JP2006145387A - Eccentricity measuring instrument for lens system - Google Patents

Eccentricity measuring instrument for lens system Download PDF

Info

Publication number
JP2006145387A
JP2006145387A JP2004336046A JP2004336046A JP2006145387A JP 2006145387 A JP2006145387 A JP 2006145387A JP 2004336046 A JP2004336046 A JP 2004336046A JP 2004336046 A JP2004336046 A JP 2004336046A JP 2006145387 A JP2006145387 A JP 2006145387A
Authority
JP
Japan
Prior art keywords
measured
lens
unit
light source
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004336046A
Other languages
Japanese (ja)
Inventor
Hiroyuki Itayama
寛之 板山
Toshiki Kumagai
俊樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004336046A priority Critical patent/JP2006145387A/en
Publication of JP2006145387A publication Critical patent/JP2006145387A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eccentricity measuring instrument for a lens system capable of measuring precisely an eccentric level of a measured lens, irrespective of arrangement of the measured lens. <P>SOLUTION: This eccentricity measuring instrument 1 is provided with a light source part 2, a zoom optical part 11 having a plurality of moving lenses, and for regulating a condensing position of a light beam from the light source part 2 on a measured face concerned in a measured lens part 10 arranged with the measured lens, a personal computer (control part) 13 for controlling positions of the moving lenses, an observation optical part 15 for observing a reflected image from the measured face, a computing part 16 for calculating the eccentric level of the measured face, based on a shift amount between a reflected image position image-focused in the observation optical part 15 and a reference position on the measured face, and a measured lens support part 17 capable of inverting an incident direction of the beam from the light source part 2 to the measured lens part 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カメラ等のレンズ系において、各面の偏心量を測定するレンズ系の偏心測定装置に関する。   The present invention relates to a lens system eccentricity measuring device for measuring the amount of eccentricity of each surface in a lens system such as a camera.

レンズ系の偏心測定では、実使用状態の被測定レンズ部を装置に固定した後、オートコリメーション法と呼ばれる方法によって偏心量を測定する方法が提案されている(例えば、特許文献1参照。)。
オートコリメーション法による測定は、例えば、図11に示すように、移動レンズ101A(移動後の位置のレンズを101Bとする。)と固定レンズ101Cを同一の光軸C上に配したズーム光学部102及び被測定レンズ103A、103B、103Cを有する被測定レンズ部105を光源部106の光軸C上に配した装置を用いて行われる。この際、移動レンズ101Aは、被測定レンズ103A、103B、103Cにおける被測定面107A、107B、107C、107D、107E、107Fに光源部106からの測定光を球心入射させる位置に配される。そして、被測定レンズ部105を光軸C回りに回転させたときの点像の回転中心と回転開始時の位置とのずれ量から偏心量を算出する
In lens system eccentricity measurement, a method of measuring the amount of eccentricity by a method called an autocollimation method after fixing a lens portion to be measured in an actual use state to the apparatus has been proposed (for example, see Patent Document 1).
In the measurement by the autocollimation method, for example, as shown in FIG. 11, the zoom optical unit 102 in which the moving lens 101A (the lens at the moved position is 101B) and the fixed lens 101C are arranged on the same optical axis C. In addition, the measurement is performed using an apparatus in which the measured lens unit 105 including the measured lenses 103A, 103B, and 103C is arranged on the optical axis C of the light source unit 106. At this time, the moving lens 101A is disposed at a position where the measurement light from the light source unit 106 is incident on the measurement target surfaces 107A, 107B, 107C, 107D, 107E, and 107F of the measurement target lenses 103A, 103B, and 103C. Then, the amount of eccentricity is calculated from the amount of deviation between the rotation center of the point image when the lens unit 105 to be measured is rotated about the optical axis C and the position at the start of rotation.

このとき、被測定面107A、107B、107C、107D、107E、107Fの反射像を精度良く観察するためには、それぞれの反射像を互いに鮮明に分離する必要がある。そのためには、各被測定面107A、107B、107C、107D、107E、107Fの球心位置が、1つの被測定面で得られる反射像と他の面で得られる反射像とが同時に観察されず、分離して観察可能な間隔以上に離れている必要がある。   At this time, in order to accurately observe the reflected images of the measurement target surfaces 107A, 107B, 107C, 107D, 107E, and 107F, it is necessary to clearly separate the reflected images from each other. For this purpose, the spherical positions of the measured surfaces 107A, 107B, 107C, 107D, 107E, and 107F are not observed simultaneously with the reflected image obtained on one measured surface and the reflected image obtained on the other surface. , It must be separated by more than the distance that can be separated and observed.

しかしながら、上記従来の技術では、図11に示すように、被測定面107Cの球心位置が、他の被測定面107A、107B、107D、107E、107Fの何れかの被測定面の球心位置と分離して観察可能な間隔以内にまで接近してしまう場合、被測定面107Cの反射像と他の被測定面の反射像とが接近して同時に観察されてしまい、精度良い観察ができない場合がある。
特開平5−312670号公報
However, in the above conventional technique, as shown in FIG. 11, the position of the sphere center of the measured surface 107C is the position of the sphere center of any one of the other measured surfaces 107A, 107B, 107D, 107E, 107F. When the distance between the reflected image on the surface to be measured 107C and the reflected image on the other surface to be measured approaches and is observed simultaneously, the observation cannot be performed with high accuracy. There is.
JP-A-5-31670

本発明は上記事情に鑑みて成されたものであり、被測定レンズの配置に拘わらず、被測定レンズの偏心量を高精度に測定できるレンズ系の偏心測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a lens system eccentricity measuring apparatus capable of measuring the eccentricity of a lens to be measured with high accuracy regardless of the arrangement of the lens to be measured. .

