JP2006147194A - Waste liquid disposal method, waste liquid disposal device, and hydrogen generator - Google Patents

Waste liquid disposal method, waste liquid disposal device, and hydrogen generator Download PDF

Info

Publication number
JP2006147194A
JP2006147194A JP2004332279A JP2004332279A JP2006147194A JP 2006147194 A JP2006147194 A JP 2006147194A JP 2004332279 A JP2004332279 A JP 2004332279A JP 2004332279 A JP2004332279 A JP 2004332279A JP 2006147194 A JP2006147194 A JP 2006147194A
Authority
JP
Japan
Prior art keywords
waste liquid
aqueous solution
organic acid
hydrogen
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004332279A
Other languages
Japanese (ja)
Inventor
Seijiro Suda
精二郎 須田
Masaki Uchida
雅樹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Materials & Energy Res Inst To
Materials and Energy Research Institute Tokyo MERIT Ltd
Original Assignee
Materials & Energy Res Inst To
Materials and Energy Research Institute Tokyo MERIT Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materials & Energy Res Inst To, Materials and Energy Research Institute Tokyo MERIT Ltd filed Critical Materials & Energy Res Inst To
Priority to JP2004332279A priority Critical patent/JP2006147194A/en
Publication of JP2006147194A publication Critical patent/JP2006147194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain an increase in the size of a vessel for containing waste a liquid through by restraining a degree of the increase of the waste liquid caused by a neutralizing agent, in performing the neutralization treatment of the waste liquid after an alkaline water solution of, that is, a hydrogenated complex compound of boron is used for a fuel cell or for the generation of hydrogen. <P>SOLUTION: There is used for an alkaline water solution a solid organic acid whose pH is 3 or less when formed into a saturated solution, which is for example, a powdery citric acid, a tartaric acid, and an acetic acid. The waste liquid disposal device or the hydrogen generator is so constituted that the neutralizing agent is stored in a manner isolated from a container containing the waste liquid, and the neutralization agent and the waste liquid are mixed when the isolation is released. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素化ホウ素錯化合物のアルカリ水溶液を燃料電池あるいは水素発生に用いた後の廃液であるアルカリ水溶液を中和処理する廃液処理方法、廃液処理装置及び使用済みのアルカリ水溶液を中和処理できる水素発生器に関する。   The present invention relates to a waste liquid treatment method, a waste liquid treatment apparatus, and a used alkaline aqueous solution for neutralizing a waste aqueous solution that is a waste liquid after using an alkaline aqueous solution of a borohydride complex compound for fuel cell or hydrogen generation. The present invention relates to a hydrogen generator that can be used.

テトラヒドロホウ酸塩例えば水素化ホウ素ナトリウム(NaBH4)などの金属水素錯化合物は、水酸化ナトリウム(NaOH)などのアルカリ水溶液中において性状が安定しているため、ボロハイドライド燃料電池(以下、燃料電池という。)に供給する燃料液として用いられ(例えば、特許文献1参照。)、あるいは触媒体に接触させて水素を発生させるための液体の水素発生剤として用いられている(例えば、特許文献2参照。)。この種の燃料電池や水素発生器としては、小型で使い勝手のよいものが要求されている。燃料電池については、通常燃料電池本体とその外部の容器との間で燃料液を循環させているが、反応が進んで使用できなくなった廃液は前記容器に回収され、新しい燃料液が入った容器と交換される。また水素発生器については、アルカリ水溶液を収納する収納部と触媒体収納部とを組み合わせた小型の使い捨て水素発生器が検討されている。   Metal hydride complex compounds such as tetrahydroborate such as sodium borohydride (NaBH4) are stable in an alkaline aqueous solution such as sodium hydroxide (NaOH), and therefore, borohydride fuel cells (hereinafter referred to as fuel cells). (See, for example, Patent Document 1), or as a liquid hydrogen generator for generating hydrogen by contacting the catalyst body (see, for example, Patent Document 2). .) As this type of fuel cell or hydrogen generator, a small and easy-to-use one is required. For fuel cells, the fuel liquid is usually circulated between the fuel cell main body and the container outside the fuel cell, but the waste liquid that has become unusable due to the reaction is collected in the container, and a container containing new fuel liquid. To be exchanged. As for the hydrogen generator, a compact disposable hydrogen generator in which a storage part for storing an alkaline aqueous solution and a catalyst body storage part are combined has been studied.

ところで水素化ホウ素錯化合物のアルカリ水溶液を燃料として用いる燃料電池から排出される廃液であるアルカリ水溶液及び水素化ホウ素錯化合物のアルカリ水溶液を前記触媒体に接触させて加水分解反応により水素を発生させた後のアルカリ水溶液からなる廃液は、危険有害物質であり、取り扱い及び保管上の注意を要し、廃棄物としての処理に毒物及び劇物の法律規制を受ける。そのためこれらアルカリ水溶液は、一般に塩酸及び硫酸などの中和溶液で中和して廃棄処理される。   By the way, an alkaline aqueous solution, which is a waste liquid discharged from a fuel cell using an alkaline aqueous solution of borohydride complex as a fuel, and an alkaline aqueous solution of borohydride complex compound were brought into contact with the catalyst body to generate hydrogen by a hydrolysis reaction. The later waste liquid composed of alkaline aqueous solution is a hazardous substance, requires care in handling and storage, and is subject to the regulations of poisonous and deleterious substances in its disposal as waste. Therefore, these alkaline aqueous solutions are generally neutralized with a neutralizing solution such as hydrochloric acid and sulfuric acid and discarded.

しかしながら、塩酸及び硫酸などの中和溶液による中和処理では、使用済みのアルカリ水溶液に対してかなり高い比率で中和溶液を加える必要があるため、中和された廃液の量が多くなってしまう。このため燃料電池の燃料を溜める上述の容器が大型化してしまうので燃料電池(燃料電池本体と燃料電池循環系とからなるもの)の小型化が阻まれてしまう。また使い捨ての水素発生器についても水素化ホウ素錯化合物のアルカリ水溶液を収納する収納部の容積として中和溶液の注入量を見込んで設計しなければならないため、やはり小型化が困難になる。そしてまたこうした機器における課題に限らず、例えば上記の容器や収納部内の廃液を別途貯留容器に移し替えて例えば一括して中和処理する場合においても中和後の廃液量が多くなることから、貯留容器が大型化し、広い設置スペースが必要になるし、移動などの取り扱い上においても不便である。以上のような課題は、廃液に対する中和溶液の注入比率が高いところから派生している。さらにまた塩酸や硫酸などの中和溶液は液垂れが起り易いことから取り扱いが不便であるという不利益もある。   However, neutralization with a neutralizing solution such as hydrochloric acid and sulfuric acid requires that the neutralizing solution be added at a considerably high ratio to the used alkaline aqueous solution, which increases the amount of neutralized waste liquid. . For this reason, since the above-mentioned container which stores the fuel of a fuel cell will enlarge, miniaturization of a fuel cell (what consists of a fuel cell main part and a fuel cell circulation system) will be prevented. In addition, the disposable hydrogen generator must be designed in consideration of the injection amount of the neutralization solution as the volume of the storage portion for storing the alkaline aqueous solution of the borohydride complex compound. And not only in the problem in such equipment, but also in the case where, for example, the waste liquid in the container and the storage unit is separately transferred to a storage container and neutralized for example, the amount of waste liquid after neutralization increases. The storage container becomes large, requires a large installation space, and is inconvenient in handling such as movement. The above problems are derived from the high injection ratio of the neutralization solution to the waste solution. Furthermore, neutralization solutions such as hydrochloric acid and sulfuric acid have the disadvantage that they are inconvenient to handle because they tend to spill.

