JP2006145235A - Fall sensor - Google Patents

Fall sensor Download PDF

Info

Publication number
JP2006145235A
JP2006145235A JP2004331932A JP2004331932A JP2006145235A JP 2006145235 A JP2006145235 A JP 2006145235A JP 2004331932 A JP2004331932 A JP 2004331932A JP 2004331932 A JP2004331932 A JP 2004331932A JP 2006145235 A JP2006145235 A JP 2006145235A
Authority
JP
Japan
Prior art keywords
coil spring
container
weight
movable electrode
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004331932A
Other languages
Japanese (ja)
Inventor
Teruyuki Takeda
照之 武田
Takeshi Son
彪 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ubukata Industries Co Ltd
Original Assignee
Ubukata Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co Ltd filed Critical Ubukata Industries Co Ltd
Priority to JP2004331932A priority Critical patent/JP2006145235A/en
Priority to US11/060,817 priority patent/US7243530B2/en
Priority to EP05250978A priority patent/EP1586907A1/en
Priority to CNA2005100628897A priority patent/CN1683932A/en
Priority to TW094111305A priority patent/TW200604529A/en
Priority to KR1020050030463A priority patent/KR20060045633A/en
Priority to RU2005110708/28A priority patent/RU2005110708A/en
Publication of JP2006145235A publication Critical patent/JP2006145235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fall sensor that is capable of maintaining stable operation for a long period as a movable electrode and suitable for practical use. <P>SOLUTION: In the fall sensor 1, the movable electrode 5 is sealed in an electrically conductive container 2. The movable electrode 5 is provided with a coil spring 9 and, for example, with a plurality of spherical bodies 10. In the coil spring 9, a base end part 9a is connected to by an electrically conductive adhesive and fixed at the inner end part of an electrically conductive pin 4 introduced into the container 2 and supported at one end. The plurality of spherical bodies 10 are movably provided in the inside of the coil spring 9 in a state of being prevented from coming off and function as weights. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、落下状態を検出する落下センサに関する。   The present invention relates to a drop sensor that detects a fall state.

従来、ポータブルコンピュータなどの機器が内蔵するハードディスクを、落下衝撃による損傷から保護するため、該機器の内部に落下状態を検出する落下センサを組み込み、その検出信号に基づき例えばハードディスクのヘッドを退避位置に移動させるなどして対処している。しかして、この種落下センサとしては、機器内部に組み込むべく小型化が要求されるとともに固定電極の機能をなす導電性の筒状の容器内に、他端が外部に臨む導電ピンの一端と接続され、水平方向に片持ち支持された1本の棒状のばね部材を設けるとともに、該ばね部材の自由端側に錘としての鋼球を設けて前記容器と接離する所謂可動電極の機能を備えた構成としている(例えば、特許文献1参照)。   Conventionally, in order to protect a hard disk built in a device such as a portable computer from damage caused by a drop impact, a fall sensor for detecting a fall state is incorporated in the device, and the head of the hard disk is moved to a retracted position based on the detection signal. It is dealt with by moving it. Therefore, this type of drop sensor is required to be miniaturized so as to be incorporated inside the device, and connected to one end of a conductive pin with the other end facing outside in a conductive cylindrical container that functions as a fixed electrode. In addition, a single bar-like spring member cantilevered in the horizontal direction is provided, and a steel ball as a weight is provided on the free end side of the spring member so as to function as a so-called movable electrode that contacts and separates from the container. (For example, refer to Patent Document 1).

従って、通常の静止状態では鋼球の重力により主にばね部材を撓ませ、鋼球が容器内面と接触して電路を形成している。一方、落下時には鋼球が見かけ上の重力加速度が減少しほぼ無重力状態になるため、ばね部材のばね力たる弾性復元力により、該ばね部材は水平な自由状態に弾性復帰する。これにより、鋼球が容器内面から離反し、電路が断たれることに基づき落下状態を検出可能としている。   Therefore, in a normal stationary state, the spring member is mainly bent by the gravity of the steel ball, and the steel ball contacts the inner surface of the container to form an electric circuit. On the other hand, when the steel ball is dropped, the apparent gravitational acceleration decreases and the steel ball becomes almost weightless, so that the spring member is elastically returned to the horizontal free state by the elastic restoring force as the spring force of the spring member. As a result, the falling state can be detected based on the fact that the steel ball is separated from the inner surface of the container and the electric circuit is cut off.