本発明は、上記課題を解決するため、以下の手段を採用する。
本発明に係る偏心測定装置は、光源部と、集光位置調整用の移動レンズを移動可能に有し、被測定レンズが配された被測定レンズ部に係る被測定面の前記光源部からの光束の集光位置を調整するズーム光学部と、前記移動レンズの位置を制御する制御部と、前記被測定面からの反射像を観察する観察光学部と、前記観察光学部に結像する前記反射像位置と前記被測定面の基準位置とのずれ量に基づいて前記被測定面の偏心量を算出する演算部と、前記被測定レンズ部への前記光源部からの光束の入射方向を反転可能にして前記被測定レンズ部を支持する被測定レンズ支持部とを備えていることを特徴とする。
The present invention employs the following means in order to solve the above problems.
The decentration measuring apparatus according to the present invention has a light source section and a moving lens for adjusting the condensing position that can be moved, from the light source section of the measured surface related to the measured lens section on which the measured lens is arranged. A zoom optical unit that adjusts a light collection position, a control unit that controls the position of the moving lens, an observation optical unit that observes a reflected image from the surface to be measured, and an image formed on the observation optical unit An arithmetic unit that calculates the amount of eccentricity of the surface to be measured based on the amount of deviation between the reflected image position and the reference position of the surface to be measured, and the incident direction of the light beam from the light source unit to the lens unit to be measured is reversed. And a lens-to-be-measured supporting portion that supports the lens-to-be-measured portion in a possible manner.

この偏心測定装置は、被測定レンズへの光源部光束の入射方向を反転することによって、被測定面と光源部との位置を変えて球心位置を移動することができ、これに対応する移動レンズの位置を変えて、被測定面の反射像を他の被測定面の反射像と分離して観察することができる。   This eccentricity measuring device can move the position of the spherical center by changing the position of the surface to be measured and the light source unit by reversing the incident direction of the light beam of the light source unit to the lens to be measured, and the movement corresponding to this. By changing the position of the lens, the reflected image of the surface to be measured can be observed separately from the reflected image of the other surface to be measured.

また、本発明に係る偏心測定装置は、前記偏心測定装置であって、前記演算部が、前記被測定レンズ部への前記光源部からの光束の入射方向によらずに前記偏心量を測定可能とされていることを特徴とする。
この偏心測定装置は、被測定レンズ支持部によって被測定レンズ部を光源部に対して反転しても、被測定レンズの被測定面の偏心量を好適に測定することができる。
The eccentricity measuring apparatus according to the present invention is the eccentricity measuring apparatus, wherein the calculation unit can measure the amount of eccentricity regardless of the incident direction of the light beam from the light source unit to the lens unit to be measured. It is said that it is said.
This eccentricity measuring apparatus can suitably measure the amount of eccentricity of the measured surface of the lens to be measured even if the lens to be measured is inverted with respect to the light source by the lens support portion to be measured.

また、本発明に係る偏心測定装置は、前記偏心測定装置であって、前記被測定レンズ支持部が、前記被測定レンズ部と前記光源部との最短距離又は最長距離を変えずに前記被測定レンズ部を移動することを特徴とする。   Further, the decentration measuring apparatus according to the present invention is the decentration measuring apparatus, in which the measured lens support section does not change the shortest distance or the longest distance between the measured lens section and the light source section. The lens unit is moved.

この偏心測定装置は、反転前の被測定レンズ部における被測定面の相対位置情報を利用して反転後の被測定面位置を容易に算出することができ、被測定レンズの被測定面の偏心量を好適に測定することができる。   This decentering measuring device can easily calculate the position of the surface to be measured after inversion using the relative position information of the surface to be measured in the lens portion to be measured before inversion, and the eccentricity of the surface to be measured of the lens to be measured. The amount can be suitably measured.

本発明によれば、被測定面の球心位置に対応する移動レンズの位置を変えることができ、所望の被測定面の球心位置のみを観察光学部に結像させて精度良い偏心量測定を行うことができる。   According to the present invention, it is possible to change the position of the moving lens corresponding to the position of the sphere center of the surface to be measured, and to accurately measure the amount of eccentricity by forming an image on only the sphere center position of the desired surface to be measured on the observation optical unit. It can be performed.

