel cell system into cooling water.

一般に、燃料電池に冷却水を供給することにより燃料電池を冷却する燃料電池冷却システムが知られており、このようなシステムでは、冷却水を介した液絡減少を防止するために、システムから冷却水中に溶出したイオンをイオンフィルタ内部のイオン交換樹脂に吸着させることによって冷却水の電気的絶縁性を維持している。ところで、イオンフィルタ内部のイオン交換樹脂は、通常、冷却水中に溶出したイオンを吸着するのに従って徐々にイオン吸着能力を失っていく。このような背景から、従来までの燃料電池冷却システムでは、冷却水流路に冷却水の導電率を測定する導電率計を設けて冷却水の導電率の減少速度に従ってイオン交換樹脂の使用率を算出したり、イオンフィルタの前後に導電率計を設けてイオンフィルタ通過前後の冷却水の導電率変化に従ってイオン交換樹脂の使用率を算出している(例えば、特許文献1を参照)。
特開2003−346845号公報
In general, a fuel cell cooling system that cools a fuel cell by supplying cooling water to the fuel cell is known, and in such a system, cooling is performed from the system in order to prevent liquid junction reduction through the cooling water. The electrical insulation of the cooling water is maintained by adsorbing ions eluted in the water to the ion exchange resin inside the ion filter. By the way, the ion exchange resin inside the ion filter usually gradually loses the ion adsorption ability as it adsorbs ions eluted in the cooling water. Against this background, in conventional fuel cell cooling systems, a conductivity meter that measures the conductivity of the cooling water is provided in the cooling water flow path, and the usage rate of the ion exchange resin is calculated according to the decreasing rate of the cooling water conductivity. Alternatively, a conductivity meter is provided before and after the ion filter, and the usage rate of the ion exchange resin is calculated according to the change in the conductivity of the cooling water before and after passing through the ion filter (see, for example, Patent Document 1).
JP 2003-346845 A

しかしながら、一般に、燃料電池システムから冷却水中に溶出するイオンの量は、システムを構成する部品の温度,部品に接触する際の冷却水の導電率,冷却水温度,及び冷却水流量等の様々な要素に依存すると共に、起動時等のシステムの動作状態が非定常状態にある場合には、冷却水の導電率の減少速度も非定常状態になる。従って、冷却水の導電率の減少速度に従ってイオン交換樹脂の使用率を算出する場合には、イオン交換樹脂の使用率を正確に算出することはできない。また、イオンフィルタの前後に導電率計を設けてイオンフィルタ通過前後の冷却水の導電率変化に従ってイオン交換樹脂の使用率を算出する場合には、イオンフィルタ前後に導電率計を設ける必要があるために、システム構成が複雑になる。   However, in general, the amount of ions eluted from the fuel cell system into the cooling water varies depending on various temperatures such as the temperature of parts constituting the system, the conductivity of the cooling water when contacting the parts, the cooling water temperature, and the cooling water flow rate. Depending on the factors, when the operating state of the system such as startup is in an unsteady state, the rate of decrease in the conductivity of the cooling water also becomes unsteady. Therefore, when the usage rate of the ion exchange resin is calculated according to the decreasing rate of the conductivity of the cooling water, the usage rate of the ion exchange resin cannot be calculated accurately. In addition, when a conductivity meter is provided before and after the ion filter and the usage rate of the ion exchange resin is calculated according to the change in conductivity of the cooling water before and after passing through the ion filter, it is necessary to provide a conductivity meter before and after the ion filter. This complicates the system configuration.

本発明は、上述の課題を解決するためになされたものであり、その目的は、簡単なシステム構成でイオン交換樹脂の使用率を正確に算出することが可能な燃料電池冷却システムを提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a fuel cell cooling system capable of accurately calculating the usage rate of an ion exchange resin with a simple system configuration. It is in.

