JP2006145800A - Toner and method for manufacturing same - Google Patents

Toner and method for manufacturing same Download PDF

Info

Publication number
JP2006145800A
JP2006145800A JP2004335283A JP2004335283A JP2006145800A JP 2006145800 A JP2006145800 A JP 2006145800A JP 2004335283 A JP2004335283 A JP 2004335283A JP 2004335283 A JP2004335283 A JP 2004335283A JP 2006145800 A JP2006145800 A JP 2006145800A
Authority
JP
Japan
Prior art keywords
fine particles
particle size
base
particles
size range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004335283A
Other languages
Japanese (ja)
Inventor
Akinori Nishida
昭憲 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2004335283A priority Critical patent/JP2006145800A/en
Publication of JP2006145800A publication Critical patent/JP2006145800A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a toner having good charging performance and a good yield by regulating a coverage of fine silica particles as an external additive to fine base particles having unevenness in particle size according to the particle size range, and to provide a method for manufacturing the toner. <P>SOLUTION: Fine base particles based on a binder resin are classified into a group of particles in a small particle size range and a group of particles in a large particle size range in a classification step 10, the particles in the large particle size range are covered with fine silica particles in a first covering step 20, and the particles in the small particle size range are covered with fine silica particles in a second covering step 21. A coverage of the fine silica particles in the second covering step is made larger than that in the first covering step. The fine base particles thus covered in the covering steps are mixed in a mixing step 30 to manufacture the objective toner. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複写機、プリンタ、ファクシミリ装置などの電子写真方式の画像形成装置において、静電潜像を現像するために用いられるトナー及びその製造方法に関する。   The present invention relates to a toner used for developing an electrostatic latent image in an electrophotographic image forming apparatus such as a copying machine, a printer, and a facsimile machine, and a manufacturing method thereof.

電子写真方式の画像形成装置では、感光体ドラムの表面に形成された静電潜像を現像するためのトナーとして種々のものが開発されてきており、例えば、結着樹脂中に着色剤、荷電制御剤、離型剤及び定着助剤等を添加した母体微粒子の表面を外添剤で被覆したものが知られている。   In an electrophotographic image forming apparatus, various toners for developing an electrostatic latent image formed on the surface of a photosensitive drum have been developed. For example, a colorant, a charge in a binder resin Known is one in which the surface of a base fine particle to which a control agent, a release agent, a fixing aid and the like are added is coated with an external additive.

母体微粒子の表面を外添剤で被覆することで、トナーに安定した帯電性及び流動性を付与することができる。しかしながら、外添剤が過剰に添加されると、トナーの帯電量が大きくなって画像品質に影響を及ぼすだけでなく、外添剤が遊離してトナーの定着に悪影響を及ぼすようになる。また、外添剤が不足すると、トナーの帯電量が減少してかぶり等の画像劣化が生じるようになり、感光体ドラムへのフィルミングが生じやすくなるといった影響が出てくる。このように、トナー母体微粒子の表面を被覆する外添剤の量や特性はトナーの帯電特性を決める重要な要素となっている。そのため、外添剤に関して様々な改良工夫が行われている。例えば、特許文献1では、ケイ酸微粉体の表面をヘキサメチルシラザンで処理したものをトナー粒子の外添剤として用い、その被覆率を60%から100%とした点が記載されている。また、特許文献2では、着色剤を有する結着樹脂からなる母体微粒子の表面上に無機微粒子を熱気流場中で加熱して固定し、無機微粒子の被覆率を46%以上とした点が記載されている。また、特許文献3では、静電荷像現像用トナーにおいて、外添微粒子が母体微粒子の表面に固着され、固着前の母体微粒子のBET法による比表面積に対する固着後のトナーのBET法による比表面積の比が3.2以下であり、外添微粒子のうち少なくとも一種類の帯電量の絶対値が300μC/g以上とした点が記載されている。
特開平11−95480号公報 特開2000−338712号公報 特開2003−215838号公報
By coating the surface of the base fine particles with an external additive, the toner can be provided with stable chargeability and fluidity. However, when the external additive is excessively added, not only does the toner charge amount increase and the image quality is affected, but the external additive is liberated and adversely affects the toner fixing. In addition, when the external additive is insufficient, the charge amount of the toner is reduced, image deterioration such as fogging occurs, and filming on the photosensitive drum is likely to occur. Thus, the amount and characteristics of the external additive that coats the surface of the toner base fine particles are important factors that determine the charging characteristics of the toner. For this reason, various improvements have been made regarding external additives. For example, Patent Document 1 describes that the surface of a fine silicate powder is treated with hexamethylsilazane as an external additive for toner particles, and the coverage is 60% to 100%. Further, Patent Document 2 describes that inorganic fine particles are heated and fixed in a hot air flow field on the surface of base fine particles made of a binder resin having a colorant, and the coverage of the inorganic fine particles is set to 46% or more. Has been. Further, in Patent Document 3, in the electrostatic image developing toner, the externally added fine particles are fixed on the surface of the base fine particles, and the specific surface area of the toner after fixing to the specific surface area of the base fine particles before fixing is determined by the BET method. The ratio is 3.2 or less, and the absolute value of the charge amount of at least one of the externally added fine particles is 300 μC / g or more.
JP 11-95480 A JP 2000-338712 A JP 2003-215838 A