本発明に係る第1の実施形態について、図1から図9を参照して説明する。
本実施形態に係る偏心測定装置1は、図1及び図2に示すように、光源部2と、後述する固定レンズ20及びこの固定レンズ20に対して集光位置調整用に移動するための移動レンズ3(移動後の位置のレンズを5で示す。)を有し、被測定レンズ6、7、8が配された被測定レンズ部10に係る被測定面6A、6B、7A、7B、8A、8Bの光源部2からの光束の集光位置を調整するズーム光学部11と、移動レンズ3を移動する駆動部12と、移動レンズ3の位置を制御するパソコン(制御部)13と、被測定面6A、6B、7A、7B、8A、8Bからの反射像Aを観察する観察光学部15と、観察光学部15に結像する反射像A位置と被測定面6A、6B、7A、7B、8A、8Bの基準位置とのずれ量に基づいて被測定面6A、6B、7A、7B、8A、8Bの偏心量を算出する演算部16と、被測定レンズ部10への光源部2からの光束の入射方向を反転可能にして被測定レンズ部10を支持する被測定レンズ支持部17とを備えている。
A first embodiment according to the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the eccentricity measuring apparatus 1 according to this embodiment includes a light source unit 2, a fixed lens 20, which will be described later, and a movement for moving with respect to the fixed lens 20 for adjusting a light collection position. A surface to be measured 6A, 6B, 7A, 7B, 8A having a lens 3 (a lens at a position after movement is indicated by 5) and having a lens to be measured 10 on which the lenses 6, 7, and 8 to be measured are arranged. , 8B, a zoom optical unit 11 that adjusts the condensing position of the light beam from the light source unit 2, a drive unit 12 that moves the moving lens 3, a personal computer (control unit) 13 that controls the position of the moving lens 3, The observation optical unit 15 for observing the reflected image A from the measurement surfaces 6A, 6B, 7A, 7B, 8A, 8B, the position of the reflected image A formed on the observation optical unit 15, and the measured surfaces 6A, 6B, 7A, 7B , 8A, 8B based on the amount of deviation from the reference position 6A, B, 7A, 7B, 8A, 8B, a calculation unit 16 that calculates the amount of eccentricity, and a target that supports the lens unit 10 to be measured by reversing the incident direction of the light beam from the light source unit 2 to the lens unit 10 to be measured. And a measurement lens support 17.

光源部2はレーザーダイオードとされ、光軸C方向に光束を照射可能とされている。
ズーム光学部11は、偏光ビームスプリッタ18を介して光源部2と対向して光軸C上に配されている。ズーム光学部11の光源部2側には固定レンズ20が配されている。
被測定レンズ部10は、図3に示すように、被測定レンズ6、7、8を収納する円筒状のレンズ収納筒部21を備えている。
The light source unit 2 is a laser diode, and can emit a light beam in the direction of the optical axis C.
The zoom optical unit 11 is disposed on the optical axis C so as to face the light source unit 2 via the polarization beam splitter 18. A fixed lens 20 is disposed on the light source unit 2 side of the zoom optical unit 11.
As shown in FIG. 3, the lens-to-be-measured section 10 includes a cylindrical lens housing tube section 21 that houses the lenses to be measured 6, 7, and 8.

被測定レンズ支持部17は、略円環状に形成され、レンズ収納筒部21の外周面に嵌め合わせてレンズ収納筒部21の一端21Aと他端21Bとからの距離が異なるように配される係止部22と、駆動部12と接続されて被測定レンズ部10を光軸C回りに回転駆動させる図示しない回転部と接続された後述する略円筒状の接続部23とを備えている。
なお、上記係止部22がレンズ収納筒部21の外周面に一体的に形成されている場合、被測定レンズ支持部17は、接続部23を備えることになる。
The measured lens support portion 17 is formed in a substantially annular shape, and is fitted to the outer peripheral surface of the lens storage tube portion 21 so that the distance from the one end 21A and the other end 21B of the lens storage tube portion 21 is different. A locking portion 22 and a substantially cylindrical connecting portion 23 (to be described later) connected to a rotating portion (not shown) that is connected to the driving portion 12 and rotates the lens portion 10 to be measured about the optical axis C are provided.
Note that when the locking portion 22 is formed integrally with the outer peripheral surface of the lens housing tube portion 21, the measured lens support portion 17 includes a connection portion 23.

ここで、例えば、図4(a)において、レンズ収納筒部21の一端21A側を上側とする方向から入射光を入射する方向を順方向入射とし、図4(b)においてレンズ収納筒部21の他端21B側を上側とする方向から入射光を入射する方向を逆方向入射とする。
接続部23は、レンズ収納筒部21と嵌合可能とされており、両者が嵌合された状態で接続部23と係止部22とが当接可能とされている。そして、回転部と螺合されて回転部からの回転駆動力を被測定レンズ部10に伝達可能とされている。
Here, for example, in FIG. 4A, the direction in which the incident light enters from the direction in which the one end 21A side of the lens housing tube portion 21 is the upper side is defined as forward incidence, and in FIG. The direction in which the incident light is incident from the direction in which the other end 21B side is the upper side is defined as reverse incidence.
The connecting portion 23 can be fitted to the lens housing cylinder portion 21, and the connecting portion 23 and the locking portion 22 can be brought into contact with each other in a state in which both are fitted. Then, the rotational driving force from the rotating part can be transmitted to the measured lens part 10 by being screwed with the rotating part.