特開2002−246039(請求項1、請求項2、段落0025〜0029)JP 2002-246039 (Claim 1, Claim 2, Paragraphs 0025 to 0029) 特開2001−19401(段落0005、段落0015、段落0025〜0026)JP2001-19401 (paragraph 0005, paragraph 0015, paragraphs 0025-0026)

本発明はこのような事情に鑑みてなされたものであって、その目的は、例えば水素化ホウ素錯化合物のアルカリ水溶液を燃料電池または水素発生器に用いた後の廃液を中和処理するに当たって、取り扱いが簡単であり且つ中和処理に伴う廃液の増加の程度が小さい廃液処理方法及び廃液処理装置を提供することにある。また他の目的は、水素化ホウ素錯化合物のアルカリ水溶液を触媒に接触させて水素ガスを発生させる水素発生器において、コンパクトで且つ水素発生器内において簡単に中和処理することができる水素発生器を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is, for example, in neutralizing the waste liquid after using an alkaline aqueous solution of a borohydride complex compound in a fuel cell or a hydrogen generator. An object of the present invention is to provide a waste liquid treatment method and a waste liquid treatment apparatus that are easy to handle and have a small degree of increase in waste liquid due to neutralization. Another object of the present invention is to provide a hydrogen generator that generates hydrogen gas by bringing an alkaline aqueous solution of a borohydride complex into contact with a catalyst. The hydrogen generator is compact and can be easily neutralized in the hydrogen generator. Is to provide.

本発明の廃液処理方法は、水素化ホウ素錯化合物のアルカリ水溶液を燃料液として用いる燃料電池から排出される廃液であるアルカリ水溶液を、飽和溶液としたときにpHが3以下となる固形の有機酸により中和処理することを特徴とする。   The waste liquid treatment method of the present invention is a solid organic acid having a pH of 3 or less when an alkaline aqueous solution, which is a waste liquid discharged from a fuel cell using an alkaline aqueous solution of a borohydride complex compound as a fuel liquid, is used as a saturated solution. It is characterized by neutralization treatment.

また本発明の廃液処理方法は、水素化ホウ素錯化合物のアルカリ水溶液から水素を発生させた後のアルカリ水溶液からなる廃液を、飽和溶液としたときにpHが3以下となる固形の有機酸により中和処理することを特徴とする。   Further, the waste liquid treatment method of the present invention comprises a solid organic acid having a pH of 3 or less when the waste liquid composed of the alkaline aqueous solution after generating hydrogen from the alkaline aqueous solution of the borohydride complex is used as a saturated solution. It is characterized by sum processing.

本発明の廃液処理装置は、上述の廃液処理方法に記載の廃液を収納する収納容器と、この収納容器とは隔離して設けられ、飽和溶液としたときにpHが3以下になる固形の有機酸を収納する有機酸収納部と、前記廃液と有機酸とを接触させて当該廃液を中和処理するために、前記収納容器と有機酸との隔離を解除する解除手段と、を備えたことを特徴とする。   The waste liquid treatment apparatus of the present invention is a solid organic container that contains the waste liquid described in the above-described waste liquid treatment method, and is separated from the storage container, and has a pH of 3 or less when a saturated solution is obtained. An organic acid storage unit for storing an acid; and a release means for releasing the isolation between the storage container and the organic acid in order to bring the waste liquid and the organic acid into contact with each other to neutralize the waste liquid. It is characterized by.

さらに本発明の水素発生器は、密閉容器内に設けられ、水素化ホウ素錯化合物のアルカリ水溶液を収納する水溶液収納部と、
前記密閉容器内に前記水溶液収納部とは区画されて設けられ、前記アルカリ水溶液と接触して水素を発生させる触媒が収納された触媒収納部と、
前記アルカリ水溶液と前記触媒とを接触させて水素を発生させる状態と、前記アルカリ水溶液と前記触媒とを隔離する状態とを切り替えるための切り替え手段と、
発生した水素を放出するための水素放出口と、
前記水溶液収納部及び触媒収納部とは隔離されて前記密閉容器内に設けられ、飽和溶液としたときにpHが3以下になる固形の有機酸を収納する有機酸収納部と、
前記アルカリ水溶液と前記触媒とを接触させて水素を発生させた後のアルカリ水溶液からなる廃液を有機酸に接触させて中和させるために、前記水溶液収納部と有機酸媒収納部との隔離を解除するための解除手段と、を備えたことを特徴とする。なお、上述した有機酸は、例えばクエン酸、酒石酸及び酢酸より選ばれた少なくとも1種を挙げることができる。
Furthermore, the hydrogen generator of the present invention is provided in an airtight container, and an aqueous solution storage part for storing an alkaline aqueous solution of a borohydride complex compound,
A catalyst storage unit that is provided in the sealed container so as to be partitioned from the aqueous solution storage unit, and stores a catalyst that generates hydrogen in contact with the alkaline aqueous solution;
Switching means for switching between a state in which the aqueous alkali solution and the catalyst are brought into contact with each other to generate hydrogen, and a state in which the aqueous alkaline solution and the catalyst are isolated from each other;
A hydrogen outlet for releasing the generated hydrogen;
An organic acid storage unit that is provided in the sealed container separately from the aqueous solution storage unit and the catalyst storage unit, and stores a solid organic acid having a pH of 3 or less when a saturated solution is formed;
In order to neutralize the waste liquid consisting of the alkaline aqueous solution after bringing the alkaline aqueous solution and the catalyst into contact with each other to generate hydrogen, the organic acid medium storage unit is separated from the aqueous solution storage unit. Release means for releasing. In addition, the organic acid mentioned above can mention at least 1 sort (s) chosen from a citric acid, tartaric acid, and an acetic acid, for example.

本発明によれば、水素化ホウ素錯化合物のアルカリ水溶液を燃料電池あるいは水素発生に用いた後の廃液であるアルカリ水溶液を中和処理するに当たって、飽和溶液としたときにpHが3以下になる固形の有機酸例えば粉末状のクエン酸を用いているので、液体の中和剤に比べて取り扱いが便利であるし、また廃液に対して中和剤が少量で済むことから中和処理による廃液の増加の程度が小さく、このため廃液が収納される容器の大型化が抑えられる。   According to the present invention, in neutralizing an alkaline aqueous solution, which is a waste liquid after using an alkaline aqueous solution of a borohydride complex compound for fuel cell or hydrogen generation, a solid having a pH of 3 or less when a saturated solution is obtained. Organic acid, such as powdered citric acid, is easier to handle than liquid neutralizers, and the amount of neutralizer is less than that of waste liquid. The degree of increase is small, and thus the increase in the size of the container for storing the waste liquid is suppressed.

このように中和剤の量が少なく、中和処理による廃液の増加量も抑えられることから廃液の容器に中和剤を収納する収納部(有機酸収納部)を取り付けて小型の廃液処理装置を構成することができ、そのことによって廃液処理作業が簡単になる。さらにまた携帯用の水素発生器に有機酸収納部を備えた構成を採用することができ、水素発生器の中で廃液を中和処理できることから、使い捨ての水素発生器を実現できる。   Since the amount of the neutralizing agent is small and the increase in the amount of waste liquid due to the neutralization treatment can be suppressed in this way, a small waste liquid treatment apparatus is provided by attaching a storage portion (organic acid storage portion) for storing the neutralizing agent to the waste liquid container. Thus, the waste liquid treatment operation is simplified. Furthermore, a configuration in which a portable hydrogen generator is provided with an organic acid storage unit can be adopted, and since the waste liquid can be neutralized in the hydrogen generator, a disposable hydrogen generator can be realized.

本発明に係る廃液処理方法の一実施の形態について説明する。ここで説明する実施の形態は、ボロハイドライド燃料電池(以下、燃料電池という。)において、この燃料電池の燃料として用いられた使用済みの水素化ホウ素錯化合物のアルカリ水溶液の廃液処理に関するものである。図1において当該燃料電池の基本構成を示してある。図1中の2は角型の例えば絶縁材からなるケース体であり、このケース体2内は高分子電解質膜からなる透過膜21により酸化剤(正極)室30と燃料極(負極)室40とに区画されている。前記酸化剤極室30には、板状の酸化剤極31がその一面側を透過膜21に接触するように設けられると共に、酸化剤極31の他面側とケース体2との間には、酸化剤の流路部32をなす空間が形成されている。この流路部32には、酸化剤供給路33及び排出路34が接続されており、酸化剤供給路33には、上流側から酸化剤供給源35、供給ポンプ36、加湿手段37及び加熱手段38がこの順に設けられている。   An embodiment of a waste liquid treatment method according to the present invention will be described. The embodiment described here relates to waste liquid treatment of an alkaline aqueous solution of a used borohydride complex compound used as a fuel for a borohydride fuel cell (hereinafter referred to as a fuel cell). . FIG. 1 shows the basic configuration of the fuel cell. Reference numeral 2 in FIG. 1 denotes a rectangular case body made of, for example, an insulating material. Inside the case body 2, an oxidant (positive electrode) chamber 30 and a fuel electrode (negative electrode) chamber 40 are formed by a permeable membrane 21 made of a polymer electrolyte membrane. It is divided into and. In the oxidant electrode chamber 30, a plate-like oxidant electrode 31 is provided so that one surface side thereof is in contact with the permeable membrane 21, and between the other surface side of the oxidant electrode 31 and the case body 2. A space forming the oxidant channel 32 is formed. An oxidant supply path 33 and a discharge path 34 are connected to the flow path section 32. The oxidant supply path 33 is connected to the oxidant supply path 33 from the upstream side by an oxidant supply source 35, a supply pump 36, a humidifying unit 37, and a heating unit. 38 are provided in this order.