上述の課題を解決するために、本発明に係る燃料電池冷却システムは、燃料電池に冷却水を循環させる冷却水循環流路と、内部にイオン交換樹脂を有し、当該イオン交換樹脂によって冷却水中に含まれるイオンを除去するイオンフィルタと、イオンフィルタの上流側に設けられ、イオンフィルタ通過前の冷却水を冷却水循環流路から分流させる上流側バイパス流路と、イオンフィルタの下流側に設けられ、イオンフィルタ通過後の冷却水を冷却水循環流路から分流させる下流側バイパス流路と、冷却水循環流路から分流された冷却水を冷却水循環流路に戻すバイパス流路と、バイパス流路に流す冷却水を上流側バイパス流路により分流された冷却水と下流側バイパス流路より分流された冷却水との間で切り替える切替弁と、バイパス流路に設けられ、バイパス流路内を流れる冷却水の導電率を測定する導電率計と、切替弁を制御することによりイオンフィルタ通過前の冷却水とイオンフィルタ通過後の冷却水との間でバイパス流路に流す冷却水を交互に切り替え、導電率計を用いてイオンフィルタ通過前及び通過後の冷却水の導電率を比較する制御器とを備える。   In order to solve the above-described problems, a fuel cell cooling system according to the present invention has a cooling water circulation passage for circulating cooling water in a fuel cell, an ion exchange resin inside, and the ion exchange resin in the cooling water. An ion filter for removing ions contained therein, provided on the upstream side of the ion filter, provided on the downstream side of the ion filter, an upstream bypass channel for diverting the cooling water before passing through the ion filter from the cooling water circulation channel, A downstream bypass channel that diverts the cooling water after passing through the ion filter from the cooling water circulation channel, a bypass channel that returns the cooling water divided from the cooling water circulation channel to the cooling water circulation channel, and a cooling that flows through the bypass channel A switching valve for switching water between the cooling water divided by the upstream bypass flow path and the cooling water divided by the downstream bypass flow path, and a bypass flow path And a bypass flow path between the cooling water before passing through the ion filter and the cooling water after passing through the ion filter by controlling the switching valve by measuring the conductivity of the cooling water flowing through the bypass flow path A controller that alternately switches the cooling water to be flown to the battery and compares the conductivity of the cooling water before and after passing through the ion filter using a conductivity meter.

本発明に係る燃料電池冷却システムによれば、イオンフィルタ通過前の冷却水とイオンフィルタ通過後の冷却水との間でバイパス流路に分流させる冷却水を交互に切り替え、バイパス流路を流れる冷却水の導電率を測定することによりイオンフィルタ通過前及び通過後の冷却水の導電率を測定するので、簡単なシステム構成でイオン交換樹脂の使用率を正確に算出することができる。   According to the fuel cell cooling system of the present invention, the cooling water to be diverted into the bypass flow path is alternately switched between the cooling water before passing through the ion filter and the cooling water after passing through the ion filter, and the cooling flowing through the bypass flow path is performed. Since the conductivity of the cooling water before and after passing through the ion filter is measured by measuring the water conductivity, the usage rate of the ion exchange resin can be accurately calculated with a simple system configuration.

以下、図面を参照して、本発明の第1,第2の実施形態となる燃料電池冷却システムの構成と動作について説明する。   Hereinafter, the configuration and operation of the fuel cell cooling system according to the first and second embodiments of the present invention will be described with reference to the drawings.

始めに、本発明の第1の実施形態となる燃料電池冷却システムの構成について説明する。   First, the configuration of the fuel cell cooling system according to the first embodiment of the present invention will be described.