接続部23は、さらに、図5(a)に示すように、被測定レンズ部10を順方向入射とする順方向接続部25と、図5(b)に示すように、被測定レンズ部10を逆方向入射とする逆方向接続部26とを備えており、順方向接続部25と逆方向接続部26とは高さが異なって形成されている。逆方向接続部26の高さは、被測定レンズ部10と光源部2との最短距離を変えずに被測定レンズ部10を順方向入射から逆方向入射に反転移動するために、逆方向入射時の、光源部2とレンズ収納筒部21の他端21Bとの距離が、順方向接続部25と係止部22とを当接させた際の光源部2とレンズ収納筒部21の一端21Aとの距離と同一となる高さとされている。   As shown in FIG. 5A, the connecting portion 23 further includes a forward direction connecting portion 25 that makes the measured lens portion 10 forward incidence, and a measured lens portion 10 as shown in FIG. Is provided with a reverse direction connection portion 26, and the forward direction connection portion 25 and the reverse direction connection portion 26 are formed with different heights. The height of the reverse direction connecting portion 26 is such that the reverse direction incidence is performed in order to reversely move the measured lens portion 10 from the forward incidence to the reverse incidence without changing the shortest distance between the measured lens portion 10 and the light source portion 2. When the distance between the light source unit 2 and the other end 21B of the lens storage tube unit 21 is such that the forward connection unit 25 and the locking unit 22 contact each other, the light source unit 2 and one end of the lens storage tube unit 21 The height is the same as the distance from 21A.

被測定レンズ6、7、8は、順方向入射の際に光源光束の入射方向となる順に被測定面6A、6B、7A、7B、8A、8Bの順に1から6までの面番号を対応させたとき、それぞれの曲率半径R、隣接する被測定面との間隔Dが表1に記載のように構成及び配設されている。   The lenses to be measured 6, 7, and 8 correspond to the surface numbers from 1 to 6 in the order of the surfaces to be measured 6 A, 6 B, 7 A, 7 B, 8 A, and 8 B in the order of the incident direction of the light source light beam when entering in the forward direction. The respective radii of curvature R and the distance D between adjacent measurement surfaces are configured and arranged as shown in Table 1.

Figure 2006145387
Figure 2006145387

この被測定レンズ部10を逆方向入射とした際、光源光束の入射方向となる被測定面6A、6B、7A、7B、8A、8Bの順に1から6までの面番号を付する。このときの各被測定面の曲率半径R、隣接する被測定面との間隔Dを表2に示す。   When the measured lens unit 10 is incident in the reverse direction, surface numbers 1 to 6 are assigned in the order of the measured surfaces 6A, 6B, 7A, 7B, 8A, and 8B that are incident directions of the light source light flux. Table 2 shows the curvature radius R of each measured surface and the distance D between adjacent measured surfaces at this time.

Figure 2006145387
Figure 2006145387

駆動部12は、ズーム光学部11と接続されて移動レンズ3を固定レンズ20に対して光軸C方向に移動駆動させる。
観察光学部15は、偏光ビームスプリッタ18の反射光の集光位置に配された観察カメラ27を備えている。
観察光学部15及び駆動部12は、共にパソコン13に電気的に接続されている。
The drive unit 12 is connected to the zoom optical unit 11 and drives the movable lens 3 to move in the direction of the optical axis C with respect to the fixed lens 20.
The observation optical unit 15 includes an observation camera 27 arranged at the condensing position of the reflected light of the polarization beam splitter 18.
Both the observation optical unit 15 and the drive unit 12 are electrically connected to the personal computer 13.

光源部2、偏光ビームスプリッタ18、ズーム光学部11、観察カメラ27は、光学系支持部材28に取り付けられており、被測定レンズ部10は、光学系支持部材28に対してL字状に配された装置ベース部材30に被測定レンズ支持部17を介して取り付けられている。   The light source unit 2, the polarizing beam splitter 18, the zoom optical unit 11, and the observation camera 27 are attached to an optical system support member 28, and the measured lens unit 10 is arranged in an L shape with respect to the optical system support member 28. The measured device support member 17 is attached to the device base member 30.

演算部16は、パソコン13内に配されており、予め入力された被測定レンズ部10内の各被測定レンズ6、7、8及びズーム光学部11内の移動レンズ3及び固定レンズ20の設計式から、被測定面6A、6B、7A、7B、8A、8Bの順方向入射及び逆方向入射時の球心位置とそれに対応する移動レンズ3の位置を算出するものとされている。
この演算結果に基づき、パソコン13が駆動部12に指示して移動レンズ3を移動する。
The calculation unit 16 is arranged in the personal computer 13, and the design of the lens to be measured 6, 7, 8 in the lens unit 10 to be measured and the movable lens 3 and the fixed lens 20 in the zoom optical unit 11 that are input in advance. From the equation, the positions of the spherical center and the corresponding position of the moving lens 3 at the time of forward incidence and reverse incidence of the measured surfaces 6A, 6B, 7A, 7B, 8A, 8B are calculated.
Based on the calculation result, the personal computer 13 instructs the drive unit 12 to move the moving lens 3.

次に、本実施形態に係る偏心測定装置1による偏心測定方法、及び、作用・効果について説明する。
まず、表1及び表2に示す内容をパソコン13に入力して球心位置を計算させるとともに、装置ベース部材30に順方向接続部25を装着し、レンズ収納筒部21に係止部22が配された状態の被測定レンズ部10を順方向位置として順方向接続部25と嵌合する。
Next, an eccentricity measuring method, an operation and an effect by the eccentricity measuring apparatus 1 according to the present embodiment will be described.
First, the contents shown in Table 1 and Table 2 are input to the personal computer 13 to calculate the position of the ball center, the forward connection portion 25 is attached to the apparatus base member 30, and the locking portion 22 is attached to the lens storage tube portion 21. The lens part 10 to be measured in the arranged state is fitted to the forward connection part 25 with the forward position.