他には、上記ばね部材に圧縮コイルばねを使用して同様の機能を有する落下センサが案出され、特にコイルばねの外周部に円筒状の錘を挿入して重ね合わせた構成とすることで、長さ寸法を一層短くできることによる小型化を可能としたものも案出されている(例えば、特許文献2参照)。
特開2000−195206号 (第3頁、および図3) 特開2001−185012号 (第3頁、および図1)
In addition, a drop sensor having a similar function has been devised by using a compression coil spring as the spring member, and in particular, a cylindrical weight is inserted into the outer peripheral portion of the coil spring and overlapped. In addition, a device that can be reduced in size by further shortening the length has been devised (for example, see Patent Document 2).
JP 2000-195206 A (page 3 and FIG. 3) JP 2001-185012 (Page 3 and FIG. 1)

しかしながら、上記特許文献1の如きばね部材を1本の棒状ばねとした場合には、片持ち支持された自由端側が落下衝撃時に錘により撓み変形する際、棒状ばねに曲げ応力などが集中して一部塑性変形したり或いは座屈したりし易く、従って長期使用時には正規の位置を維持できなくて、可動電極として不安定なスイッチング動作を招くなど耐久性に問題を有する。しかも、落下センサを一層小型化するに際して鋼球の重量やばね部材のばね力を小さくすることは、電極たる鋼球と容器との接触圧が微小となることによる不安定要因(例えば、接触不良)が加わり、ばね部材の可撓性や上記耐久性、また錘が球状であることなども考慮すると、これらをバランス良く設計製造することは容易でなく、更なる小型化、特に近年要望の強い薄型化には適していない。   However, when the spring member as in Patent Document 1 is a single bar spring, when the cantilevered free end side is bent and deformed by a weight during a drop impact, bending stress or the like is concentrated on the bar spring. It is easy to be partly plastically deformed or buckled. Therefore, the normal position cannot be maintained during long-term use, and there is a problem in durability such as causing an unstable switching operation as a movable electrode. In addition, when the size of the drop sensor is further reduced, the weight of the steel ball and the spring force of the spring member are reduced because of unstable factors (for example, poor contact) due to the contact pressure between the steel ball as the electrode and the container becoming minute. ), The flexibility of the spring member, the durability mentioned above, and the fact that the weight is spherical, it is not easy to design and manufacture them in a well-balanced manner. It is not suitable for thinning.

一方、上記特許文献2の如きばね部材に圧縮コイルばねを使用した構成では、ばね力を小さくできるとともに、落下時には確実に自由状態に復帰させることに有効に作用し、該コイルばねや錘の設計的自由度が広くなる。しかも、コイルばねは柔軟な弾力性に富むことから上記棒状のばね部材の如き局部的な座屈現象を防止する上でも有効で、且つこの棒状のばね部材に比し長さ寸法を短くしても必要十分な撓み変形が得られるなどの利点を有する。   On the other hand, in the configuration using the compression coil spring as the spring member as in Patent Document 2, the spring force can be reduced, and it can effectively act to reliably return to the free state when dropped, and the design of the coil spring and the weight is designed. The degree of freedom is broadened. In addition, since the coil spring is rich in flexibility, it is effective in preventing local buckling phenomenon such as the above rod-shaped spring member, and the length dimension is shortened compared to this rod-shaped spring member. Has the advantage that necessary and sufficient bending deformation can be obtained.