〔燃料電池冷却システムの構成〕
本発明の第1の実施形態となる燃料電池冷却システムは、車両に搭載され、図1に示すように、燃料ガス及び酸化剤ガスの供給を受けて発電する燃料電池が複数積層された燃料電池スタック1を冷却するための冷却水を循環させる冷却水循環流路2と、冷却水を燃料電池スタック1に圧送する冷却水ポンプ3と、冷却水循環流路2内の冷却水中に含まれるイオンを除去するイオンフィルタ4と、冷却水循環流路2内の冷却水を冷却するラジエータ5とを主な構成要素として備える。また、この燃料電池冷却システムは、イオンフィルタ4通過前及び通過後の冷却水をバイパス流路6を介して冷却水ポンプ3の上流側に分流させるためのバイパス流路7a,7bと、バイパス流路7a,7bからバイパス流路6に分流される冷却水の流量を調整するためのバルブ8a,8bと、冷却水流路6内を流れる冷却水の導電率を測定するための導電率計9を備える。なお、詳しくは後述するが、バイパス流路6,7a,7bはイオンフィルタ4の通過前及び通過後の冷却水の導電率を測定するためのものであるので、バイパス流路6,7a,7bには、システムの圧力損失に影響を与えない程度の小流量の冷却水が流れるものとする。そして、このような構成を有する燃料電池冷却システムでは、制御器10が以下に示す使用率算出処理を実行することにより、イオンフィルタ4内部のイオン交換樹脂の使用率を正確に算出する。以下、図2に示すフローチャートを参照して、この使用率算出処理を実行する際の制御器10の動作について説明する。
[Configuration of fuel cell cooling system]
The fuel cell cooling system according to the first embodiment of the present invention is mounted on a vehicle and, as shown in FIG. 1, a fuel cell in which a plurality of fuel cells that generate power upon receipt of fuel gas and oxidant gas are stacked. A cooling water circulation channel 2 for circulating cooling water for cooling the stack 1, a cooling water pump 3 for pumping the cooling water to the fuel cell stack 1, and ions contained in the cooling water in the cooling water circulation channel 2 are removed. An ion filter 4 that performs cooling and a radiator 5 that cools the cooling water in the cooling water circulation passage 2 are provided as main components. Further, this fuel cell cooling system includes bypass flow paths 7a and 7b for diverting the cooling water before and after passing through the ion filter 4 to the upstream side of the cooling water pump 3 via the bypass flow path 6, and the bypass flow. Valves 8a and 8b for adjusting the flow rate of the cooling water diverted from the paths 7a and 7b to the bypass flow path 6, and a conductivity meter 9 for measuring the conductivity of the cooling water flowing in the cooling water flow path 6 are provided. Prepare. Although details will be described later, the bypass channels 6, 7a, 7b are for measuring the conductivity of the cooling water before and after passing through the ion filter 4, and therefore, the bypass channels 6, 7a, 7b. It is assumed that cooling water with a small flow rate that does not affect the pressure loss of the system flows. In the fuel cell cooling system having such a configuration, the controller 10 accurately calculates the usage rate of the ion exchange resin inside the ion filter 4 by executing the usage rate calculation process shown below. Hereinafter, with reference to the flowchart shown in FIG. 2, the operation of the controller 10 when executing the usage rate calculation process will be described.

〔使用率算出処理〕
図2に示すフローチャートは、燃料電池スタック1が起動されるのに応じて開始となり、この使用率算出処理はステップS1の処理に進む。なお、この使用率算出処理は所定制御周期毎に繰り返し実行されるものとする。
[Usage calculation processing]
The flowchart shown in FIG. 2 starts when the fuel cell stack 1 is activated, and the usage rate calculation process proceeds to the process of step S1. Note that this usage rate calculation process is repeatedly executed every predetermined control period.

ステップS1の処理では、制御器10が、バルブ8a,8bをそれぞれ開状態及び閉状態に制御することにより、イオンフィルタ4通過前の冷却水の一部をバイパス流路7a及びバイパス流路6側に分流させる。これにより、このステップS1の処理は完了し、この算出処理はステップS2の処理に進む。   In the process of step S1, the controller 10 controls the valves 8a and 8b to be in an open state and a closed state, respectively, so that a part of the cooling water before passing through the ion filter 4 is on the bypass flow path 7a and bypass flow path 6 side. To divert. Thereby, the process of step S1 is completed, and the calculation process proceeds to the process of step S2.

ステップS2の処理では、制御器10が、導電率計9によって数秒等の所定時間の間イオンフィルタ4通過前の冷却水の導電率を測定し、測定された導電率の平均値C1を算出,記憶する。具体的には、冷却水ポンプ3によって20[L]の冷却水を120[L/min]の流量で冷却水循環流路2に循環させる場合、制御器10は、図3に示す時刻t1から時刻t2までの間(この例の場合3[秒]程度)、イオンフィルタ4通過前の冷却水の導電率(導電率In)を測定し、測定された導電率の平均値C1を算出,記憶する。これにより、このステップS2の処理は完了し、この算出処理はステップS3の処理に進む。   In the process of step S2, the controller 10 measures the conductivity of the cooling water before passing through the ion filter 4 for a predetermined time such as several seconds by the conductivity meter 9, and calculates the average value C1 of the measured conductivity. Remember. Specifically, when the cooling water pump 3 circulates 20 [L] of cooling water at a flow rate of 120 [L / min] through the cooling water circulation passage 2, the controller 10 starts from time t <b> 1 shown in FIG. 3. Until t2 (in this case, about 3 [seconds]), the conductivity (conductivity In) of the cooling water before passing through the ion filter 4 is measured, and the average value C1 of the measured conductivity is calculated and stored. . Thereby, the process of step S2 is completed, and the calculation process proceeds to the process of step S3.