前記燃料極室40には、板状の燃料極41がその一面側を透過膜21に接触するように設けられると共に、燃料極41の他面側とケース体2との間には、燃料の流路部42をなす空間が形成されている。この流路部42の一端側には、廃液処理装置5、バルブ43及び供給ポンプ44が介設された燃料の循環路45が接続されている。   A plate-like fuel electrode 41 is provided in the fuel electrode chamber 40 so that one surface side thereof is in contact with the permeable membrane 21, and between the other surface side of the fuel electrode 41 and the case body 2, A space forming the flow path portion 42 is formed. Connected to one end side of the flow path portion 42 is a fuel circulation path 45 in which a waste liquid treatment device 5, a valve 43 and a supply pump 44 are interposed.

燃料極41に供給される(流路部42を通流する)燃料としては、水素化ホウ素錯化合物のアルカリ水溶液が用いられ、水素化ホウ素錯化合物として具体的には水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素カリウム(KBH4)、または水素化ホウ素リチウム(LiBH4)などを挙げることができる。またアルカリ水溶液としては、例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物を用いることができる。アルカリ水溶液の濃度は、あまり高濃度にすると水素化ホウ素錯化合物が溶解し難くなるので、例えば30重量%の範囲で選択することが好ましく、例えば20重量%に調製される。水素化ホウ素錯化合物は、目的とする発電容量及びアルカリ水溶液に対する溶解性を考慮して例えば0.1〜50重量%の濃度で用いるのが好ましい。   As the fuel supplied to the fuel electrode 41 (flowing through the flow path portion 42), an alkaline aqueous solution of a borohydride complex compound is used. Specifically, the borohydride complex compound is sodium borohydride (NaBH4). , Potassium borohydride (KBH4), or lithium borohydride (LiBH4). As the alkaline aqueous solution, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide can be used. If the concentration of the aqueous alkali solution is too high, the borohydride complex compound is difficult to dissolve. Therefore, it is preferably selected within the range of 30% by weight, for example, 20% by weight. The borohydride complex compound is preferably used at a concentration of, for example, 0.1 to 50% by weight in consideration of the intended power generation capacity and solubility in an alkaline aqueous solution.

続いて図2に基づいて前記廃液処理装置5について詳細に説明する。この廃液処理装置は円筒状の密閉容器をなす金属製の収納容器50と、この収納容器50の上面側に設けられた前記収納容器50よりも小さい円筒状の密閉容器をなす金属製の有機酸収納部51とから構成されている。前記有機酸収納部51内にはゴムなどの隔膜あるいは樹脂プレートからなる区画部材52の外縁部分が前記有機酸収納部51の側壁に止着するようにして形成されている。この例えばゴムなどからなる隔膜52により前記収納容器50と前記有機酸収納部51とが区画されるようになっている。前記収納容器50には、燃料電池に供給する燃料液である水素化ホウ素錯化合物のアルカリ水溶液53が収納されており、前記有機酸収納部51には、飽和溶液としたときにpHが3以下となる固形の有機酸54が収納されている。   Next, the waste liquid treatment apparatus 5 will be described in detail with reference to FIG. The waste liquid treatment apparatus includes a metal storage container 50 that forms a cylindrical sealed container, and a metal organic acid that forms a cylindrical sealed container smaller than the storage container 50 provided on the upper surface side of the storage container 50. It is comprised from the accommodating part 51. FIG. An outer edge portion of a partition member 52 made of a diaphragm such as rubber or a resin plate is formed in the organic acid storage portion 51 so as to be fixed to a side wall of the organic acid storage portion 51. The storage container 50 and the organic acid storage part 51 are partitioned by the diaphragm 52 made of rubber, for example. The storage container 50 stores an alkaline aqueous solution 53 of a borohydride complex compound, which is a fuel liquid to be supplied to the fuel cell. The organic acid storage unit 51 has a pH of 3 or less when a saturated solution is used. A solid organic acid 54 is stored.

前記有機酸収納部51の上端面の中央部には円筒管55が挿設されており、前記円筒管55の先端部は前記隔膜52の近傍に位置している。この円筒管55内には、押圧により撓むフレキシブルな部位56が形成されていて、当該部位を介して円筒状の針部材57が密に嵌合されている。また前記有機酸収納部51の上端面には、前記針部材57を塞ぐように保護キャップ58が装着されている。即ち、この例では収納容器50と有機酸収納部51とを区画する隔膜52と円筒管55内に備えたフレキシブルな部位56と針部材57とにより、収納容器50と有機酸収納部51との隔離を解除する解除手段が構成されている。   A cylindrical tube 55 is inserted in the center of the upper end surface of the organic acid storage unit 51, and the tip of the cylindrical tube 55 is located in the vicinity of the diaphragm 52. In the cylindrical tube 55, a flexible portion 56 that is bent by pressing is formed, and a cylindrical needle member 57 is closely fitted through the portion. A protective cap 58 is attached to the upper end surface of the organic acid storage part 51 so as to close the needle member 57. That is, in this example, the storage container 50 and the organic acid storage part 51 are separated by the diaphragm 52 that partitions the storage container 50 and the organic acid storage part 51, the flexible portion 56 provided in the cylindrical tube 55, and the needle member 57. Release means for releasing isolation is configured.

また前記収納容器50の上面部には、固形の有機酸と使用済みの水素化ホウ素錯化合物のアルカリ水溶液との反応により生成した水素ガスが放出するための図示しない水素排出部が形成されており、この水素排出部には中和処理時に大気中に水素ガスを放出させないように例えば当該水素ガスを吸引排気する装置などを備えた処理設備に繋がる水素排出管などを接続するようにしてもよい。   In addition, a hydrogen discharge unit (not shown) is formed on the upper surface of the storage container 50 for releasing hydrogen gas generated by the reaction between the solid organic acid and the alkaline aqueous solution of the used borohydride complex compound. In addition, for example, a hydrogen discharge pipe connected to a processing facility equipped with a device for sucking and exhausting the hydrogen gas may be connected to the hydrogen discharge portion so that the hydrogen gas is not released into the atmosphere during the neutralization process. .

さらに前記収納容器50の上面部には接続部材59、60が設けられており、前記接続部材59には燃料液供給管61が接続され、前記接続部材60には燃料液排出管62が接続されている。なお、燃料液供給管61及び燃料液排出管62は前記循環路45の一部分である。また前記収納容器50内には、接続部材59に位置する部位に吸引管63が接続されており、前記吸引管63の先端部が収納容器50の底面に近接するように設けられている。このように収納容器50の上面部に形成された接続部材59、60により廃液処理装置5を循環路45に対して着脱できるように構成されている。   Further, connection members 59 and 60 are provided on the upper surface of the storage container 50, a fuel liquid supply pipe 61 is connected to the connection member 59, and a fuel liquid discharge pipe 62 is connected to the connection member 60. ing. The fuel liquid supply pipe 61 and the fuel liquid discharge pipe 62 are part of the circulation path 45. Further, a suction pipe 63 is connected to a portion located in the connection member 59 in the storage container 50, and a tip end portion of the suction pipe 63 is provided close to the bottom surface of the storage container 50. In this way, the waste liquid treatment apparatus 5 can be attached to and detached from the circulation path 45 by the connection members 59 and 60 formed on the upper surface portion of the storage container 50.

また前記有機酸収納部51に収納される飽和溶液としたときにpHが3以下となる固形の有機酸54とは、具体的には例えば粉末状のクエン酸、酒石酸及び酢酸などを挙げることができる。なお酢酸は常温では液体であるが、16.6℃以下では結晶となることから固体として使用することができる。この場合、寒冷地での使用が有効と思われる。また、これらの固形の有機酸はその使用目的に合わせてペレット状など所望の形状にして前記有機酸収納部51に収納してもよい。   The solid organic acid 54 having a pH of 3 or less when the saturated solution stored in the organic acid storage unit 51 is specifically exemplified by powdered citric acid, tartaric acid, and acetic acid. it can. Acetic acid is a liquid at normal temperature, but can be used as a solid because it becomes crystalline at 16.6 ° C. or lower. In this case, use in a cold region seems to be effective. Further, these solid organic acids may be stored in the organic acid storage unit 51 in a desired shape such as pellets according to the purpose of use.