トナーの母体微粒子は、結着樹脂として熱可塑性樹脂を用い、着色剤、帯電制御剤、離型剤等の添加剤成分とともに結着樹脂を溶融混練し、粉砕し、分級することにより得られるが、こうして粉砕して得られる母体微粒子は、粒径のバラツキが大きくなる。そのため、外添剤を母体微粒子と混合して母体微粒子の表面に外添剤を被覆する場合個々の母体微粒子の粒径によりその表面に被覆される外添剤の被覆率が異なってくる。すなわち、粒径の大きい母体微粒子の表面には外添剤が付着しやすくなって被覆率が大きくなるが、粒径の小さい母体微粒子には外添剤が付着しにくくなって被覆率が小さくなる傾向がある。これは、粒径の小さい母体微粒子が粒径の大きい母体微粒子の間に入り込み、外添剤と混合したときに粒径の大きい母体微粒子のほうが外添剤に付着しやすくなるためと考えられる。そして、外添剤の混合比率は母体微粒子の平均粒径に基づいて決めているため、平均粒径より小さい母体微粒子に対しては外添剤の被覆率は小さくならざるを得ない。   The toner base fine particles can be obtained by using a thermoplastic resin as a binder resin and melt-kneading, pulverizing, and classifying the binder resin together with additive components such as a colorant, a charge control agent, and a release agent. The base fine particles obtained by pulverization in this way have large particle size variations. Therefore, when the external additive is mixed with the base fine particles and the surface of the base fine particles is coated, the coverage of the external additive coated on the surface varies depending on the particle size of each base fine particle. That is, the external additive easily adheres to the surface of the base fine particles having a large particle size and the coverage is increased, but the external additive is difficult to adhere to the base fine particles having a small particle size and the coverage is reduced. Tend. This is presumably because the base fine particles having a small particle diameter enter between the base fine particles having a large particle diameter, and the base fine particles having a large particle diameter are more likely to adhere to the external additive when mixed with the external additive. Since the mixing ratio of the external additive is determined based on the average particle diameter of the base fine particles, the coverage of the external additive has to be small for the base fine particles smaller than the average particle diameter.

このように、粒径の違いにより母体微粒子の被覆率が異なってくると、粒径により帯電性能に差が生じるようになって、トナーの帯電不良による画像劣化の原因となる。そのため、外添剤を被覆した母体微粒子をさらに篩い分けして母体微粒子の粒径を揃えることも考えられるが、使用されない無駄なトナーが生じることとなり、歩留まりが悪くなってしまう。   As described above, when the coverage of the base fine particles varies depending on the particle size, the charging performance varies depending on the particle size, which causes image deterioration due to poor charging of the toner. For this reason, it is conceivable that the base fine particles coated with the external additive are further sieved to make the base fine particles have the same particle size, but wasteful toner that is not used is generated, resulting in poor yield.

そこで、本発明は、粒径にバラツキのある母体微粒子に対して外添剤を含む後処理剤微粒子の被覆率をその粒径範囲ごとに調整して帯電性能等の特性が良好で歩留まりの良いトナー及びその製造方法を提供することを目的とするものである。   Therefore, the present invention adjusts the coverage of the post-treatment agent fine particles containing external additives to the base fine particles having a variation in particle size for each particle size range, and has good characteristics such as charging performance and good yield. An object of the present invention is to provide a toner and a manufacturing method thereof.

本発明に係るトナーは、結着樹脂を主成分とする母体微粒子と、該母体微粒子の表面を被覆する後処理剤微粒子とを備えたトナーであって、所定の粒径範囲の前記母体微粒子に関する前記後処理剤微粒子の被覆率が当該粒径範囲よりも小さい粒径範囲の前記母体微粒子に関する前記後処理剤微粒子の被覆率よりも小さく設定されていることを特徴とする。さらに、前記後処理剤微粒子は、ケイ酸微粒子であることを特徴とする。   The toner according to the present invention is a toner comprising base fine particles mainly composed of a binder resin and post-treatment fine particles covering the surface of the base fine particles, and relates to the base fine particles having a predetermined particle size range. The coverage of the post-treatment agent fine particles is set to be smaller than the coverage of the post-treatment agent fine particles with respect to the base fine particles having a particle size range smaller than the particle size range. Further, the post-treatment agent fine particles are silicate fine particles.