ステップS3の処理では、制御器10が、冷却水ポンプ3の回転数に基づいて冷却水循環流路2を流れる冷却水の流量を推定し、推定結果を用いて冷却水がイオンフィルタ4を通過するために要する時間(イオンフィルタ通過時間)を算出する。なお、図3に示す例ではイオンフィルタ通過時間は4[秒]であるとする。これにより、このステップS3の処理は完了し、この算出処理はステップS4の処理に進む。   In the process of step S3, the controller 10 estimates the flow rate of the cooling water flowing through the cooling water circulation passage 2 based on the rotation speed of the cooling water pump 3, and the cooling water passes through the ion filter 4 using the estimation result. The time required for this (ion filter passage time) is calculated. In the example shown in FIG. 3, it is assumed that the ion filter passage time is 4 [seconds]. Thereby, the process of step S3 is completed, and the calculation process proceeds to the process of step S4.

ステップS4の処理では、制御器10が、イオンフィルタ4通過前の冷却水の導電率の測定開始からステップS3の処理により算出されたイオンフィルタ通過時間が経過したか否かを判別する。そして、イオンフィルタ通過時間が経過するのに応じて、制御器10は算出処理をステップS5の処理に進める。   In the process of step S4, the controller 10 determines whether or not the ion filter passage time calculated by the process of step S3 has elapsed since the start of measurement of the conductivity of the cooling water before passing the ion filter 4. And according to passage of ion filter passage time, controller 10 advances calculation processing to processing of Step S5.

ステップS5の処理では、制御器10が、バルブ8a,8bをそれぞれ閉状態及び開状態に制御することにより、イオンフィルタ4通過後の冷却水の一部をバイパス流路7b及びバイパス流路6側に分流させる。これにより、このステップS5の処理は完了し、この算出処理はステップS6の処理に進む。   In the process of step S5, the controller 10 controls the valves 8a and 8b to be in a closed state and an open state, respectively, so that part of the cooling water after passing through the ion filter 4 is on the bypass flow path 7b and bypass flow path 6 side. To divert. Thereby, the process of step S5 is completed, and the calculation process proceeds to the process of step S6.

ステップS6の処理では、制御器10が、導電率計9を介して数秒等の所定時間の間イオンフィルタ4通過後の冷却水の導電率を測定し、測定された導電率の平均値C2を算出,記憶する。具体的には、図3に示す例では、制御器10は、時刻t1からイオンフィルタ通過時間(4[秒])が経過した時刻t3から時刻t4までの間(この例の場合3[秒]程度)、イオンフィルタ4通過後の冷却水の導電率(導電率out)を測定し、測定された導電率の平均値C2を算出,記憶する。。これにより、このステップS6の処理は完了し、この算出処理はステップS7の処理に進む。   In the process of step S6, the controller 10 measures the conductivity of the cooling water after passing through the ion filter 4 through the conductivity meter 9 for a predetermined time such as several seconds, and calculates the average value C2 of the measured conductivity. Calculate and store. Specifically, in the example illustrated in FIG. 3, the controller 10 performs the period from time t3 to time t4 when the ion filter passage time (4 [seconds]) has elapsed from time t1 (in this example, 3 [seconds]). Degree), the conductivity (conductivity out) of the cooling water after passing through the ion filter 4 is measured, and an average value C2 of the measured conductivity is calculated and stored. . Thereby, the process of step S6 is completed, and the calculation process proceeds to the process of step S7.