次に上述した実施の形態の作用について説明する。酸化剤供給源35からの酸化剤例えば空気を供給ポンプ36により酸化剤極室30の流路部32に供給する。ここで酸化剤を流路部32に供給する前に加湿器37により例えば絶対温度で30〜70%程度に加湿し、更に加熱器38で必要な温度、例えば40〜90℃に加熱する。流路部32を通流した空気は排出路34から排出される。   Next, the operation of the above-described embodiment will be described. An oxidant such as air from the oxidant supply source 35 is supplied to the flow path portion 32 of the oxidant electrode chamber 30 by the supply pump 36. Here, before supplying the oxidant to the flow path portion 32, the humidifier 37 humidifies the absolute temperature to, for example, about 30 to 70%, and further the heater 38 heats to a necessary temperature, for example, 40 to 90 ° C. The air that has flowed through the flow path portion 32 is discharged from the discharge path 34.

一方前記廃液処理装置5において、前記収納容器50に所定量蓄えられている水酸化ホウ素ナトリウムを水酸化ナトリウム水溶液に溶解させてなる燃料液53を供給ポンプ44により吸引管63を介して吸い上げて燃料極室40の流路部42に供給する。この例では流路部42から排出された使用済みの水素化ホウ素ナトリウムのアルカリ水溶液は収納容器50に戻され、当該アルカリ水溶液が燃料電池の燃料として使用できなくなるまで循環される。即ち、使用後の廃液処理装置5の収納容器50には、このアルカリ水溶液の廃液が蓄えられることになる。燃料液は多孔質体である燃料極41内に浸透して行き、このとき下記の(1)式に示される8電子反応が主として起こり、また(2)式で示される4電子反応も起こっていると考えられる。   On the other hand, in the waste liquid treatment apparatus 5, a fuel liquid 53 obtained by dissolving a predetermined amount of sodium borohydride stored in the storage container 50 in a sodium hydroxide aqueous solution is sucked up through a suction pipe 63 by a supply pump 44 and fuel is discharged. It supplies to the flow path part 42 of the polar chamber 40. In this example, the used aqueous solution of sodium borohydride discharged from the flow path portion 42 is returned to the storage container 50 and circulated until the aqueous alkaline solution cannot be used as fuel for the fuel cell. That is, the waste liquid of the alkaline aqueous solution is stored in the storage container 50 of the waste liquid treatment apparatus 5 after use. The fuel liquid permeates into the fuel electrode 41, which is a porous body. At this time, an 8-electron reaction represented by the following formula (1) mainly occurs, and a 4-electron reaction represented by the formula (2) also occurs. It is thought that there is.

NaBH4+8NaOH→NaBO2+6H2O+8Na+8e……(1)
NaBH4+4NaOH→NaBO2+2H2O+2H2+4Na+4e……(2)
このようにして燃料極41から電子が、外部に接続された回路に取り出されると共に、燃料中のナトリウムイオンが透過膜21を通って酸化剤極室30側に移動し、下記の(3)式に示すようにナトリウムイオンと酸素及び水分とから水酸化ナトリウムが生成される。
NaBH4 + 8NaOH → NaBO2 + 6H2O + 8Na + + 8e (1)
NaBH 4 +4 NaOH → NaBO 2 + 2H 2 O + 2H 2 + 4Na + + 4e (2)
In this way, electrons are taken out from the fuel electrode 41 to a circuit connected to the outside, and sodium ions in the fuel move to the oxidant electrode chamber 30 side through the permeable membrane 21, and the following equation (3) As shown, sodium hydroxide is generated from sodium ions, oxygen and moisture.

2O2+4H2O+8Na+8e→8NaOH……(3)
次に廃液処理装置5の収納容器50に蓄えられている廃液であるアルカリ水溶液の中和処理を行う。先ず、使用済みの廃液処理装置5を循環路45から取り外す。このとき接続部材59、60は接続部材59、60内に設けられた開閉弁により閉じられる。そして収納容器50の上面部に形成された図示しない水素排出部に例えば上述した水素排出管を接続する。続いて有機酸収納部51の上端面に設けられた保護キャップ58を外して、例えば人の指で前記針部材57を下方向に押し込み前記隔膜52を突き破ることで、上述したように前記隔膜52は収縮性のあるゴムであるため、破れた中央部の膜は外方に向かって引っ張られ、隔膜52の中央部に穴が開く。この穴から有機酸収納部51に蓄えられている所定量の固形の有機酸54例えば粉末状のクエン酸が重力により落下し、収納容器50に蓄えられている廃液が中和され、中和反応により水素ガスが生成される。当該水素ガスは、図示しない水素排出管を介して処理設備へ吸引廃棄される。中和処理された廃液処理装置5は例えば回収業者により回収されて例えばリサイクルされる。そして新しい廃液処理装置5が循環路45に取り付けられ、同様にして燃料電池に燃料液が供給されることになる。
2O 2 + 4H 2 O + 8Na + + 8e → 8 NaOH (3)
Next, neutralization of the alkaline aqueous solution that is the waste liquid stored in the storage container 50 of the waste liquid treatment apparatus 5 is performed. First, the used waste liquid treatment device 5 is removed from the circulation path 45. At this time, the connection members 59 and 60 are closed by an on-off valve provided in the connection members 59 and 60. Then, for example, the above-described hydrogen discharge pipe is connected to a hydrogen discharge portion (not shown) formed on the upper surface portion of the storage container 50. Subsequently, the protective cap 58 provided on the upper end surface of the organic acid storage unit 51 is removed, and the needle member 57 is pushed downward with a human finger, for example, to pierce the diaphragm 52. Since the rubber is a shrinkable rubber, the torn central film is pulled outward, and a hole is opened in the central part of the diaphragm 52. A predetermined amount of solid organic acid 54 stored in the organic acid storage unit 51, such as powdered citric acid, falls by gravity from this hole, and the waste liquid stored in the storage container 50 is neutralized to neutralize the reaction. As a result, hydrogen gas is generated. The hydrogen gas is sucked and discarded to the processing facility through a hydrogen discharge pipe (not shown). The waste liquid treatment apparatus 5 subjected to the neutralization treatment is collected by, for example, a collection trader and recycled, for example. Then, a new waste liquid treatment apparatus 5 is attached to the circulation path 45, and the fuel liquid is supplied to the fuel cell in the same manner.

この実施の形態によれば、水素化ホウ素ナトリウムのアルカリ水溶液を燃料液として用いる燃料電池から排出された廃液であるアルカリ水溶液を、飽和溶液としたときにpHが3以下になる固形の有機酸例えば粉末状のクエン酸により中和させているので、後述する実施例に示すように従来から使用されている塩酸や硫酸などの中和溶液に比べて取り扱いが便利であり、しかも廃液を中和するよりも中和剤が少量で済むことから中和処理により廃液の増加の程度が小さく、このため廃液が収納される容器の大型化を抑えることができる。   According to this embodiment, a solid organic acid having a pH of 3 or less when an alkaline aqueous solution, which is a waste liquid discharged from a fuel cell using an alkaline aqueous solution of sodium borohydride as a fuel solution, is used as a saturated solution. Since neutralization is performed with powdered citric acid, it is more convenient to handle than neutralization solutions such as hydrochloric acid and sulfuric acid, which are conventionally used, as shown in the examples described later, and neutralizes waste liquid. Since the amount of the neutralizing agent is smaller than that, the degree of increase in the waste liquid by the neutralization treatment is small, so that the increase in the size of the container in which the waste liquid is stored can be suppressed.

このように中和剤の量が少なく、中和処理による廃液の増加量も抑えられることから、廃液の容器に中和剤(固体の有機酸)を収納する収納部(有機酸収納部51)を取り付けて小型の廃液処理装置5として構成することができる。そのことによって、廃液処理作業が簡単になり例えば回収業者が回収するのに非常に便利である。   Since the amount of the neutralizing agent is small and the increase in the amount of the waste liquid due to the neutralization treatment is suppressed in this way, the storage unit for storing the neutralizing agent (solid organic acid) in the waste liquid container (organic acid storage unit 51) Can be configured as a small waste liquid treatment apparatus 5. This simplifies the waste liquid treatment operation and is very convenient for collection by, for example, a collection company.