本発明に係るトナーの製造方法は、結着樹脂を主成分とする母体微粒子を複数の粒径範囲に分級する分級工程と、分級された第一粒径範囲の母体微粒子に対して後処理剤微粒子を被覆する第一被覆工程と、前記第一粒径範囲よりも粒径が小さい第二粒径範囲の母体微粒子に対して前記第一被覆工程における後処理剤微粒子の被覆率よりも被覆率が大きくなるように後処理剤微粒子を被覆する第二被覆工程と、第一及び第二被覆工程によりそれぞれ被覆された母体微粒子を混合する混合工程とを備えたことを特徴とする。さらに、前記後処理剤微粒子は、ケイ酸微粒子であることを特徴とする。   A method for producing a toner according to the present invention includes a classification step of classifying base fine particles mainly composed of a binder resin into a plurality of particle size ranges, and a post-treatment agent for the classified base fine particles in a first particle size range. The first coating step for coating the fine particles, and the coverage of the base fine particles in the second particle size range smaller than the first particle size range than the coverage of the post-treatment agent fine particles in the first coating step The second coating step for coating the fine particles of the post-treatment agent so as to increase, and the mixing step for mixing the base particles coated in the first and second coating steps, respectively. Further, the post-treatment agent fine particles are silicate fine particles.

上記のような構成を有することで、所定の粒径範囲の母体微粒子に関する後処理剤微粒子の被覆率が当該粒径範囲よりも小さい粒径範囲の母体微粒子に関する後処理剤微粒子の被覆率よりも小さく設定されているので、小さい粒径範囲の母体微粒子に関する後処理剤微粒子の被覆率のほうがそれよりも大きい粒径範囲の母体微粒子の被覆率より大きくなり、小さい粒径範囲の母体微粒子にも良好な帯電性能等の特性が付与されるようになる。そのため、粒径のバラツキが大きい母体微粒子に対しても個々の母体微粒子に良好な帯電性能等の特性が付与されたトナーとなって優れた画像品質を形成することができる。また、従来帯電不良となっていた小さい粒径の母体微粒子に対しても良好な帯電性能等の特性を与えることができることから、トナーの歩留まりも向上させることができる。   By having the above-described configuration, the coverage of the post-treatment agent fine particles with respect to the base fine particles having a predetermined particle size range is smaller than the coverage of the post-treatment agent fine particles with respect to the base fine particles having a particle size range smaller than the particle size range. Since it is set to be small, the coverage of the post-treatment agent fine particles with respect to the base fine particles in the small particle size range becomes larger than the coverage of the base fine particles in the larger particle size range, and also to the base fine particles in the small particle size range. Good characteristics such as charging performance are imparted. Therefore, even with respect to the base fine particles having a large variation in particle diameter, it becomes a toner in which characteristics such as good charging performance are imparted to the individual base fine particles, and excellent image quality can be formed. In addition, since characteristics such as good charging performance can be imparted to the base particles having a small particle diameter, which has been poorly charged, the toner yield can also be improved.

そして、後処理剤微粒子がケイ酸微粒子である場合、小さい粒径範囲の母体微粒子はその重量に比べて帯電量が高くなる傾向があるが、ケイ酸微粒子の被覆率を大きくすることで、大きい粒径範囲の母体微粒子とほぼ同じレベルの帯電量とすることが可能となる。また、小さい粒径範囲の母体微粒子は、大きい粒径範囲の母体微粒子の間に入り込むため流動性が悪くなる傾向があるが、ケイ酸微粒子の被覆率を大きくすることで、その流動性を高めることもできる。   When the post-treatment agent fine particles are silicate fine particles, the base fine particles having a small particle size range tend to have a higher charge amount than their weight, but the larger the silicate fine particle coverage, the larger It becomes possible to set the charge amount to almost the same level as the base fine particles in the particle size range. In addition, the base fine particles having a small particle size range tend to deteriorate in fluidity because they enter between the base fine particles having a large particle size range, but the fluidity is improved by increasing the coverage of the silicate fine particles. You can also.

また、本発明に係るトナーの製造方法は、母体微粒子をいったん複数の粒径範囲に分級した後粒径範囲毎に後処理剤微粒子の被覆率が異なるようにそれぞれ被覆してから混合するようにしているので、粒径範囲の粒径の大小に合せて被覆率を容易に調整することができる。したがって、粒径のバラツキの大きい母体微粒子を用いた場合でも全体として良好な帯電性能等の特性を備えたトナーを製造することができ、また粒径の小さい母体微粒子も使用できるので歩留りの向上が可能となる。   In the toner production method according to the present invention, the base fine particles are once classified into a plurality of particle size ranges, and then coated after being coated so that the coverage of the post-treatment agent fine particles is different for each particle size range. Therefore, the coverage can be easily adjusted according to the size of the particle size in the particle size range. Accordingly, even when base particles having a large variation in particle diameter are used, a toner having characteristics such as good charging performance as a whole can be produced, and since mother particles having a small particle diameter can also be used, the yield can be improved. It becomes possible.

ここで、母体微粒子とは、主成分となる結着樹脂に、着色剤、帯電制御剤、離型剤等の各種添加剤成分が含まれているものである。後処理剤微粒子は、母体微粒子の表面に添加される微粒子で、ケイ酸微粒子等の外添剤を含むものである。   Here, the base fine particles are those in which various additive components such as a colorant, a charge control agent, and a release agent are contained in a binder resin as a main component. The post-treatment agent fine particles are fine particles added to the surface of the base fine particles, and include external additives such as silicate fine particles.