ステップS7の処理では、制御器10が、上記ステップS2及びステップS6の処理により算出された平均値C1,C2を用いて冷却水の導電率の減少率C2/C1を算出する。そして、一般に、イオン交換樹脂は、図4に示すように、使用率(時間)が長くなるのに応じて導電率の減少率が小さくなる特性を有するので、制御器10は、図5に示すようなイオン交換樹脂使用率の増加に伴い減少率が低下するマップを参照して、算出された減少率C2/C1に対応するイオン交換樹脂使用率を算出する。なお、図3に示す例では、減少率は50[%]程度であるので、制御器10は、図5に示すマップを参照してイオン交換樹脂使用率を80[%]程度に見積もる。これにより、このステップS7の処理は完了し、この算出処理はステップS8の処理に進む。   In the process of step S7, the controller 10 calculates the reduction rate C2 / C1 of the conductivity of the cooling water using the average values C1 and C2 calculated by the processes of step S2 and step S6. In general, as shown in FIG. 4, the ion exchange resin has a characteristic that the decrease rate of the conductivity decreases as the usage rate (time) increases, so that the controller 10 is illustrated in FIG. 5. The ion exchange resin usage rate corresponding to the calculated reduction rate C2 / C1 is calculated with reference to a map in which the reduction rate decreases as the ion exchange resin usage rate increases. In the example shown in FIG. 3, the reduction rate is about 50 [%], so the controller 10 estimates the ion exchange resin usage rate to about 80 [%] with reference to the map shown in FIG. 5. Thereby, the process of step S7 is completed, and the calculation process proceeds to the process of step S8.

ステップS8の処理では、制御器10が、ステップS7の処理により算出されたイオン交換樹脂使用率が所定値(例えば80%)以下であるか否かを判別する。そして、判別の結果、イオン交換樹脂使用率が所定値以下である場合、制御器10は一連の算出処理を終了する。一方、イオン交換樹脂使用率が所定値以下でない場合には、制御器10はステップS9の処理としてイオン交換樹脂の交換をユーザに指示した後、一連の算出処理は終了する。   In the process of step S8, the controller 10 determines whether or not the ion exchange resin usage rate calculated by the process of step S7 is a predetermined value (for example, 80%) or less. If the ion exchange resin usage rate is equal to or less than the predetermined value as a result of the determination, the controller 10 ends the series of calculation processes. On the other hand, when the ion exchange resin usage rate is not less than or equal to the predetermined value, the controller 10 instructs the user to replace the ion exchange resin as the process of step S9, and then the series of calculation processes ends.

以上の説明から明らかなように、本発明の第1の実施形態となる燃料電池冷却システムによれば、制御器10が、イオンフィルタ4通過前及び通過後の冷却水との間でバイパス流路6に分流させる冷却水を切り替え、導電計9を用いてイオンフィルタ4通過前及び通過後の冷却水の導電率を測定し、測定結果に基づいて導電率の減少率を算出し、算出結果に基づいてイオン交換樹脂の使用率を算出するので、簡単なシステム構成でイオン交換樹脂の使用率を正確に算出することができる。   As is apparent from the above description, according to the fuel cell cooling system according to the first embodiment of the present invention, the controller 10 bypasses the cooling water before and after passing the ion filter 4. The cooling water to be diverted to 6 is switched, the conductivity of the cooling water before and after passing the ion filter 4 is measured using the conductivity meter 9, and the reduction rate of the conductivity is calculated based on the measurement result. Since the usage rate of the ion exchange resin is calculated based on this, the usage rate of the ion exchange resin can be accurately calculated with a simple system configuration.

次に、本発明の第2の実施形態となる燃料電池冷却システムの構成について説明する。   Next, the configuration of the fuel cell cooling system according to the second embodiment of the present invention will be described.

〔燃料電池冷却システムの構成〕
本発明の第2の実施形態となる燃料電池冷却システムは、図6に示すように、上記第1の実施形態となる燃料電池冷却システムの構成に加えて、冷却水循環流路2内の冷却水流量を検出する流量センサ11が設けられている。そして、このような構成を有する燃料電池冷却システムでは、制御器10が以下に示す使用率算出処理を実行する。以下、図7に示すフローチャートを参照して、この使用率算出処理を実行する際の制御器10の動作について説明する。
[Configuration of fuel cell cooling system]
As shown in FIG. 6, the fuel cell cooling system according to the second embodiment of the present invention includes cooling water in the cooling water circulation passage 2 in addition to the configuration of the fuel cell cooling system according to the first embodiment. A flow sensor 11 for detecting the flow rate is provided. And in the fuel cell cooling system which has such a structure, the controller 10 performs the usage rate calculation process shown below. Hereinafter, with reference to the flowchart shown in FIG. 7, the operation of the controller 10 when executing the usage rate calculation process will be described.