しかしながら、このコイルばねの周側に円筒状の錘を重ねて設けた構成では、長さ寸法の短小化では有効であるが厚み方向(高さ)の薄型化には限度があり、例えば落下センサとしての全体の厚み(直径でもある)は5mm程度までが限界で、加えて特異な形状の錘を電極として金メッキを施すなどして精度良く小型に製作することは必ずしも容易ではなく、また組立も複雑化する問題も抱えていた。更には、コイルばねは上記棒状のばね部材に比し座屈による塑性変形を生じ難い点で優れているが、落下時には錘の重量がコイルばねに衝撃的に加わり、しかもその衝撃方向も偏奇であることから、該コイルばねの一部に塑性変形を生じる憂いを有し、これが不安定動作を招いたり或いは耐久性の点でも難点であった。   However, the configuration in which a cylindrical weight is provided on the circumferential side of the coil spring is effective in reducing the length dimension, but there is a limit in reducing the thickness direction (height). For example, a drop sensor The total thickness (which is also the diameter) is limited to about 5 mm, and in addition, it is not always easy to make a small size with high precision by applying gold plating with a specially shaped weight as an electrode, and assembly is also not possible There was also a problem that became complicated. Furthermore, the coil spring is superior to the rod-shaped spring member in that it does not easily cause plastic deformation due to buckling. However, when dropped, the weight of the weight is impacted on the coil spring and the direction of impact is also strange. For this reason, there is a concern that plastic deformation is caused in a part of the coil spring, which causes unstable operation or is difficult in terms of durability.

また、上記従来構成のいずれにおいても、落下衝撃時には錘が容器に勢いよく衝突し異音を発するとともに、その接触点がほぼ1点に集中するため、その電極両者間に汚れが介在したり長期使用中に酸化膜が生じた場合など、安定した電路を形成できないおそれがあり、殊に小型化でばね力も小さくなり、更に接触圧も小さくなる傾向にあっては、実用上一層不利である問題も有していた。   In any of the above conventional configurations, the weight strikes the container vigorously and generates an abnormal sound during a drop impact, and the contact point is concentrated at almost one point. There is a possibility that a stable electric circuit may not be formed, such as when an oxide film is formed during use, and this is a disadvantage in practical use, especially when the size is reduced and the spring force is reduced and the contact pressure is also reduced. Also had.

本発明は上記問題点を解決するため、小型化を可能としながら落下時におけるコイルばねの座屈や塑性変形を抑え、可動電極として長期安定動作が期待できる実用に好適する落下センサを提供することを目的とする。   In order to solve the above-mentioned problems, the present invention provides a practical drop sensor suitable for practical use, which can be downsized while suppressing buckling and plastic deformation of a coil spring at the time of dropping, and can be expected to be a long-term stable operation as a movable electrode. With the goal.

上記問題点を解決するため本発明の落下センサは、導電性容器内に可動電極を封鎖してなる落下センサにおいて、前記可動電極は、基端部が前記容器内に挿入された導電ピンの端部に接続固定され片持ち支持されたコイルばねと、このコイルばねの内方に移動可能で抜け止め状態に収納された錘とを具備してなる構成を主たる特徴とするものである。   In order to solve the above problems, the drop sensor of the present invention is a drop sensor in which a movable electrode is sealed in a conductive container, and the movable electrode has an end of a conductive pin whose base end is inserted into the container. The main feature is a structure comprising a coil spring connected and fixed to a portion and cantilevered, and a weight that is movable inward of the coil spring and is housed in a retaining state.