上述の実施の形態では、固形の有機酸を格納する有機酸収納部51を廃液処理装置5内に取付けた構成であるが、廃液処理装置内に有機酸収納部を取り付けない構成とし、この廃液処理装置を別途貯留タンクに移し替えて、この貯留タンク内に直接作業者が固形の有機酸を投入して中和処理を行ってもよい。このようにしても上述と同様の効果があると共に固形の中和剤であるため液体の中和剤に比べて作業者にとって中和作業が非常に便利である。   In the above-described embodiment, the organic acid storage unit 51 for storing the solid organic acid is attached in the waste liquid treatment apparatus 5, but the organic acid storage part is not attached in the waste liquid treatment apparatus. The processing apparatus may be separately transferred to a storage tank, and an operator may directly input a solid organic acid into the storage tank for neutralization. Even if it does in this way, since it is the same effect as the above-mentioned and is a solid neutralizer, neutralization work is very convenient for an operator compared with a liquid neutralizer.

続いて本発明に係る水素発生器の一実施の形態について説明する。先ず、当該水素発生器を組み込んだ燃料電池システム7の概略について図3を用いて述べておく。この燃料電池システム7は、水素が供給される水素極(負極)と例えば酸素、過酸化水素などの酸化剤が供給される酸化剤極(正極)とを備えると共に電極反応により電気エネルギーを得ることで発電可能な燃料電池71と、この水素極に水素を供給する水素発生器72と、例えば空気を供給することにより燃料電池71の酸化剤極に酸素を供給する酸素供給手段である給気手段73とを備えており、例えば配管などの流路74を介して燃料電池71と水素発生器72及び、燃料電池71と給気手段73とが夫々接続されている。この燃料電池システム7は例えば電気機器の電源として着脱可能に構成され、この水素発生器72で発生した水素ガスが流路74を介して燃料電池71の水素極に供給されると共に、給気手段73からの空気が燃料電池71の正極に供給され、電極反応が進行することにより燃料電池71が発電して電気機器に電気を供給する。   Next, an embodiment of the hydrogen generator according to the present invention will be described. First, an outline of the fuel cell system 7 incorporating the hydrogen generator will be described with reference to FIG. The fuel cell system 7 includes a hydrogen electrode (negative electrode) to which hydrogen is supplied and an oxidant electrode (positive electrode) to which an oxidant such as oxygen or hydrogen peroxide is supplied, and obtains electric energy by an electrode reaction. A fuel cell 71 capable of generating electricity, a hydrogen generator 72 that supplies hydrogen to the hydrogen electrode, and an air supply means that is an oxygen supply means that supplies oxygen to the oxidant electrode of the fuel cell 71 by supplying air, for example. 73, for example, the fuel cell 71 and the hydrogen generator 72, and the fuel cell 71 and the air supply means 73 are connected to each other through a flow path 74 such as a pipe. The fuel cell system 7 is configured to be detachable as a power source of an electric device, for example, and the hydrogen gas generated by the hydrogen generator 72 is supplied to the hydrogen electrode of the fuel cell 71 via the flow path 74 and air supply means. The air from 73 is supplied to the positive electrode of the fuel cell 71, and the electrode reaction proceeds to cause the fuel cell 71 to generate electricity and supply electricity to the electrical equipment.

次に本発明の実施の形態に係る水素発生器について図4〜図6を参照しながら説明する。図中8は例えば直径及び高さが夫々60mm及び100mmの円筒状の密閉容器をなすステンレス製の反応容器であり、この反応容器8内には水素化ホウ素錯化合物の水素発生反応を促進させるための反応助剤である触媒が充填された(収納された)例えば縦に伸びる筒状体をなす触媒収納部81が設けられている。更に反応容器8内には、ガスを通過させるが、液体は通過させないガス透過部材であるガス透過膜82例えばフッ素系樹脂が触媒収納部81を囲むようにして仕切り壁として設けられ、このガス透過膜82により区画された内側領域は既述した所定量の水素化ホウ素錯化合物のアルカリ水溶液が満たされて水溶液収納部83として形成されている。即ち、触媒収納部81はアルカリ水溶液中に浸漬するように設けられている。   Next, a hydrogen generator according to an embodiment of the present invention will be described with reference to FIGS. In the figure, 8 is a stainless steel reaction vessel having a cylindrical sealed vessel having a diameter and a height of 60 mm and 100 mm, for example, and in this reaction vessel 8, the hydrogen generation reaction of the borohydride complex compound is promoted. For example, a catalyst storage portion 81 is provided which is filled (contained) with a catalyst which is a reaction aid of, for example, a vertically extending cylindrical body. Further, a gas permeable film 82, which is a gas permeable member that allows gas to pass but not liquid, is provided in the reaction vessel 8 as a partition wall so as to surround the catalyst housing portion 81, and this gas permeable film 82. The inner region partitioned by is filled with an alkaline aqueous solution of a predetermined amount of the borohydride complex described above to form an aqueous solution storage portion 83. That is, the catalyst storage unit 81 is provided so as to be immersed in the alkaline aqueous solution.

また水溶液収納部83の底面には、飽和溶液としたときにpHが3以下となる固形の有機酸を収納する有機酸収納部84が設けられている。前記有機酸収納部84の上面部分は例えば収縮性のあるゴムや樹脂プレートなどからなる区画部材85により形成されている。また水溶液収納部83に位置する反応容器8の上端面には、押圧により撓むフレキシブルな部位86、86が形成されていて、当該部位を介して円筒状の針部材87、87が挿設されており、前記針部材87、87の先端部は前記区画部材85の面の近傍に位置している。また前記反応容器8の上端面には、前記針部材87、87を塞ぐように保護キャップ88、88が装着されている。即ち、この例では水溶液収納部83と有機酸収納部84とを区画する区画部材85と反応容器8の上端面に設けられたフレキシブルな部位86、86と針部材88、88とにより、水溶液収納部83と有機酸収納部84との隔離を解除する解除手段が構成される。   In addition, an organic acid storage portion 84 is provided on the bottom surface of the aqueous solution storage portion 83. The organic acid storage portion 84 stores solid organic acid having a pH of 3 or less when a saturated solution is used. The upper surface portion of the organic acid storage portion 84 is formed by a partition member 85 made of, for example, shrinkable rubber or a resin plate. In addition, flexible portions 86 and 86 that are bent by pressing are formed on the upper end surface of the reaction vessel 8 located in the aqueous solution storage portion 83, and cylindrical needle members 87 and 87 are inserted through the portions. The tip portions of the needle members 87 and 87 are located in the vicinity of the surface of the partition member 85. Further, protective caps 88 and 88 are attached to the upper end surface of the reaction vessel 8 so as to close the needle members 87 and 87. That is, in this example, the partition member 85 that partitions the aqueous solution storage portion 83 and the organic acid storage portion 84, the flexible portions 86 and 86 provided on the upper end surface of the reaction vessel 8, and the needle members 88 and 88 store the aqueous solution. Release means for releasing isolation between the portion 83 and the organic acid storage portion 84 is configured.

また水溶液収納部83と有機酸収納部84との外側の空間領域は水素発生空間92として形成されており、反応容器8の上面には、水素を排出するための例えば取り出し可能なキャップ付きの水素放出口93が水素発生空間92に対応する位置に設けられている。   In addition, a space region outside the aqueous solution storage portion 83 and the organic acid storage portion 84 is formed as a hydrogen generation space 92, and the upper surface of the reaction vessel 8 is a hydrogen with a cap that can be taken out, for example, for discharging hydrogen. The discharge port 93 is provided at a position corresponding to the hydrogen generation space 92.