〔使用率算出処理〕
図7に示すフローチャートは、燃料電池スタック1が起動されるのに応じて開始となり、この使用率算出処理はステップS11の処理に進む。なお、図7に示すステップS11,S12及びステップS15乃至ステップS19の処理は、図2に示すステップS1,S2及びステップS5乃至ステップS9の処理と同じであるので、以下ではステップS13の処理を実行する際の制御器10の動作についてのみ説明する。
[Usage calculation processing]
The flowchart shown in FIG. 7 starts when the fuel cell stack 1 is activated, and the usage rate calculation process proceeds to the process of step S11. 7 are the same as the processes in steps S1, S2 and S5 to S9 shown in FIG. 2, and therefore the process in step S13 is executed below. Only the operation of the controller 10 at the time will be described.

ステップS13の処理では、制御器10が、流量センサ11を用いて冷却水循環流路2を流れる冷却水の流量を検出し、検出結果を用いて冷却水がイオンフィルタ4を通過するために要する時間(イオンフィルタ通過時間)を算出する。これにより、このステップS13の処理は完了し、この算出処理はステップS14の処理に進む。   In the process of step S13, the controller 10 detects the flow rate of the cooling water flowing through the cooling water circulation channel 2 using the flow rate sensor 11, and the time required for the cooling water to pass through the ion filter 4 using the detection result. (Ion filter passage time) is calculated. Thereby, the process of step S13 is completed, and the calculation process proceeds to the process of step S14.

以上の説明から明らかなように、本発明の第2の実施形態となる燃料電池冷却システムによれば、制御器10は、流量センサ11を用いて冷却水循環流路2を流れる冷却水の流量を検出し、検出結果を用いてイオンフィルタ通過時間を算出するので、イオンフィルタ4の目詰まり等の原因によってシステムの圧力損失が変動した場合であっても、冷却水循環流路2を流れる冷却水の流量を正確に測定し、イオンフィルタ通過時間を正確に算出することができる。   As is clear from the above description, according to the fuel cell cooling system according to the second embodiment of the present invention, the controller 10 uses the flow sensor 11 to change the flow rate of the cooling water flowing through the cooling water circulation passage 2. Since the detection time is detected and the ion filter passage time is calculated, even when the pressure loss of the system fluctuates due to clogging of the ion filter 4 or the like, the cooling water flowing through the cooling water circulation passage 2 is detected. The flow rate can be accurately measured, and the ion filter passage time can be accurately calculated.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

本発明の第1の実施形態となる燃料電池冷却システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell cooling system used as the 1st Embodiment of this invention. 本発明の第1の実施形態となる使用率算出処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the usage rate calculation process used as the 1st Embodiment of this invention. イオンフィルタ通過前後の冷却水の導電率の変化の様子を示す図である。It is a figure which shows the mode of the change of the electrical conductivity of the cooling water before and behind the ion filter. 使用率の変化に伴うイオンフィルタ通過前後の冷却水の導電率の変化の様子を示す図である。It is a figure which shows the mode of the electrical conductivity change of the cooling water before and behind the ion filter accompanying the change of a usage rate. イオン交換樹脂使用率と導電率減少率の関係を示すマップ図である。It is a map figure which shows the relationship between an ion exchange resin usage rate and a conductivity decreasing rate. 本発明の第2の実施形態となる燃料電池冷却システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell cooling system used as the 2nd Embodiment of this invention. 本発明の第2の実施形態となる使用率算出処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the usage rate calculation process used as the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1:燃料電池スタック
2:冷却水流路
3:冷却水ポンプ
4:イオンフィルタ
5:ラジエータ
6,7a,7b:バイパス流路
8a,8b:バルブ
9:導電率計
10:制御器
11:流量センサ
1: Fuel cell stack 2: Cooling water channel 3: Cooling water pump 4: Ion filter 5: Radiators 6, 7a, 7b: Bypass channels 8a, 8b: Valve 9: Conductivity meter 10: Controller 11: Flow sensor