次に、駆動部12を駆動して対応する移動レンズ3を被測定面6A、6B、7A、7B、8A、8Bの計算上の球心位置に集光する位置へ移動する。ここで、最も光源部2に近い被測定面6A以外の被測定面については光源部2との間に他の被測定面をそれぞれ有するため、固定レンズ20と移動レンズ3とで定まる球心位置の計算の際には、光源部2側にある全ての面の設計式も用いて行われる。得られた計算結果に基づき、移動レンズ3をそれぞれ対応する計算上の被測定面の球心位置に集光する位置に移動させて(例えば、図2において、移動レンズ3を5で示す位置に移動させて)オートコリメート状態とする。   Next, the driving unit 12 is driven to move the corresponding moving lens 3 to a position where the measurement target surfaces 6A, 6B, 7A, 7B, 8A, and 8B are focused on the calculated spherical positions. Here, since the surface to be measured other than the surface 6A to be measured closest to the light source unit 2 has another surface to be measured between the light source unit 2, the spherical center position determined by the fixed lens 20 and the moving lens 3. Is calculated using design formulas for all surfaces on the light source unit 2 side. Based on the obtained calculation result, the moving lens 3 is moved to a position where the moving lens 3 is condensed on the corresponding spherical center of the measured surface (for example, in FIG. 2, the moving lens 3 is moved to the position indicated by 5. Move it to the auto-collimated state.

この状態では、例えば、観察カメラ27より取り込まれた被測定面の反射像Aは図6(a)で示すようにぼけた状態A’か、全く見えない状態となる。そこで、移動レンズ3を光軸C上にさらに移動して図6(b)に示すように点像となるように調節する。   In this state, for example, the reflection image A of the measurement surface captured by the observation camera 27 is in a blurred state A ′ as shown in FIG. Therefore, the moving lens 3 is further moved on the optical axis C and adjusted so as to become a point image as shown in FIG.

この際、例えば、被測定面7Aの球心位置に対応するように移動レンズ3を移動させると、図6(c)に示すように、被測定面7Aの反射像Aと他の被測定面の反射像Bとが同時に観察される場合がある。
そこで、被測定レンズ部10と順方向接続部25とを離間して、順方向接続部25の代わりに図示しない回転部に逆方向接続部26を螺合して被測定レンズ部10を逆方向接続部26と嵌合し、順方向入射に代えて逆方向入射となるようにする。
At this time, for example, when the movable lens 3 is moved so as to correspond to the spherical center position of the measured surface 7A, as shown in FIG. 6C, the reflected image A of the measured surface 7A and other measured surfaces. In some cases, the reflection image B of the image is observed at the same time.
Therefore, the lens unit 10 to be measured and the forward direction connection unit 25 are separated from each other, and the reverse direction connection unit 26 is screwed into a rotating unit (not shown) instead of the forward direction connection unit 25 so that the lens unit 10 to be measured is moved in the reverse direction. It fits with the connection part 26, and it is made to become reverse direction incidence instead of forward direction incidence.

この状態では、被測定レンズ6、7、8は、図4(b)に示すような配設位置となる。
そこで、入力された被測定レンズ6、7、8の設計式の面番と対応する設計値とを、順方向入射用のものから逆方向入射用のものに入れ替えて、演算部16にて改めて球心位置を計算し直す。
この場合、被測定面より面積の小さい各面の曲率半径、隣接する被測定面への間隔と媒質(各レンズ、空気)の屈折率が異なることから、光の入射方向によって各被測定面の球心位置が変化する。この状態で被測定面7Aの球心位置と図6(c)の反射像Bを形成していた被測定面の球心位置とが分離して観察可能に離れると、反射像Aが図6(d)に示すような点像Cとなって、他の被測定面による反射像Bが観察されなくなる。
In this state, the measured lenses 6, 7, 8 are arranged as shown in FIG.
Therefore, the surface number of the design expression of the lens to be measured 6, 7, 8 and the corresponding design value are changed from those for forward incidence to those for backward incidence, and the calculation unit 16 anews them. Recalculate the ball center position.
In this case, the radius of curvature of each surface having a smaller area than the surface to be measured, the distance to the adjacent surface to be measured, and the refractive index of the medium (each lens, air) are different. The ball center position changes. In this state, when the position of the sphere center of the surface to be measured 7A and the position of the sphere center of the surface to be measured forming the reflected image B of FIG. A point image C as shown in (d) is obtained, and the reflected image B from another surface to be measured is not observed.