また、被覆率とは、母体微粒子の表面が後処理剤微粒子により覆われている面積比率であり、例えば、母体微粒子の表面積の合計に対する全ケイ酸微粒子の投影面積の合計の比率で求めることができる。   Further, the coverage is an area ratio in which the surface of the base microparticles is covered with the post-processing agent microparticles, and can be obtained, for example, by a ratio of the total projected area of all the silicate microparticles to the total surface area of the base microparticles. it can.

まず、母体微粒子の真比重をρt、母体微粒子1粒子の半径をrtとすると、母体微粒子1粒子の重量Wt及び表面積Stは、以下の式で求められる。 First, when the true specific gravity of the base microparticles [rho t, the radius of the base microparticles 1 particles and r t, weight W t and surface area S t of the base microparticles 1 particles are obtained by the following equation.

Figure 2006145800
Figure 2006145800

後処理剤微粒子の真比重をρs、後処理剤微粒子1粒子の半径をrsとすると、後処理剤微粒子1粒子の重量Ws及び投影面積Ssは、以下の式で求められる。投影面積は、後処理剤微粒子の中心を通る断面積で算出する。 When the true specific gravity of the post-treatment agent fine particles is ρ s and the radius of one post-treatment agent fine particle is r s , the weight W s and the projected area S s of one post-treatment agent fine particle can be obtained by the following equations. The projected area is calculated by a cross-sectional area passing through the center of the post-processing agent fine particles.

Figure 2006145800
Figure 2006145800

次に、後処理剤微粒子の添加率をX%とすると、母体粒子1個に対する後処理剤微粒子の個数Nsは、以下の式で求められる。 Next, assuming that the addition rate of the post-treatment agent fine particles is X%, the number N s of post-treatment agent fine particles for one base particle can be obtained by the following equation.

Figure 2006145800
Figure 2006145800

そして、被覆率Cは、母体粒子の表面積に対する後処理剤微粒子の投影面積の割合として以下の式から求められる。   And the coverage C is calculated | required from the following formula | equation as a ratio of the projection area of post-processing agent microparticles | fine-particles with respect to the surface area of a base particle.

Figure 2006145800
Figure 2006145800

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

本発明に用いる母体微粒子は、主成分である結着樹脂に、着色剤、帯電制御剤、離型剤等の各種添加剤成分を添加して公知の方法に従って製造することができる。   The base fine particles used in the present invention can be produced according to a known method by adding various additive components such as a colorant, a charge control agent, and a release agent to the binder resin as a main component.

結着樹脂としては、例えば、スチレン系樹脂、ポリエステル樹脂、塩化ビニル樹脂、フェノール樹脂、エポキシ樹脂、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、キシレン樹脂、ポリビニルブチラール樹脂等があるが、より好ましい樹脂としては、スチレン系樹脂、ポリエステル樹脂、エポキシ樹脂等を挙げることができる。これらの樹脂は単独又は複合して用いてもよい。   Examples of the binder resin include styrene resins, polyester resins, vinyl chloride resins, phenol resins, epoxy resins, ionomer resins, polyurethane resins, silicone resins, ketone resins, xylene resins, polyvinyl butyral resins, and the like. Examples of the resin include a styrene resin, a polyester resin, and an epoxy resin. These resins may be used alone or in combination.

着色剤としては、公知の顔料や染料を用いることができる。例えば、酸化チタン、カーボンブラック、アルミナホワイト、炭酸カルシウム、紺青、フタロシアニンブルー、フタロシアニングリーン、ベンジンイエロー、ニグロシン系染料、アゾ系染顔料などの着色剤を単独または混合して使用される。また、着色剤の含有量は、結着樹脂100重量部に対して3〜20重量部とするのが好ましい。   A known pigment or dye can be used as the colorant. For example, a colorant such as titanium oxide, carbon black, alumina white, calcium carbonate, bitumen, phthalocyanine blue, phthalocyanine green, benzine yellow, nigrosine dye, azo dye or pigment is used alone or in combination. Moreover, it is preferable that content of a coloring agent shall be 3-20 weight part with respect to 100 weight part of binder resin.

帯電制御剤としては、例えばニグロシン系染料、第4アンモニウム塩、トリアミノトリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂等の正荷電性帯電制御剤やCr,Co,Al,Fe等の金属含有アゾ染料、サリチル酸金属化合物、カリックスアレン化合物、アルキルサリチル酸金属化合物等の負荷電性帯電制御剤が挙げられる。帯電制御剤は、トナーの帯電特性をみながら必要に応じて添加されるが、結着樹脂100重量部に対して1〜5重量部とするのが好ましい。   Examples of the charge control agent include positive charge control agents such as nigrosine dyes, quaternary ammonium salts, triaminotriphenylmethane compounds, imidazole compounds, polyamine resins, and metals containing Cr, Co, Al, Fe and the like. Examples include negatively charged charge control agents such as azo dyes, salicylic acid metal compounds, calixarene compounds, and alkylsalicylic acid metal compounds. The charge control agent is added as necessary while observing the charging characteristics of the toner, but is preferably 1 to 5 parts by weight with respect to 100 parts by weight of the binder resin.