Claims (4)

燃料電池に冷却水を循環させる冷却水循環流路と、
内部にイオン交換樹脂を有し、当該イオン交換樹脂によって冷却水中に含まれるイオンを除去するイオンフィルタと、
前記イオンフィルタの上流側に設けられ、前記イオンフィルタ通過前の冷却水を前記冷却水循環流路から分流させる上流側バイパス流路と、
前記イオンフィルタの下流側に設けられ、前記イオンフィルタ通過後の冷却水を前記冷却水循環流路から分流させる下流側バイパス流路と、
前記冷却水循環流路から分流された冷却水を前記冷却水循環流路に戻すバイパス流路と、
前記バイパス流路に流す冷却水を前記上流側バイパス流路により分流された冷却水と前記下流側バイパス流路より分流された冷却水との間で切り替える切替弁と、
前記バイパス流路に設けられ、バイパス流路内を流れる冷却水の導電率を測定する導電率計と、
前記切替弁を制御することにより前記イオンフィルタ通過前の冷却水とイオンフィルタ通過後の冷却水との間で前記バイパス流路に流す冷却水を交互に切り替え、前記導電率計を用いてイオンフィルタ通過前及び通過後の冷却水の導電率を比較する制御器と
を備えることを特徴とする燃料電池冷却システム。
A coolant circulation path for circulating coolant in the fuel cell;
An ion filter having an ion exchange resin therein and removing ions contained in the cooling water by the ion exchange resin;
An upstream bypass channel that is provided upstream of the ion filter and diverts the cooling water before passing through the ion filter from the cooling water circulation channel;
A downstream bypass flow path that is provided on the downstream side of the ion filter and diverts the cooling water that has passed through the ion filter from the cooling water circulation flow path;
A bypass flow path for returning the cooling water diverted from the cooling water circulation flow path to the cooling water circulation flow path;
A switching valve that switches between cooling water flowing through the bypass flow path and cooling water branched by the upstream bypass flow path and cooling water branched from the downstream bypass flow path;
A conductivity meter that is provided in the bypass channel and measures the conductivity of the cooling water flowing in the bypass channel;
By controlling the switching valve, the cooling water flowing through the bypass channel is alternately switched between the cooling water before passing through the ion filter and the cooling water after passing through the ion filter, and the ion filter is used using the conductivity meter. A fuel cell cooling system comprising: a controller for comparing conductivity of cooling water before and after passing.
請求項1に記載の燃料電池冷却システムであって、
前記制御器は、イオンフィルタ通過前の冷却水を前記バイパス流路に流し、前記導電率計を用いてイオンフィルタ通過前の冷却水の導電率を測定し、冷却水がイオンフィルタを通過した後に、イオンフィルタ通過後の冷却水をバイパス流路に流し、導電率計を用いてイオンフィルタ通過後の冷却水の導電率を測定し、測定結果に基づいてイオンフィルタ通過前後の導電率の減少率を算出し、算出された減少率に基づいてイオン交換樹脂の使用率を算出することを特徴とする燃料電池冷却システム。
The fuel cell cooling system according to claim 1,
The controller causes the cooling water before passing through the ion filter to flow through the bypass flow path, measures the conductivity of the cooling water before passing through the ion filter using the conductivity meter, and after the cooling water passes through the ion filter. Then, the cooling water after passing through the ion filter is allowed to flow through the bypass channel, and the conductivity of the cooling water after passing through the ion filter is measured using a conductivity meter, and the reduction rate of the conductivity before and after passing through the ion filter based on the measurement result And a usage rate of the ion exchange resin is calculated based on the calculated decrease rate.
請求項2に記載の燃料電池冷却システムであって、
前記冷却水循環流路内で冷却水を循環させる循環ポンプを備え、前記制御器は、前記循環ポンプの動作状態から前記冷却水循環流路内の冷却水の流量を推定し、推定結果に基づいて冷却水が前記イオンフィルタを通過するために要する時間をイオンフィルタ通過時間として算出し、イオンフィルタ通過前の冷却水を前記バイパス流路に流してからイオンフィルタ通過時間が経過後、イオンフィルタ通過後の冷却水を前記バイパス流路に流すことを特徴とする燃料電池冷却システム。
The fuel cell cooling system according to claim 2,
A circulation pump for circulating cooling water in the cooling water circulation channel is provided, and the controller estimates a flow rate of the cooling water in the cooling water circulation channel from an operation state of the circulation pump, and cools based on the estimation result. The time required for water to pass through the ion filter is calculated as the ion filter passage time. After passing the cooling water before passing the ion filter to the bypass flow path, A fuel cell cooling system, wherein cooling water is allowed to flow through the bypass channel.
請求項2に記載の燃料電池冷却システムであって、
前記冷却水循環流路内の冷却水の流量を測定する流量センサを備え、前記制御器は、前記流量センサにより検出された流量を用いて冷却水が前記イオンフィルタを通過するために要する時間をイオンフィルタ通過時間として算出し、イオンフィルタ通過前の冷却水を前記バイパス流路に流してからイオンフィルタ通過時間が経過後、イオンフィルタ通過後の冷却水を前記バイパス流路に流すことを特徴とする燃料電池冷却システム。
The fuel cell cooling system according to claim 2,
The flow rate sensor for measuring the flow rate of the cooling water in the cooling water circulation flow path is provided, and the controller uses the flow rate detected by the flow rate sensor to ionize the time required for the cooling water to pass through the ion filter. It is calculated as a filter passage time, and after passing the ion filter passage time after flowing the cooling water before passing the ion filter to the bypass passage, the cooling water after passing the ion filter is caused to flow to the bypass passage. Fuel cell cooling system.
JP2004335624A 2004-11-19 2004-11-19 Fuel cell cooling system Pending JP2006147342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335624A JP2006147342A (en) 2004-11-19 2004-11-19 Fuel cell cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335624A JP2006147342A (en) 2004-11-19 2004-11-19 Fuel cell cooling system