この状態で偏心量を計算する。
即ち、図示しない回転部によって被測定レンズ部10を光軸C回りに回転させる。このとき、反射像Aも図9に示すように回転中心C1回りに回転する。偏心量を計算する際に1番目の面となるのは最も光源部2に近い被測定面8Bであるので、この回転中心C1を基準位置として、回転開始時の位置との差をdx、dyとして偏心量を算出する。
他の各被測定面に対しても、みかけの曲率半径である球心位置を補正しながら基準位置とのずれ量を求め、同様の操作によって偏心量を算出する。
In this state, the amount of eccentricity is calculated.
That is, the measured lens unit 10 is rotated around the optical axis C by a rotating unit (not shown). At this time, the reflected image A also rotates around the rotation center C1 as shown in FIG. Since the surface to be measured 8B closest to the light source unit 2 is the first surface when calculating the amount of eccentricity, the difference between the rotation center C1 as a reference position and the position at the start of rotation is expressed as dx, dy. The amount of eccentricity is calculated as follows.
For each other measured surface, the amount of deviation from the reference position is obtained while correcting the spherical center position, which is the apparent radius of curvature, and the amount of eccentricity is calculated by the same operation.

この偏心量測定装置1によれば、順方向入射では精度良く偏心量を測定できない場合であっても、被測定レンズ支持部17によって被測定レンズ部10を反転して被測定レンズ6、7、8への光源部2光束の入射方向を反転することによって、被測定面6A、6B、7A、7B、8A、8Bと光源部2との位置を変えて球心位置を移動することができ、他の被測定面による反射像と同時に観察することがなくなる。従って、所望の被測定面の反射像のみを観察光学部15に結像させて精度良い偏心量測定を行うことができる。   According to the decentering amount measuring apparatus 1, even if the decentration amount cannot be measured with high accuracy by forward incidence, the lens unit 10 to be measured is inverted by the lens support unit 17 to be measured. By reversing the incident direction of the light source part 2 light beam to 8, the positions of the measured surfaces 6A, 6B, 7A, 7B, 8A, 8B and the light source part 2 can be changed, and the spherical center position can be moved. Observation at the same time as an image reflected by another surface to be measured is eliminated. Therefore, only the reflected image of the desired surface to be measured can be formed on the observation optical unit 15 to accurately measure the eccentric amount.

また、被測定レンズ支持部17によって被測定レンズ部10を光源部2に対して反転しても、反転前の被測定レンズ部10における被測定面6A、6B、7A、7B、8A、8Bの相対位置情報を利用して反転後の被測定面6A、6B、7A、7B、8A、8B位置を容易に算出することができ、被測定レンズ6、7、8の被測定面6A、6B、7A、7B、8A、8Bの偏心量を好適に測定することができる。   Further, even if the measured lens unit 10 is inverted with respect to the light source unit 2 by the measured lens support unit 17, the measured surfaces 6A, 6B, 7A, 7B, 8A, 8B of the measured lens unit 10 before the inversion are reversed. The positions of the measured surfaces 6A, 6B, 7A, 7B, 8A, 8B after reversal can be easily calculated using the relative position information, and the measured surfaces 6A, 6B of the measured lenses 6, 7, 8 can be calculated. The eccentric amounts of 7A, 7B, 8A, and 8B can be suitably measured.

次に、第2の実施形態について図10を参照しながら説明する。
なお、上述した第1の実施形態と同様の構成要素には同一符号を付すとともに説明を省略する。
第2の実施形態と第1の実施形態との異なる点は、本実施形態に係る偏心測定装置40における装置ベース部材41が光学系支持部材42よりも図中上側になるように逆L字状に配され、光源部43と被測定レンズ部10との配設位置が、第1の実施形態の場合とは上下逆方向とされて取り付けられている点である。
Next, a second embodiment will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment mentioned above, and description is abbreviate | omitted.
The difference between the second embodiment and the first embodiment is that the device base member 41 in the eccentricity measuring device 40 according to this embodiment is an inverted L shape so that the device base member 41 is on the upper side in the drawing with respect to the optical system support member 42. The arrangement position of the light source unit 43 and the lens unit 10 to be measured is attached in the upside down direction as compared with the case of the first embodiment.

測定レンズ支持部17が、被測定レンズ部10と光源部43との最長距離を変えずに被測定レンズ部10を取り付けられるようになっている。即ち、装置ベース部材41の上部に図示しない回転部と被測定レンズ支持部17と被測定レンズ部10が配され、装置ベース部材41の下側に、光源部43、偏光ビームスプリッタ18、ズーム光学部11、観察カメラ27が配されている。
これらは光軸C上に配されており、光源部43は、半導体レーザとされ、レーザ光が光軸Cに沿って照射される。
The measurement lens support unit 17 can be attached to the measurement lens unit 10 without changing the longest distance between the measurement lens unit 10 and the light source unit 43. That is, a rotating unit (not shown), a lens support unit 17 to be measured, and a lens unit to be measured 10 are arranged on the upper part of the apparatus base member 41, and the light source unit 43, the polarization beam splitter 18, and the zoom optics are disposed below the apparatus base member 41. The unit 11 and the observation camera 27 are arranged.
These are arranged on the optical axis C, and the light source unit 43 is a semiconductor laser, and the laser beam is irradiated along the optical axis C.

この偏心測定装置40を使用する場合、光源部43から最も離間した被測定レンズ面を1面として面番号を付すことによって、上記第1の実施形態と同様の使用方法にて偏心量を計測することができる。
この際、被測定レンズ部10の最終面方向から光源光束が入射するので、設計式を入力する際に順入射方向と逆入射方向とを逆にした状態で使用する。
When this eccentricity measuring device 40 is used, the amount of eccentricity is measured by the same method of use as in the first embodiment by assigning a surface number to the measured lens surface that is farthest from the light source unit 43 as one surface. be able to.
At this time, since the light source light beam enters from the direction of the final surface of the lens unit 10 to be measured, it is used in a state where the forward incident direction and the reverse incident direction are reversed when inputting the design formula.