離型剤としては、例えば、ポリエチレンワックス、ポリプロピレンワックス、パラフィンワックス等が挙げられる。離型剤を添加することで耐オフセット性を向上させることができる。   Examples of the mold release agent include polyethylene wax, polypropylene wax, and paraffin wax. Offset resistance can be improved by adding a mold release agent.

上述した添加剤以外にも、定着性を向上させるために低融点の材料を添加するようにしてもよい。   In addition to the additives described above, a low melting point material may be added in order to improve fixability.

以上のような添加剤を結着樹脂に加えて公知のミキサーで混合した後所定の条件で溶融混練し、固形化したものをクラッシャーやジェットミル等の粉砕機で粉砕し、風力分級機等の分級機で分級して母体微粒子を製造することができる。こうした母体微粒子の製造方法は公知の方法を用いればよい。母体微粒子の平均粒径は、5μm〜9μmのものが好ましい。母体微粒子の粒径は、マルチサイザー等の測定装置を用いて測定することができる。   Add the above additives to the binder resin, mix with a known mixer, melt and knead under specified conditions, crush the solidified with a crusher such as a crusher or jet mill, The fine particles can be produced by classification with a classifier. A known method may be used as a method for producing such base fine particles. The average particle diameter of the base fine particles is preferably 5 μm to 9 μm. The particle diameter of the base fine particles can be measured using a measuring device such as a multisizer.

本発明に用いる後処理剤微粒子としてケイ酸微粒子を例に説明する。ケイ酸微粒子としては、例えば、無水二酸化ケイ素(シリカ)が代表的なものとして挙げられるが、ケイ酸アルミニウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸マグネシウムといったケイ酸塩を用いることも可能である。ケイ酸微粒子の粒径は、10nm〜500nmのものが好ましい。   As an example of the fine particles of post-treatment agent used in the present invention, silicate particles will be described. As typical silicate fine particles, for example, anhydrous silicon dioxide (silica) can be cited as a typical example, but silicates such as aluminum silicate, sodium silicate, potassium silicate, and magnesium silicate can also be used. . The particle diameter of the silicic acid fine particles is preferably 10 nm to 500 nm.

次に、トナーを製造する工程を説明する。図1は、トナーの製造工程に関する概略図を示している。結着樹脂を主成分とし上述した添加剤を含む母体微粒子を分級工程10で粒径範囲の大きいものと小さいものとの2つに分級する。分級には、風力分級機等の公知の分級機を用いて行う。母体微粒子は既に分級されて所定の粒径範囲に揃えられていることから、さらに粒径の小さい粒径範囲のもの及び粒径の大きい粒径範囲のものの2つ粒径範囲に細分する。粒径の小さい粒径範囲は、母体微粒子の平均粒径より1〜2μm程度小さい平均粒径にし、粒径の大きい粒径範囲は、母体微粒子の平均粒径より1〜2μm程度おおきくなるように細分するとよい。   Next, a process for producing toner will be described. FIG. 1 is a schematic view relating to a toner manufacturing process. In the classification step 10, the base fine particles containing the binder resin as a main component and containing the above-described additives are classified into two particles having a large particle size range and one having a small particle size range. The classification is performed using a known classifier such as an air classifier. Since the base fine particles are already classified and arranged in a predetermined particle size range, they are further subdivided into two particle size ranges: those having a smaller particle size range and those having a larger particle size range. The small particle size range is set to an average particle size that is about 1 to 2 μm smaller than the average particle size of the base particles, and the large particle size range is set to be about 1 to 2 μm larger than the average particle size of the base particles. Subdivide.

例えば、母体微粒子の平均粒径が7μmとすると、粒径の小さい粒径範囲は、平均粒径が6μm、粒径の大きい粒径範囲は、平均粒径が8μmとするとよい。細分する粒径範囲はできるだけ細分化したほうが望ましいが、母体微粒子の粒径がある程度揃っている場合には2つ程度に細分化すれば十分効果が発揮される。   For example, if the average particle size of the base particles is 7 μm, the particle size range with a small particle size is preferably 6 μm, and the particle size range with a large particle size is 8 μm. The particle size range to be subdivided is desirably subdivided as much as possible. However, when the particle diameters of the base microparticles are uniform to some extent, the effect can be sufficiently achieved by subdividing into about two.