前記触媒収納部81は、図5及び図6に示すように内筒体94及び、この内筒体94の周面を囲む外筒体95を備えており、この内筒体94の一端側は反応容器8の一端側に固定されると共に、他端側は外筒体95の側端面により塞がれている。この側端面には回転軸96が設けられ、更に当該回転軸96は有機酸収納部84及び反応容器8を貫通して外部に突出しており、この回転軸96が回転して外筒体95が内筒体94の中心軸回りに回転可能なように構成されている。   As shown in FIGS. 5 and 6, the catalyst storage unit 81 includes an inner cylinder 94 and an outer cylinder 95 surrounding the peripheral surface of the inner cylinder 94, and one end side of the inner cylinder 94 is While being fixed to one end side of the reaction vessel 8, the other end side is closed by a side end face of the outer cylindrical body 95. A rotation shaft 96 is provided on the side end surface, and the rotation shaft 96 protrudes outside through the organic acid storage portion 84 and the reaction vessel 8, and the rotation shaft 96 rotates to cause the outer cylinder body 95 to rotate. The inner cylinder 94 is configured to be rotatable around the central axis.

また詳しくは図5及び図6に示すように、内筒体94の外周面には、例えば断面でみて一端縁から他端縁に亘る半円領域において周方向に分割して触媒を充填するために、各々長手方向に伸びる複数の例えば4個の溝状の触媒充填部98が並んで設けられており、各触媒充填部98内には例えば固体状の棒状の触媒が充填されて触媒層が形成され、更に触媒層の表面を覆うようにして触媒が脱落するのを防止するネット体99が設けられている。また外筒体95の表面には当該筒体の両端部を残して開口部100が形成されており、外筒体95は、回転することにより触媒充填部98の表面に対して開口部100の投影領域を重ねて水溶液収納部83と触媒収納部81とが連通する状態つまり触媒収納部81をアルカリ水溶液中に開放する状態と、重ならないようにして水溶液収納部83と触媒収納部81とを隔離する状態と、を切り替え可能なように開閉部材として構成されている。   More specifically, as shown in FIGS. 5 and 6, the outer peripheral surface of the inner cylindrical body 94 is filled with a catalyst by being divided in the circumferential direction in a semicircular region extending from one end edge to the other end edge in a cross section, for example. In addition, a plurality of, for example, four groove-shaped catalyst filling portions 98 extending in the longitudinal direction are provided side by side, and each catalyst filling portion 98 is filled with, for example, a solid rod-shaped catalyst to form a catalyst layer. A net body 99 that is formed and further covers the surface of the catalyst layer to prevent the catalyst from falling off is provided. Further, an opening 100 is formed on the surface of the outer cylinder 95 leaving both ends of the cylinder, and the outer cylinder 95 rotates with respect to the surface of the catalyst filling part 98 by rotating. The state in which the aqueous solution storage part 83 and the catalyst storage part 81 communicate with each other by overlapping the projection area, that is, the state in which the catalyst storage part 81 is opened into the alkaline aqueous solution, and the aqueous solution storage part 83 and the catalyst storage part 81 are not overlapped. It is configured as an open / close member so that it can be switched between the isolated state and the isolated state.

更に前記触媒としては、水素発生触媒能を有する例えばニッケル、コバルトなどの金属、水素吸蔵合金、それらのフッ化処理物から選択される。   Further, the catalyst is selected from, for example, metals such as nickel and cobalt having hydrogen catalytic activity, hydrogen storage alloys, and fluorinated products thereof.

続いて、上述の水素発生器で水素ガスを発生させる手法について、図3記載の燃料電池システム7に搭載した例を一例に挙げて説明する。先ず、本発明の水素発生器72の水素放出口93と燃料電池71とを流路74を介して接続する。そして例えば手動であるいは図示しない駆動機構により外筒体95が内筒体94の中心軸回りに所定の角度回転し、触媒充填部98の表面に対して外筒体95の開口部100に投影領域を重ねることにより触媒収納部81がアルカリ水溶液中に開放され、例えば水圧によりアルカリ水溶液が触媒収納部81内に流れ込んでアルカリ水溶液と触媒とが接触する。このとき触媒の活性作用により水素化ホウ素錯化合物とアルカリ水溶液の水とが反応し、例えば一例として以下の反応式(4)に示すような加水分解反応が促進されて水素ガスが発生されると共に、金属酸化物が生成されてアルカリ水溶液が劣化して行く。   Next, a method for generating hydrogen gas with the above-described hydrogen generator will be described by taking an example of mounting the fuel cell system 7 shown in FIG. 3 as an example. First, the hydrogen discharge port 93 of the hydrogen generator 72 of the present invention and the fuel cell 71 are connected via the flow path 74. For example, the outer cylinder 95 is rotated by a predetermined angle around the central axis of the inner cylinder 94 manually or by a drive mechanism (not shown), and the projection region is projected onto the opening 100 of the outer cylinder 95 with respect to the surface of the catalyst filling unit 98. As a result, the catalyst storage unit 81 is opened in the alkaline aqueous solution. For example, the aqueous alkaline solution flows into the catalyst storage unit 81 by water pressure, and the alkaline aqueous solution and the catalyst come into contact with each other. At this time, the boron hydride complex compound reacts with the water of the alkaline aqueous solution due to the active action of the catalyst. For example, the hydrolysis reaction shown in the following reaction formula (4) is promoted to generate hydrogen gas. As a result, a metal oxide is generated and the alkaline aqueous solution deteriorates.

NaBH4+2H2O→NaBO2+4H2……(4)
反応容器8内で発生した水素ガスは、例えば気泡状で水溶液収納部83内を上昇し、ガス透過膜82を通過することによりアルカリミストが分離されて水素発生空間92に供給される。このときガスのリフト効果により水溶液収納部83内のアルカリ水溶液が攪拌されてアルカリ水溶液の濃度分布が生じるのが抑えられる。そして水素放出口93を介して外部に排出された水素ガスは、流路74内を通って燃料電池71の水素極に供給され発電用燃料として使用されることになる。
NaBH4 + 2H2O → NaBO2 + 4H2 (4)
The hydrogen gas generated in the reaction vessel 8 rises in the aqueous solution storage portion 83 in the form of bubbles, for example, and passes through the gas permeable membrane 82 so that the alkali mist is separated and supplied to the hydrogen generation space 92. At this time, the alkaline aqueous solution in the aqueous solution container 83 is agitated by the gas lift effect, and the concentration distribution of the alkaline aqueous solution is suppressed from occurring. The hydrogen gas discharged to the outside through the hydrogen discharge port 93 is supplied to the hydrogen electrode of the fuel cell 71 through the flow path 74 and used as a power generation fuel.

次に水素発生器72の水溶液収納部83に蓄えられている水素化ホウ素錯化合物のアルカリ水溶液から水素を発生させた後のアルカリ水溶液からなる廃液の中和処理を行う。先ず、使用済みの水素発生器72を燃料電池システム7から取り外す。続いて反応容器8の上端面に設けられた保護キャップ88、88を外して、例えば人の指で前記針部材87、87を下方向に押し込み前記区画部材85を突き破ることで、例えば前記区画部材85が収縮性のあるゴムであれば破れた中央部の膜は外方に向かって引っ張られて破裂し、あるいは樹脂プレートであれば破砕されて穴が開く。この穴から水溶液収納部83に蓄えられている廃液が重力により落下し、有機酸収納部84に蓄えられている所定量の固形の有機酸例えば粉末状のクエン酸により中和される。中和反応により水素ガスが若干生成されるため、例えば水素放出口93に上述した水素排出管を接続して処理設備へ吸引廃棄されるようにすることが好ましい。中和処理された水素発生器72は例えば回収業者により回収されて例えば廃棄処理される。そして新しい水素発生器72が流路74に取り付けられ、同様にして燃料電池71の水素極に水素ガスが供給されることになる。   Next, neutralization treatment of the waste liquid composed of the alkaline aqueous solution after hydrogen is generated from the alkaline aqueous solution of the borohydride complex compound stored in the aqueous solution storage portion 83 of the hydrogen generator 72 is performed. First, the used hydrogen generator 72 is removed from the fuel cell system 7. Subsequently, the protective caps 88, 88 provided on the upper end surface of the reaction vessel 8 are removed, and the needle members 87, 87 are pushed downward with a human finger, for example, to break through the partition member 85, for example, the partition member If 85 is a shrinkable rubber, the torn central film is pulled outwards and ruptured, or if it is a resin plate, it is crushed to open a hole. The waste liquid stored in the aqueous solution storage unit 83 falls from the hole by gravity and is neutralized by a predetermined amount of solid organic acid stored in the organic acid storage unit 84, for example, powdered citric acid. Since a little hydrogen gas is generated by the neutralization reaction, for example, it is preferable to connect the above-described hydrogen discharge pipe to the hydrogen discharge port 93 and discard it to the processing facility. The neutralized hydrogen generator 72 is recovered by, for example, a recovery contractor and discarded, for example. A new hydrogen generator 72 is attached to the flow path 74 and hydrogen gas is supplied to the hydrogen electrode of the fuel cell 71 in the same manner.