この偏心測定装置40によれば、上記第1の実施形態と同様の作用・効果を奏することができる。
この際、被測定レンズ部10の上部方向には何も配されない状態となるので、被測定レンズ部10がどのような大きさ・形状であっても取り付けて測定することができる。
また、測定者がズーム光学部11や光源部43等に直接接する機会を減らすことができ、かつ、被測定レンズ部10の着脱を容易に行うことができる。
According to the eccentricity measuring device 40, the same operation and effect as the first embodiment can be obtained.
At this time, nothing is arranged in the upper direction of the lens unit 10 to be measured, so that the lens unit 10 to be measured can be attached and measured in any size and shape.
Further, the opportunity for the measurer to directly contact the zoom optical unit 11 and the light source unit 43 can be reduced, and the lens unit 10 to be measured can be easily attached and detached.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、移動レンズや被測定レンズの配設数は上記実施形態に限るものではない。
また、被測定レンズの順方向入射又は逆方向入射にかかわらず、両方の方向による偏心量を計測して他の偏心測定装置での測定結果との比較検討を行うことができる。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the number of moving lenses and lenses to be measured is not limited to the above embodiment.
In addition, the amount of eccentricity in both directions can be measured regardless of forward incidence or backward incidence of the lens to be measured, and comparison with the measurement results of other eccentricity measuring devices can be performed.

また、パソコンが、移動レンズの位置を図示しないディスプレー上に表示させて測定者に確認させる機能を有していても構わない。   Further, the personal computer may have a function of displaying the position of the moving lens on a display (not shown) and allowing the measurer to confirm it.

本発明の第1の実施形態に係る偏心測定装置の全体構成を示す斜視図である。It is a perspective view showing the whole eccentricity measuring device composition concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る偏心測定装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the eccentricity measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る偏心測定装置によって測定される被測定レンズ部の外観を示す斜視図である。It is a perspective view which shows the external appearance of the to-be-measured lens part measured by the eccentricity measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る偏心測定装置によって測定される被測定レンズの(a)順方向入射時の配設状態、(b)逆方向入射時の配設状態を示す説明図である。It is explanatory drawing which shows the (a) arrangement | positioning state at the time of forward direction incidence of the lens to be measured measured by the eccentricity measuring apparatus which concerns on the 1st Embodiment of this invention, and (b) the arrangement | positioning state at the time of reverse direction incidence. . 本発明の第1の実施形態に係る偏心測定装置によって測定される被測定レンズ部と被測定レンズ支持部とを嵌合させ(a)順方向入射時とした状態、(b)逆方向入射時とした状態を示す斜視図である。FIG. 2A shows a state in which a lens portion to be measured and a lens support portion to be measured, which are measured by the decentration measuring apparatus according to the first embodiment of the present invention, are fitted to each other. FIG. It is a perspective view which shows the state made into. 本発明の第1の実施形態に係る偏心測定装置による被測定面の集光位置を(a)調整する前の光学系、(b)調整した後の光学系、(c)他の被測定面による反射像と同時に観察される場合、(d)逆方向入射時、他の反射像と分離観察可能になった場合、を示す説明図である。(A) an optical system before adjustment, (b) an optical system after adjustment, and (c) another measurement surface by the eccentricity measuring apparatus according to the first embodiment of the present invention. (D) It is explanatory drawing which shows the case where it becomes separable from other reflected images at the time of reverse incidence. 本発明の第1の実施形態に係る偏心測定装置によって測定される被測定レンズの順方向入射時における観察状態を示す説明図である。It is explanatory drawing which shows the observation state at the time of forward incidence of the to-be-measured lens measured by the eccentricity measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る偏心測定装置によって測定される被測定レンズの逆方向入射時における観察状態を示す説明図である。It is explanatory drawing which shows the observation state at the time of reverse incidence of the to-be-measured lens measured by the eccentricity measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る偏心測定装置によって測定される被測定面の球心位置と基準位置とのずれ量を示す説明図である。It is explanatory drawing which shows the deviation | shift amount of the spherical center position of the to-be-measured surface measured with the eccentricity measuring apparatus which concerns on the 1st Embodiment of this invention, and a reference position. 本発明の第1の実施形態に係る偏心測定装置の全体構成を示す斜視図である。It is a perspective view showing the whole eccentricity measuring device composition concerning a 1st embodiment of the present invention. 従来の技術による偏心測定装置による被測定面の球心位置を調整する際の光学系を示す説明図である。It is explanatory drawing which shows the optical system at the time of adjusting the spherical center position of the to-be-measured surface by the eccentricity measuring apparatus by a prior art.