こうして細分化された母体微粒子は、別々の被覆工程20及び21でケイ酸微粒子と公知のミキサーにより混合されてその表面を被覆するようにする。粒径の大きい粒径範囲の母体微粒子は、第一被覆工程20でケイ酸微粒子と混合され、粒径の小さい粒径範囲の母体微粒子は、第二被覆工程21でケイ酸微粒子と混合される。混合するケイ酸微粒子の添加率は、予め設定された被覆率に基づき上述した算出式により求められる。そして、被覆率は、粒径の小さい粒径範囲の母体微粒子のほうが大きくなるように設定される。   The finely divided base fine particles are mixed with silicate fine particles by a known mixer in separate coating steps 20 and 21 so as to cover the surface thereof. Base particles having a larger particle size range are mixed with silicate particles in the first coating step 20, and mother particles having a smaller particle size range are mixed with silicate particles in the second coating step 21. . The addition rate of the silicic acid fine particles to be mixed is obtained by the above-described calculation formula based on a preset coverage. The coverage is set so that the base fine particles having a smaller particle size range have a larger particle size.

第一被覆工程20及び第二被覆工程21でそれぞれ被覆された母体微粒子は、混合工程30において公知のミキサーにより互いに一様に分布するように混合されてトナーが製造される。   In the mixing step 30, the base fine particles respectively coated in the first coating step 20 and the second coating step 21 are mixed so as to be evenly distributed to each other to produce a toner.

製造されたトナーは、粒径の小さい粒径範囲の母体微粒子のケイ酸微粒子の被覆率が大きくなっているので、粒径の大きい粒径範囲の母体微粒子に比べてケイ酸微粒子が多く付着してその分帯電性能が抑えられ、また流動性が向上するようになる。   The manufactured toner has a higher coverage of the silicate fine particles of the base particles in the particle size range with a smaller particle size, so that more silicate particles adhere to the base particles in the particle size range with a larger particle size. Accordingly, the charging performance is suppressed, and the fluidity is improved.

母体微粒子として粒径範囲3μm〜11μmのものが90%以上で、平均粒径7μmのものを準備した。母体微粒子は、結着樹脂としてスチレン−アクリル重合体を主成分とし、結着樹脂100重量部に対して、着色剤としてカーボンブラック7重量部、帯電制御剤としてニグロシン染料0.5重量部、離型剤としてポリエチレンワックス及びポリエチレンワックスの混合物2重量部、さらに定着助剤を適量加えて製造した。   As the base fine particles, those having a particle diameter range of 3 μm to 11 μm of 90% or more and an average particle diameter of 7 μm were prepared. The base fine particles are mainly composed of a styrene-acrylic polymer as a binder resin, 7 parts by weight of carbon black as a colorant, 0.5 parts by weight of nigrosine dye as a charge control agent, and 100 parts by weight of a binder resin. A mold was prepared by adding 2 parts by weight of a mixture of polyethylene wax and polyethylene wax, and an appropriate amount of fixing aid.

母体微粒子を風力分級機により粒径範囲が3μm〜7μmと7μm〜11μmとに細分して分級した。粒径範囲が3μm〜7μmのものは平均粒径が6μmで、粒径範囲が7μm〜11μmのものは平均粒径が8μmであった。   The base fine particles were classified by an air classifier and subdivided into particle size ranges of 3 μm to 7 μm and 7 μm to 11 μm. When the particle size range is 3 μm to 7 μm, the average particle size is 6 μm, and when the particle size range is 7 μm to 11 μm, the average particle size is 8 μm.

次に、ケイ酸微粒子として、粒径が50nmの無水二酸化ケイ素(シリカ)を用いて母体微粒子表面を被覆した。母体微粒子に添加する量は、粒径範囲3μm〜7μmの母体粒子では、母体微粒子100重量部に対して2重量部、粒径範囲7μm〜11μmの母体粒子では、母体微粒子100重量部に対して1重量部を加え、ヘンシェルミキサー(三井鉱山社製)によりそれぞれ常温で5分間撹拌した。   Next, the surface of the base fine particles was coated with anhydrous silicon dioxide (silica) having a particle size of 50 nm as silicate fine particles. The amount added to the base microparticles is 2 parts by weight for 100 parts by weight of the base microparticles for base particles with a particle size range of 3 μm to 7 μm, and for 100 parts by weight of the base particles for base particles with a particle size range of 7 μm to 11 μm. 1 part by weight was added, and the mixture was stirred for 5 minutes at room temperature using a Henschel mixer (Mitsui Mining Co., Ltd.).

これら2つの母体微粒子について被覆率を算出したところ、粒径範囲3μm〜7μmの母体粒子では、母体粒子の真比重をρtを0.3、シリカ微粒子の真比重をρsを0.3とすると、母体微粒子の半径rtは6/2μm、シリカ微粒子の半径rsは0.05/2μmであり、添加率Xは2%であるから、上記数式4に基づいて以下のとおり算出される。 When the coverage was calculated for these two base fine particles, for the base particles having a particle size range of 3 μm to 7 μm, the true specific gravity of the base particles was ρ t 0.3, the true specific gravity of the silica fine particles was ρ s 0.3. Then, the radius r t of the base fine particles is 6/2 μm, the radius r s of the silica fine particles is 0.05 / 2 μm, and the addition rate X is 2%. .