この実施の形態によれば、上述した固形の有機酸を水素発生器72内に設けられた有機酸収納部84に収納としておくことで、水素発生器72内で簡単に中和処理が行えると共に固形の有機酸は中和溶液に比べて中和された廃液の容量(体積)が小さいので水素発生器72を小さく設計することができ、携帯用の水素発生器として用いるのに非常に便利である。   According to this embodiment, the above-described solid organic acid is stored in the organic acid storage portion 84 provided in the hydrogen generator 72, so that the neutralization treatment can be easily performed in the hydrogen generator 72. Since the solid organic acid has a smaller volume (volume) of the neutralized waste liquid than the neutralized solution, the hydrogen generator 72 can be designed to be small and very convenient for use as a portable hydrogen generator. is there.

次に本発明の効果を確認するために行った実験について述べる。   Next, an experiment conducted for confirming the effect of the present invention will be described.

A.実験例
(実施例1)
平均粒径5μmのラネーNi粉末0.5gを収納した130mlの反応容器に、平均粒径300μmの水素化ホウ素ナトリウム1.4gを溶解した10重量%の水酸化ナトリウム水溶液100mlを滴下して、加水分解反応により発生した水素ガスを固体高分子型燃料電池の燃料として供給した。
A. Experimental Example (Example 1)
To a 130 ml reaction vessel containing 0.5 g of Raney Ni powder having an average particle diameter of 5 μm, 100 ml of a 10 wt% sodium hydroxide aqueous solution in which 1.4 g of sodium borohydride having an average particle diameter of 300 μm was dissolved was dropped. Hydrogen gas generated by the decomposition reaction was supplied as a fuel for the polymer electrolyte fuel cell.

水素ガス発生後、反応容器に残存する生成物である2.4gの平均粒径500μmのNaBO2を含有する10重量%の水酸化ナトリウム水溶液(廃液)に、平均粒径100μmの粉末状のクエン酸20.5gを添加して、反応容器内の溶液のpHを約7に中和処理した。中和処理した後の当該反応容器内の溶液の容量(体積)は125mlであった。なお、クエン酸の添加量は後述の実施例3の結果に基づいて設定した。   After hydrogen gas generation, 2.4 g of a product remaining in the reaction vessel, 10 wt% aqueous sodium hydroxide solution (waste liquid) containing NaBO2 having an average particle size of 500 μm, and powdered citric acid having an average particle size of 100 μm 20.5 g was added to neutralize the pH of the solution in the reaction vessel to about 7. The volume (volume) of the solution in the reaction vessel after the neutralization treatment was 125 ml. The amount of citric acid added was set based on the results of Example 3 described later.

(実施例2)
反応容器に平均粒径100μmの粉末状の酒石酸21gを添加した他は、実施例1と同様の条件で中和処理を行った。中和処理した後の当該反応容器内の溶液の容量(体積)は128mlであった。なお、酒石酸の添加量は後述の実施例4の結果に基づいて設定した。
(Example 2)
Neutralization was performed under the same conditions as in Example 1 except that 21 g of powdered tartaric acid having an average particle size of 100 μm was added to the reaction vessel. The volume (volume) of the solution in the reaction container after neutralization was 128 ml. In addition, the addition amount of tartaric acid was set based on the result of Example 4 mentioned later.

(実施例3)
メタホウ酸ナトリウム(NaBO2)5.0gを溶解させた10重量%の水酸化ナトリウム水溶液100mlが入った反応容器に、粉末状のクエン酸を反応容器内のアルカリ水溶液が中和されるまで、即ちpHが略7になるまで少しずつ添加した。その結果を図7に示す。図7の縦軸はpHであり、横軸はクエン酸の添加量である。図7に示すように、クエン酸を20.5g添加することで、反応容器内のアルカリ水溶液を中和性の水溶液に変えることができた。なお、この例ではNaOH溶液にNaBO2を加えた溶液を用いているが、燃料電池や水素発生器に用いられた実際の廃液と同等であることを把握している。
(Example 3)
In a reaction vessel containing 100 ml of a 10% by weight aqueous sodium hydroxide solution in which 5.0 g of sodium metaborate (NaBO2) was dissolved, powdered citric acid was added until the alkaline aqueous solution in the reaction vessel was neutralized, that is, pH. Was added little by little until approximately 7 was obtained. The result is shown in FIG. The vertical axis in FIG. 7 is pH, and the horizontal axis is the amount of citric acid added. As shown in FIG. 7, by adding 20.5 g of citric acid, the alkaline aqueous solution in the reaction vessel could be changed to a neutralizing aqueous solution. In this example, a solution obtained by adding NaBO2 to an NaOH solution is used, but it is understood that the solution is equivalent to an actual waste liquid used in a fuel cell or a hydrogen generator.

(実施例4)
反応容器に粉末状の酒石酸を添加する他は、実施例1と同様の条件で実験を行った。その結果を図8に示す。図8の縦軸はpHであり、横軸は酒石酸の添加量である。図8に示すように、酒石酸を21g添加することで、反応容器内のアルカリ水溶液を中和性の水溶液に変えることができた。
Example 4
The experiment was performed under the same conditions as in Example 1 except that powdered tartaric acid was added to the reaction vessel. The result is shown in FIG. The vertical axis in FIG. 8 is pH, and the horizontal axis is the amount of tartaric acid added. As shown in FIG. 8, by adding 21 g of tartaric acid, the aqueous alkali solution in the reaction vessel could be changed to a neutralizing aqueous solution.

(比較例1)
実施例1と同じ条件で水素ガスを発生させた後、反応容器に残存する生成物である2.4gのNaBO2を含有する10重量%の水酸化ナトリウム水溶液(廃液)に、10重量%のHCl水溶液を添加して中和処理した。中和処理した後の当該反応容器内の溶液の容量(体積)は195mlとなり、130mlの反応容器をオーバーしてしまった。
(Comparative Example 1)
After generating hydrogen gas under the same conditions as in Example 1, 10% by weight of HCl was added to 10% by weight aqueous sodium hydroxide solution (waste liquid) containing 2.4 g of NaBO 2 as the product remaining in the reaction vessel. An aqueous solution was added for neutralization. The volume (volume) of the solution in the reaction vessel after neutralization was 195 ml, which exceeded the 130 ml reaction vessel.

B.結果及び考察
このように上述の実験結果によれば、アルカリ水溶液からなる廃液を粉末状のクエン酸あるいは酒石酸で中和処理することで、中和した後の廃液の容量(体積)の増加をかなり抑えられることが理解できる。このように粉末状のクエン酸あるいは酒石酸はHCl水溶液に比べて中和された廃液の容量(体積)が小さいので既述したように例えば廃液処理装置及び水素発生器内で中和処理する場合において、極めて有効であることが分かる。
B. Results and Discussion As described above, according to the above experimental results, the waste liquid consisting of an alkaline aqueous solution is neutralized with powdered citric acid or tartaric acid, thereby significantly increasing the volume (volume) of the waste liquid after neutralization. It can be understood that it can be suppressed. In this way, since powdered citric acid or tartaric acid has a smaller volume (volume) of neutralized waste liquid than HCl aqueous solution, for example, when neutralizing in a waste liquid treatment apparatus and a hydrogen generator as described above, It turns out that it is extremely effective.

本発明に係る廃液処理方法の一実施の形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the waste-liquid processing method which concerns on this invention. 上記実施の形態に係る廃液処理装置を示す概略断面図である。It is a schematic sectional drawing which shows the waste liquid processing apparatus which concerns on the said embodiment. 本発明の水素発生器を組み込んだ電池システムを示す説明図である。It is explanatory drawing which shows the battery system incorporating the hydrogen generator of this invention. 本発明の実施の形態に係る水素発生器を示す縦断面図及び側面図である。It is the longitudinal cross-sectional view and side view which show the hydrogen generator which concerns on embodiment of this invention. 上記水素発生器の触媒収納部を示す斜視図である。It is a perspective view which shows the catalyst storage part of the said hydrogen generator. 上記水素発生器の触媒収納部を示す断面図である。It is sectional drawing which shows the catalyst accommodating part of the said hydrogen generator. 本発明の効果を確認するために行った実験例の結果を示す特性図である。It is a characteristic view which shows the result of the experiment example performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実験例の結果を示す特性図である。It is a characteristic view which shows the result of the experiment example performed in order to confirm the effect of this invention.