Publications (1)

Publication Number Publication Date
JP2006147342A true JP2006147342A (en) 2006-06-08

Family

ID=36626782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335624A Pending JP2006147342A (en) 2004-11-19 2004-11-19 Fuel cell cooling system

Country Status (1)

Country Link
JP (1) JP2006147342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752742A (en) * 2013-12-30 2015-07-01 现代自动车株式会社 Temperature management system of fuel cell vehicle and method thereof
CN110875484A (en) * 2018-09-04 2020-03-10 现代自动车株式会社 System and method for maintaining insulation resistance of fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752742A (en) * 2013-12-30 2015-07-01 现代自动车株式会社 Temperature management system of fuel cell vehicle and method thereof
CN110875484A (en) * 2018-09-04 2020-03-10 现代自动车株式会社 System and method for maintaining insulation resistance of fuel cell

Similar Documents

Publication Publication Date Title
KR101909338B1 (en) Fuel cell system
JP2002313377A (en) Conductivity controlling device of fuel cell system
EP1442492B1 (en) Fuel cell startup method
JP2018106900A (en) Fuel cell cooling system
JP6802984B2 (en) Fuel cell cooling system
JP2003346845A (en) Cooling device of fuel cell
JP2006147342A (en) Fuel cell cooling system
JP5342223B2 (en) Cooling device for fuel cell system
JP6323344B2 (en) Fuel cell system
JP2008210646A (en) Fuel cell system
JP2008226810A (en) Fuel cell power generation system
JP2010192141A (en) Coolant circuit system
JP2007157616A (en) Heat medium control system, heating control system, and fuel cell vehicle
JP2007311087A (en) Fuel cell system, and ion removal method in cooling system in the same
JP2005158431A (en) Fuel cell system
EP3767724B1 (en) Fuel cell system
JP7320549B2 (en) fuel cell system
JP2010129276A (en) Fuel cell system
JP2004152592A (en) Fuel cell system
JP2006134805A (en) Fuel cell system
KR101766093B1 (en) Filter for fuel cell
JP2009151992A (en) Fuel cell system
JP2004281110A (en) Fuel cell system
JP2010113981A (en) Fuel cell power generation system
JP5380935B2 (en) Fuel cell system