Figure 2006145800
Figure 2006145800

粒径範囲7μm〜11μmの母体粒子では、母体微粒子の半径rtは8/2μm、シリカ微粒子の半径rsは0.05/2μmであり、添加率Xは1%であるから、上記数式4に基づいて以下のとおり算出される。 In the base particles having a particle size range of 7 μm to 11 μm, the radius r t of the base particles is 8/2 μm, the radius r s of the silica particles is 0.05 / 2 μm, and the addition rate X is 1%. Is calculated as follows.

Figure 2006145800
Figure 2006145800

したがって、粒径の大きい粒径範囲の母体微粒子に比べて粒径の小さい粒径範囲の母体微粒子のほうが被覆率が大きく設定されている。   Accordingly, the base particles having a smaller particle size range are set to have a higher coverage than the parent particles having a larger particle size range.

次に、被覆率の異なる母体微粒子をヘンシェルミキサー(三井鉱山社製)に一緒に投入して2分間混合した。こうして製造されたトナーを用いて現像を行ったところかぶりの発生のない良好な画像品質の画像を形成することができた。
[比較例]
Next, the base particles having different coverages were put together in a Henschel mixer (Mitsui Mining Co., Ltd.) and mixed for 2 minutes. When development was performed using the toner thus produced, an image with good image quality free from fogging could be formed.
[Comparative example]

実施例と同じ母体微粒子を用いて、分級することなく実施例と同じケイ酸微粒子を加えた。ケイ酸微粒子の添加量は、母体微粒子100重量部に対して1.5重量部とした。母体微粒子にケイ酸微粒子を添加してミキサーで撹拌し、母体微粒子の表面にケイ酸微粒子で被覆した。この場合の被覆率を算出すると、以下のとおりである。   Using the same base particles as in the examples, the same silicate particles as in the examples were added without classification. The addition amount of the silicic acid fine particles was 1.5 parts by weight with respect to 100 parts by weight of the base fine particles. Silica fine particles were added to the base fine particles and stirred with a mixer, and the surface of the base fine particles was coated with the silica fine particles. The coverage in this case is calculated as follows.

Figure 2006145800
Figure 2006145800

しかしながら、実施例に示すように母体微粒子含まれる平均粒径8μmの粒径範囲のもの及び平均粒径6μmの粒径範囲のものについてそれぞれ同じようにケイ酸微粒子が添加しているものとすると、それぞれの被覆率は、平均粒径が8μmの場合で、以下のとおり算出される。   However, as shown in the examples, silicate fine particles are added in the same manner with respect to those having a mean particle size of 8 μm and those having a mean particle size of 6 μm included in the base fine particles, Each coverage is calculated as follows when the average particle diameter is 8 μm.

Figure 2006145800
Figure 2006145800

また、平均粒径が6μmの場合で、以下のとおり算出される。   Further, when the average particle size is 6 μm, the calculation is performed as follows.

Figure 2006145800
Figure 2006145800

したがって、粒径の小さい粒径範囲のものについては、粒径の大きい粒径範囲のものに比べて被覆率が小さくなる傾向がある。そのため、粒径の小さいトナーの帯電性能が高くなってかぶりが発生しやすくなり、画像品質に悪影響を及ぼすようになる。   Accordingly, the coverage of particles having a small particle size range tends to be smaller than that of particles having a large particle size range. For this reason, the charging performance of the toner having a small particle diameter becomes high and fog is likely to occur, which adversely affects the image quality.

本発明に係る実施形態に関する製造工程の説明図である。It is explanatory drawing of the manufacturing process regarding embodiment which concerns on this invention.

符号の説明Explanation of symbols

10 分級工程
20 第一被覆工程
21 第二被覆工程
30 混合工程
10 classification process 20 first coating process 21 second coating process 30 mixing process

Claims (4)

結着樹脂を主成分とする母体微粒子と、該母体微粒子の表面を被覆する後処理剤微粒子とを備えたトナーであって、所定の粒径範囲の前記母体微粒子に関する前記後処理剤微粒子の被覆率が当該粒径範囲よりも小さい粒径範囲の前記母体微粒子に関する前記後処理剤微粒子の被覆率よりも小さく設定されていることを特徴とするトナー。   A toner comprising matrix fine particles mainly composed of a binder resin and post-treatment fine particles that coat the surface of the matrix fine particles, and covering the post-treatment fine particles with respect to the matrix fine particles in a predetermined particle size range A toner having a rate set smaller than a coverage of the post-processing agent fine particles with respect to the base fine particles having a particle size range smaller than the particle size range. 前記後処理剤微粒子は、ケイ酸微粒子であることを特徴とする請求項1に記載のトナー。   The toner according to claim 1, wherein the post-treatment agent fine particles are silicate fine particles. 結着樹脂を主成分とする母体微粒子を複数の粒径範囲に分級する分級工程と、分級された第一粒径範囲の母体微粒子に対して後処理剤微粒子を被覆する第一被覆工程と、前記第一粒径範囲よりも粒径が小さい第二粒径範囲の母体微粒子に対して前記第一被覆工程における後処理剤微粒子の被覆率よりも被覆率が大きくなるように後処理剤微粒子を被覆する第二被覆工程と、第一及び第二被覆工程によりそれぞれ被覆された母体微粒子を混合する混合工程とを備えたことを特徴とするトナー製造方法。   A classification step of classifying the base fine particles mainly composed of a binder resin into a plurality of particle size ranges; a first coating step of coating the post-treatment agent fine particles on the classified base particles of the first particle size range; The post-treatment agent fine particles are applied so that the coverage of the base fine particles in the second particle size range smaller than the first particle size range is larger than the coverage of the post-treatment agent fine particles in the first coating step. A toner manufacturing method comprising: a second coating step for coating; and a mixing step for mixing the base fine particles respectively coated in the first and second coating steps. 前記後処理剤微粒子は、ケイ酸微粒子であることを特徴とする請求項3に記載のトナー製造方法。   The toner manufacturing method according to claim 3, wherein the post-treatment agent fine particles are silicate fine particles.
JP2004335283A 2004-11-19 2004-11-19 Toner and method for manufacturing same Pending JP2006145800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335283A JP2006145800A (en) 2004-11-19 2004-11-19 Toner and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335283A JP2006145800A (en) 2004-11-19 2004-11-19 Toner and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2006145800A true JP2006145800A (en) 2006-06-08