上記手段によれば、錘をコイルばね内に移動可能に設けたので、可動電極としてコイルばねの撓み変形を阻害することなく有効に機能するとともに、錘がコイルばねの芯部材の役目をなして落下時に該コイルばねの座屈変形や塑性変形に至るほどの大きな変形を抑制できる。しかも、錘を収納したのでコイルばねより径方向に突出する部位がなく、電極構成として厚み寸法を抑え薄く小型化するに一層有利である。また、コイルばねの中間部位には上下方向に振幅するダンピング作用を生じ、容器との急激な衝突を緩衝的に弱め、耐久性や衝突音を低減するに有効である。   According to the above means, since the weight is movably provided in the coil spring, it functions effectively as a movable electrode without hindering the bending deformation of the coil spring, and the weight serves as a core member of the coil spring. It is possible to suppress a large deformation that leads to buckling deformation or plastic deformation of the coil spring when dropped. Moreover, since the weight is housed, there is no portion projecting in the radial direction from the coil spring, which is more advantageous for reducing the thickness and reducing the size of the electrode configuration. In addition, a damping action that swings in the vertical direction is generated at an intermediate portion of the coil spring, which is effective for buffering a sudden collision with the container and reducing durability and collision noise.

更には、コイルばねの自由端部が容器に接触する都度、コイルばねは長さ方向に伸縮して互いの接触面を摺動することになり、所謂ワイピング効果により接触面の汚れや酸化膜を除去することができ、小型化による電極の接触圧が小さくなる傾向にあっても長期安定したスイッチング動作が期待できる。   Furthermore, each time the free end of the coil spring comes into contact with the container, the coil spring expands and contracts in the length direction and slides on the contact surface. So-called wiping effect removes dirt and oxide film on the contact surface. Even if there is a tendency that the contact pressure of the electrode is reduced due to miniaturization, a long-term stable switching operation can be expected.

(第1の実施の形態)
以下、本発明の第1実施例を示す図1〜図5を参照して説明する。
そのうち図1は、落下センサ1の全体構成を示す断面図で通常の使用状態(静止状態)を示しており、図2は異なる状態たる落下時の動作状態を示す図1相当図、および図3は図2のA−A線に沿って切断してして示す断面図で、まずこれら図面に基づき構成を説明する。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a sectional view showing the entire configuration of the drop sensor 1 and shows a normal use state (stationary state). FIG. 2 is a diagram corresponding to FIG. FIG. 2 is a cross-sectional view taken along the line AA in FIG. 2, and the configuration will first be described based on these drawings.

落下センサ1は、例えばノートパソコン等のポータブルコンピュータ(図示せず)の内部に、例えば図1に示すように横長に配置した状態に収納される。
この落下センサ1は、大略的には細長円筒状の容器2、この容器2の一端の開口部を電気絶縁および気密に閉塞する封鎖部材3、この封鎖部材3を気密に貫通して前記容器2の内外に導出入された導電ピン4、この導電ピン4の容器2内の一端に接続固定された可動電極5を具備した構成としている。
The drop sensor 1 is housed in a horizontally arranged state as shown in FIG. 1, for example, in a portable computer (not shown) such as a notebook computer.
The drop sensor 1 generally includes an elongated cylindrical container 2, a sealing member 3 that electrically and airtightly closes an opening at one end of the container 2, and the container 2 that penetrates the sealing member 3 in an airtight manner. The conductive pin 4 led in and out of the inside of the container and the movable electrode 5 connected and fixed to one end of the conductive pin 4 inside the container 2 are provided.