符号の説明Explanation of symbols

1、40 偏心測定装置
2、43 光源部
3 移動レンズ
6、7、8 被測定レンズ
6A、6B、7A、7B、8A、8B 被測定面
10 被測定レンズ部
11 ズーム光学部
13 パソコン(制御部)
15 観察光学部
16 演算部
17 被測定レンズ部
A 反射像
B 球心位置が近い被測定面による反射像
C 光源光入射方向反転時の反射像

DESCRIPTION OF SYMBOLS 1, 40 Eccentricity measuring apparatus 2, 43 Light source part 3 Moving lens 6, 7, 8 Lens to be measured 6A, 6B, 7A, 7B, 8A, 8B Surface to be measured 10 Lens part to be measured 11 Zoom optical part 13 Personal computer (control part) )
15 Observation optical unit 16 Calculation unit 17 Lens to be measured A Reflected image B Reflected image by the surface to be measured close to the spherical center C Reflected image when the light source light incident direction is reversed

Claims (3)

光源部と、
集光位置調整用の移動レンズを移動可能に有し、被測定レンズが配された被測定レンズ部に係る被測定面の前記光源部からの光束の集光位置を調整するズーム光学部と、
前記移動レンズの位置を制御する制御部と、
前記被測定面からの反射像を観察する観察光学部と、
前記観察光学部に結像する前記反射像位置と前記被測定面の基準位置とのずれ量に基づいて前記被測定面の偏心量を算出する演算部と、
前記被測定レンズ部への前記光源部からの光束の入射方向を反転可能にして前記被測定レンズ部を支持する被測定レンズ支持部とを備えていることを特徴とするレンズ系の偏心測定装置。
A light source unit;
A zoom optical unit that has a movable lens for adjusting a condensing position, and that adjusts a condensing position of a light beam from the light source unit on a surface to be measured related to the lens unit to be measured on which the lens to be measured is disposed;
A control unit for controlling the position of the moving lens;
An observation optical unit for observing a reflected image from the measurement surface;
An arithmetic unit that calculates the amount of eccentricity of the surface to be measured based on the amount of deviation between the position of the reflected image formed on the observation optical unit and the reference position of the surface to be measured;
A decentering measurement apparatus for a lens system, comprising: a lens-to-be-measured portion that supports the lens-to-be-measured so that the direction of incidence of a light beam from the light source to the lens-to-be-measured can be reversed. .
前記演算部が、前記被測定レンズ部への前記光源部からの光束の入射方向によらずに前記偏心量を測定可能とされていることを特徴とする請求項1に記載のレンズ系の偏心測定装置。   2. The decentering of the lens system according to claim 1, wherein the computing unit is capable of measuring the decentering amount regardless of an incident direction of a light beam from the light source unit to the lens unit to be measured. measuring device. 前記被測定レンズ支持部が、前記被測定レンズ部と前記光源部との最短距離又は最長距離を変えずに前記被測定レンズ部を移動することを特徴とする請求項1に記載の偏心測定装置。


2. The decentration measuring apparatus according to claim 1, wherein the measured lens support unit moves the measured lens unit without changing a shortest distance or a longest distance between the measured lens unit and the light source unit. .


JP2004336046A 2004-11-19 2004-11-19 Eccentricity measuring instrument for lens system Withdrawn JP2006145387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336046A JP2006145387A (en) 2004-11-19 2004-11-19 Eccentricity measuring instrument for lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336046A JP2006145387A (en) 2004-11-19 2004-11-19 Eccentricity measuring instrument for lens system

Publications (1)

Publication Number Publication Date
JP2006145387A true JP2006145387A (en) 2006-06-08

Family

ID=36625251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336046A Withdrawn JP2006145387A (en) 2004-11-19 2004-11-19 Eccentricity measuring instrument for lens system

Country Status (1)

Country Link
JP (1) JP2006145387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177846A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Method of measuring lens decentration and device thereof
JP2008096197A (en) * 2006-10-10 2008-04-24 Olympus Corp Device for measuring eccentricity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177846A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Method of measuring lens decentration and device thereof
JP2008096197A (en) * 2006-10-10 2008-04-24 Olympus Corp Device for measuring eccentricity

Similar Documents

Publication Publication Date Title
JP4474150B2 (en) Eccentricity measurement method
US8400709B2 (en) Laser scan confocal microscope
US20050148854A1 (en) Diagnosis supporting device
US10095003B2 (en) Autofocus apparatus, autofocus method, and program
JPS58181005A (en) Automatically focusing and measuring apparatus and method
JP2011185767A (en) Apparatus and method of shape measurement
JP2006251209A (en) Microscope
JP2008096197A (en) Device for measuring eccentricity
JP3597222B2 (en) Eccentricity measurement method for lenses, reflectors, etc., and machines using it
US20180024335A1 (en) Observation device
JP2006145387A (en) Eccentricity measuring instrument for lens system
JP2008232815A (en) Device of measuring eccentricity of lens system
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP4190044B2 (en) Eccentricity measuring device
JP4524793B2 (en) Confocal optical system and height measuring device
JP2012242085A (en) Measured object holding position correction method of curvature radius measuring instrument and curvature radius measuring instrument
JP2006053321A (en) Projection observation device
JP5346670B2 (en) Non-contact surface shape measuring device
JP3922946B2 (en) Lens system eccentricity measuring device
JP4903550B2 (en) Lens system eccentricity measuring device
JP2010127828A (en) Device for measuring eccentricity of lens system
JP4388341B2 (en) Eccentricity measuring device
CN111417835B (en) Imaging incident angle tracker
JP2007322220A (en) Lens eccentricity measuring method and lens eccentricity measuring device
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205