符号の説明Explanation of symbols

5 廃液処理装置
50 収納容器
51 有機酸収納部
52 隔膜
53 燃料液
54 固形の有機酸
55 円筒管
57 針部材
58 保護キャップ
8 反応容器
81 触媒収納部
82 ガス透過膜
83 水溶液収納部
84 有機酸収納部
92 水素発生空間
5 Waste liquid treatment apparatus 50 Storage container 51 Organic acid storage section 52 Diaphragm 53 Fuel liquid 54 Solid organic acid 55 Cylindrical tube 57 Needle member 58 Protective cap 8 Reaction container 81 Catalyst storage section 82 Gas permeable membrane 83 Aqueous solution storage section 84 Organic acid storage Part 92 Hydrogen generation space

Claims (6)

水素化ホウ素錯化合物のアルカリ水溶液を燃料液として用いる燃料電池から排出された廃液であるアルカリ水溶液を、飽和溶液としたときにpHが3以下となる固形の有機酸により中和することを特徴とする廃液処理方法。   Characterized by neutralizing an alkaline aqueous solution, which is a waste liquid discharged from a fuel cell using an alkaline aqueous solution of a borohydride complex compound as a fuel liquid, with a solid organic acid having a pH of 3 or less when the saturated aqueous solution is used. Waste liquid treatment method. 水素化ホウ素錯化合物のアルカリ水溶液から水素を発生させた後のアルカリ水溶液からなる廃液を、飽和溶液としたときにpHが3以下となる固形の有機酸により中和することを特徴とする廃液処理方法。   A waste liquid treatment characterized by neutralizing a waste liquid comprising an aqueous alkali solution after generating hydrogen from an alkaline aqueous solution of a boron hydride complex compound with a solid organic acid having a pH of 3 or less when the saturated liquid is obtained. Method. 前記有機酸は、クエン酸、酒石酸及び酢酸より選ばれた少なくとも1種であることを特徴とする請求項1または2に記載の廃液処理方法。   The waste liquid treatment method according to claim 1 or 2, wherein the organic acid is at least one selected from citric acid, tartaric acid, and acetic acid. 請求項1または2に記載の廃液を収納する収納容器と、この収納容器とは隔離して設けられ、飽和溶液としたときにpHが3以下になる固形の有機酸を収納する有機酸収納部と、前記廃液と有機酸とを接触させて当該廃液を中和処理するために、前記収納容器と有機酸収納部との隔離を解除する解除手段と、を備えたことを特徴とする廃液処理装置。   A storage container for storing the waste liquid according to claim 1 or 2, and an organic acid storage section that is provided separately from the storage container and stores a solid organic acid having a pH of 3 or less when a saturated solution is used. And a releasing means for releasing the separation between the storage container and the organic acid storage unit in order to neutralize the waste liquid by bringing the waste liquid and the organic acid into contact with each other. apparatus. 前記有機酸は、クエン酸、酒石酸及び酢酸より選ばれた少なくとも1種であることを特徴とする請求項4に記載の廃液処理装置。   The waste liquid treatment apparatus according to claim 4, wherein the organic acid is at least one selected from citric acid, tartaric acid, and acetic acid. 密閉容器内に設けられ、水素化ホウ素錯化合物のアルカリ水溶液を収納する水溶液収納部と、
前記密閉容器内に前記水溶液収納部とは区画されて設けられ、前記アルカリ水溶液と接触して水素を発生させる触媒が収納された触媒収納部と、
前記アルカリ水溶液と前記触媒とを接触させて水素を発生させる状態と、前記アルカリ水溶液と前記触媒とを隔離する状態とを切り替えるための切り替え手段と、
発生した水素を放出するための水素放出口と、
前記水溶液収納部及び触媒収納部とは隔離されて前記密閉容器内に設けられ、飽和溶液としたときにpHが3以下になる固形の有機酸を収納する有機酸収納部と、
前記アルカリ水溶液と前記触媒とを接触させて水素を発生させた後のアルカリ水溶液からなる廃液を有機酸に接触させて中和させるために、前記水溶液収納部と有機酸収納部との隔離を解除するための解除手段と、を備えたことを特徴とする水素発生器。
An aqueous solution storage unit that is provided in an airtight container and stores an alkaline aqueous solution of a borohydride complex compound;
A catalyst storage unit that is provided in the sealed container so as to be partitioned from the aqueous solution storage unit, and stores a catalyst that generates hydrogen in contact with the alkaline aqueous solution;
Switching means for switching between a state in which the aqueous alkali solution and the catalyst are brought into contact with each other to generate hydrogen, and a state in which the aqueous alkaline solution and the catalyst are isolated from each other;
A hydrogen outlet for releasing the generated hydrogen;
An organic acid storage unit that is provided in the sealed container separately from the aqueous solution storage unit and the catalyst storage unit, and stores a solid organic acid having a pH of 3 or less when a saturated solution is formed;
Release the isolation between the aqueous solution storage unit and the organic acid storage unit in order to neutralize the waste solution consisting of the alkaline aqueous solution after bringing the alkaline aqueous solution and the catalyst into contact with each other to generate hydrogen. A hydrogen generator comprising: release means for performing the operation.
JP2004332279A 2004-11-16 2004-11-16 Waste liquid disposal method, waste liquid disposal device, and hydrogen generator Pending JP2006147194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332279A JP2006147194A (en) 2004-11-16 2004-11-16 Waste liquid disposal method, waste liquid disposal device, and hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332279A JP2006147194A (en) 2004-11-16 2004-11-16 Waste liquid disposal method, waste liquid disposal device, and hydrogen generator

Publications (1)

Publication Number Publication Date
JP2006147194A true JP2006147194A (en) 2006-06-08

Family

ID=36626645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332279A Pending JP2006147194A (en) 2004-11-16 2004-11-16 Waste liquid disposal method, waste liquid disposal device, and hydrogen generator

Country Status (1)

Country Link
JP (1) JP2006147194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530861A (en) * 2010-12-16 2012-07-04 扬光绿能股份有限公司 Hydrogen generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530861A (en) * 2010-12-16 2012-07-04 扬光绿能股份有限公司 Hydrogen generating device
CN102530861B (en) * 2010-12-16 2013-09-25 扬光绿能股份有限公司 Hydrogen generating device
US8940061B2 (en) 2010-12-16 2015-01-27 Young Green Energy Co. Apparatus for generating hydrogen

Similar Documents

Publication Publication Date Title
US7641889B1 (en) Hydrogen generator
JP5793153B2 (en) Fuel cell cartridge
JP4800319B2 (en) Hydrogen production apparatus and fuel cell system using the same
US7594939B2 (en) System for hydrogen storage and generation
JP4947718B2 (en) Hydrogen generating material and hydrogen generating apparatus
JP2006298670A (en) Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
US9174843B2 (en) Valve having concentric fluid paths
JP2007326742A (en) Manufacturing method of hydrogen
JP2007326731A (en) Manufacturing method of hydrogen
JP2006056753A (en) Method and apparatus for generating hydrogen and fuel cell system
JP2016117620A (en) Hydrogen production apparatus, and hydrogen generating vessel
JP3867528B2 (en) Power generation components
JP2011121826A (en) Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
US20140193304A1 (en) Device for the generation of hydrogen, apparatuses that contain the device, and their use
JP2006147194A (en) Waste liquid disposal method, waste liquid disposal device, and hydrogen generator
JP2013146680A (en) Treatment material for jet gas from nonaqueous electrolyte secondary battery
JP2006298734A (en) Method for manufacturing tetrahydroborate
JP2005071932A (en) Hydrogen generating apparatus and fuel cell system
CN212451653U (en) Portable device for producing hydrogen, oxygen and negative oxygen ions by electrolyzing water
KR100968626B1 (en) Housing, apparatus for generating hydrogen and fuel cell power generation system having the same
CN101296859A (en) Hydrogen production equipment and fuel cell system with the same
JP2008037683A (en) Hydrogen-generating agent, and apparatus and method for generating hydrogen
JP2008273758A (en) Hydrogen generating material composition and hydrogen generating apparatus
JP2010001188A (en) Hydrogen production apparatus and fuel cell
JP2003132931A (en) Liquid fuel directly supplied fuel cell