以下、更に詳述すると、まず容器2は、導電性の金属製にて一端(図示左端)のみ開口した細長い円筒状とし、これは後述するように固定電極として機能する。
また、封鎖部材3は、円筒状の枠体6と、その内方に充填されたガラス等の電気絶縁性封止材7とから構成され、その水平な中心部を前記導電ピン4が気密に貫通している。しかるに上記枠体6は、前記容器2の開口内部に圧入により取付固定されているが、その圧入前に該容器2の内面と枠体6の外周面にニッケルや金または金合金メッキを予め施してあり、圧入することで両者のメッキ層が一体化され、より気密性を高め得る構成としている(或いは、レーザ溶接により枠体6と容器2とを溶接してもよい)。以って、容器2は密閉容器として構成され、且つ導電ピン4は容器2とは電気的に遮断された状態となるとともに、該容器2の内部を真空にしたり、或いは窒素ガスやヘリウムガスなどの酸化防止用ガスが封入され、固定電極としての容器2の内面が長期に亘り酸化しないようにしている。
More specifically, the container 2 is made of a conductive metal and has an elongated cylindrical shape that is open at only one end (the left end in the drawing), and functions as a fixed electrode as will be described later.
The sealing member 3 is composed of a cylindrical frame 6 and an electrically insulating sealing material 7 such as glass filled inside, and the conductive pin 4 is hermetically sealed at the horizontal center. It penetrates. However, the frame body 6 is mounted and fixed inside the opening of the container 2 by press fitting. Before the press fit, the inner surface of the container 2 and the outer peripheral surface of the frame body 6 are plated with nickel, gold or gold alloy in advance. The two plating layers are integrated by press fitting, and the airtightness can be further improved (or the frame 6 and the container 2 may be welded by laser welding). Accordingly, the container 2 is configured as a sealed container, and the conductive pins 4 are electrically disconnected from the container 2, and the inside of the container 2 is evacuated, or nitrogen gas, helium gas, etc. The anti-oxidation gas is sealed so that the inner surface of the container 2 as a fixed electrode is not oxidized for a long time.

しかして、前記可動電極5の構成につき説明すると、これは上記のように密閉された容器2内に配置され、落下や衝撃等を受けて前記容器2と電気的に接離可能とするもので、前記導電ピン4の導入された内端に対して、導電性の円盤状のばね座8および横長のコイルばね9を順次連結するとともに、このコイルばね9内に錘としての球体10を収納した構成からなる。そのコイルばね9は、リン青銅やステンレスなどの導電性金属製による円筒形圧縮コイルばねからなり、片持ち支持された自由端側に球体10の重みを付加してコイルばね9を確実に撓ませ前記容器2と電気的に接触し、通常の使用状態では図示する導通した状態に維持される。   The structure of the movable electrode 5 will be described below. The movable electrode 5 is disposed in the sealed container 2 as described above, and can be electrically connected to and separated from the container 2 upon receiving a drop or impact. A conductive disc-shaped spring seat 8 and a horizontally long coil spring 9 are sequentially connected to the inner end where the conductive pin 4 is introduced, and a spherical body 10 as a weight is accommodated in the coil spring 9. Consists of configuration. The coil spring 9 is a cylindrical compression coil spring made of a conductive metal such as phosphor bronze or stainless steel, and the weight of the sphere 10 is added to the free end side which is cantilevered so that the coil spring 9 is reliably bent. The container 2 is in electrical contact with the container 2 and is maintained in a conductive state as shown in a normal use state.

上記した球体10は、本実施例では複数個の例えば5個の鋼球からなり、円筒形状のコイルばね9内に移動可能に収納されている。すなわち、図2に示すように球体10の直径D1はコイルばね9の内径D2より径小(D1<D2)とするとともに、5個収納してなる球体10の全体長さL1がコイルばね9の実質的に有効な自由長L2より短い構成とし(L1<L2)、以って球体10はコイルばね9内を自由動状態に収納されて、後述するように芯部材として該コイルばね9を保護する機能も有している。従って、上記自由長L2は、球体10が移動し得る範囲におけるコイルばね9の自由長寸法に相当する。なお、球体10の直径D1は、コイルばね9の内径D2の1/2以上としており(D1>D2・/2)、これは球体10の個々の鋼球が上下方向に重ならないようにして、常に横方向に隣接して整列し円滑な移動を可能ならしめている。   In the present embodiment, the sphere 10 is composed of a plurality of, for example, five steel balls, and is movably accommodated in a cylindrical coil spring 9. That is, as shown in FIG. 2, the diameter D1 of the sphere 10 is smaller than the inner diameter D2 of the coil spring 9 (D1 <D2), and the total length L1 of the five spheres 10 housed is The configuration is substantially shorter than the effective free length L2 (L1 <L2), so that the sphere 10 is housed in a freely moving state in the coil spring 9, and protects the coil spring 9 as a core member as will be described later. It also has a function to do. Therefore, the free length L2 corresponds to the free length dimension of the coil spring 9 in the range in which the sphere 10 can move. The diameter D1 of the sphere 10 is set to be 1/2 or more of the inner diameter D2 of the coil spring 9 (D1> D2 · / 2). This prevents the individual steel balls of the sphere 10 from overlapping in the vertical direction. It is always aligned next to each other in the horizontal direction to ensure smooth movement.