Family

ID=36625585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335283A Pending JP2006145800A (en) 2004-11-19 2004-11-19 Toner and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2006145800A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824866A (en) * 2018-08-14 2020-02-21 佳能株式会社 Toner and image forming apparatus
US10775710B1 (en) 2019-04-22 2020-09-15 Canon Kabushiki Kaisha Toner
JP2020181033A (en) * 2019-04-24 2020-11-05 キヤノン株式会社 toner
US11134570B2 (en) * 2016-01-29 2021-09-28 Cyntec Co., Ltd. Electronic module with a magnetic device
US11429032B2 (en) 2019-08-29 2022-08-30 Canon Kabushiki Kaisha Toner and method of producing toner
US11720036B2 (en) 2020-06-19 2023-08-08 Canon Kabushiki Kaisha Toner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134570B2 (en) * 2016-01-29 2021-09-28 Cyntec Co., Ltd. Electronic module with a magnetic device
CN110824866A (en) * 2018-08-14 2020-02-21 佳能株式会社 Toner and image forming apparatus
US10877386B2 (en) 2018-08-14 2020-12-29 Canon Kabushiki Kaisha Toner
US10775710B1 (en) 2019-04-22 2020-09-15 Canon Kabushiki Kaisha Toner
JP2021009345A (en) * 2019-04-22 2021-01-28 キヤノン株式会社 toner
JP7373321B2 (en) 2019-04-22 2023-11-02 キヤノン株式会社 toner
JP2020181033A (en) * 2019-04-24 2020-11-05 キヤノン株式会社 toner
JP7171505B2 (en) 2019-04-24 2022-11-15 キヤノン株式会社 toner
US11429032B2 (en) 2019-08-29 2022-08-30 Canon Kabushiki Kaisha Toner and method of producing toner
US11720036B2 (en) 2020-06-19 2023-08-08 Canon Kabushiki Kaisha Toner

Similar Documents

Publication Publication Date Title
KR100940238B1 (en) Electrophotographic developing agent and electrophotographic image forming apparatus using the same
US7829733B2 (en) Change control resin particles and toner for developing electrostatic images
JP2001228647A (en) Electrostatic charge image developing toner, method of manufacturing the same, developer and method of forming image
JP2000267334A (en) Electrostatic charge image developing toner and its manufacture, this image developing developer and image forming method
JP5222792B2 (en) Toner for electrostatic charge development, image forming apparatus, and image forming method
JP4145631B2 (en) Non-magnetic one-component toner and developing method using the same
JP2006145800A (en) Toner and method for manufacturing same
JP3752877B2 (en) Toner for developing electrostatic image, method for producing the same, electrostatic image developer, and image forming method
JP2007093732A (en) Toner
KR20120085080A (en) Electrophotographic toner and process for preparing the same
US9389527B2 (en) Inorganic particle, electrostatic charge image developing toner, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
JP2007093653A (en) Toner
JP2010122442A (en) Image forming apparatus
JP2004246057A (en) Electrostatic charge image developing toner, image forming method, and image forming apparatus
JP2007256363A (en) Toner for developing electrostatic latent image
JP2005316056A (en) Magnetic fine particle dispersion type resin carrier and two-component series developer
JP2005345735A (en) Electrophotographic two-component developer
JP5195005B2 (en) Color image forming method
JP2007057726A (en) Manufacturing device and method of static charge image developing toner
JP2008083186A (en) Toner for replenishment and image forming method
JPH1039537A (en) Electrophotographic toner and its production
JP2007292854A (en) Two-component developer and image forming method
JP2017058404A (en) Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, image forming apparatus, and image forming method
JP4139337B2 (en) Two-component developer
JP2021033234A (en) Toner and method for manufacturing toner