ところで、上記コイルばね9の基端部9aは前記したばね座8の筒状部8aに導電性接着剤で接続固定され、片持ち支持されている。このばね座8は、金属製にて図示左端面の中心部に前記導電ピン4が溶接により連結固定され、右端面に形成された上記筒状部8aは、その外径がコイルばね9の内径D2とほぼ等しく、以ってコイルばね9の基端部9aを密巻部として嵌合し、導電性接着剤にて接続固定した構成にある。   By the way, the base end portion 9a of the coil spring 9 is connected and fixed to the cylindrical portion 8a of the spring seat 8 with a conductive adhesive and is cantilevered. The spring seat 8 is made of metal, and the conductive pin 4 is connected and fixed to the center of the left end surface shown in the figure. The cylindrical portion 8a formed on the right end surface has an outer diameter that is the inner diameter of the coil spring 9. It is substantially equal to D2, and thus the base end portion 9a of the coil spring 9 is fitted as a tightly wound portion and connected and fixed with a conductive adhesive.

一方、上記コイルばね9の他端である自由端部は、上記した内径D2とする円筒形状の開口状態のままでは球体10を収納状態に保持できないので、本実施例では球体10の直径D1より径小な封鎖口形状とすべく、密巻きにより円錐状をなす先細巻回部9bを形成して、所謂錘としての球体10の抜け止め手段を施している。従って、該コイルばね9を上記ばね座8に接続する際には、予め球体10を基端部9a側の開口から収納した後、接続固定される。   On the other hand, the free end portion, which is the other end of the coil spring 9, cannot hold the sphere 10 in the accommodated state in the cylindrical opening state having the inner diameter D2 described above. In order to obtain a small-diameter sealing port shape, a tapered winding portion 9b having a conical shape is formed by close winding, and means for preventing the spherical body 10 as a so-called weight is provided. Therefore, when the coil spring 9 is connected to the spring seat 8, the spherical body 10 is stored in advance from the opening on the base end portion 9a side, and then connected and fixed.

斯くして、落下センサ1として組立構成され、そのコイルばね9は片持ち支持により梁状に配設され、その内方に移動可能に設けられた複数個の鋼球からなる球体10は、コイルばね9を弾性的に撓み変形させる錘として有効に機能するもので、図1に示す設置状態において容器2内で水平な軸心より下方に傾倒し、常時はその先端部が容器2の内面に接触した変位状態に維持される。しかるに、斯かる構成の落下センサ1は、図中に二点鎖線で示すプリント基板11の導電パターン(図示せず)上に配置され、外部に導出された導電ピン4の一端には、例えばリード線12が半田付けにより電気的に接続され、また他端側である容器2の筒状底部にはL字状の金属製のコンタクト13が溶接により接続され、以ってプリント基板11とそれぞれ導通した電路が形成される。   Thus, the drop sensor 1 is assembled and configured, and the coil spring 9 is arranged in a beam shape by cantilever support, and the sphere 10 made of a plurality of steel balls movably provided inward is formed of a coil. It functions effectively as a weight that elastically bends and deforms the spring 9 and tilts downward from the horizontal axis in the container 2 in the installed state shown in FIG. The contacted displacement state is maintained. However, the drop sensor 1 having such a configuration is arranged on a conductive pattern (not shown) of the printed board 11 indicated by a two-dot chain line in the drawing, and one end of the conductive pin 4 led to the outside has, for example, a lead The wire 12 is electrically connected by soldering, and an L-shaped metal contact 13 is connected to the cylindrical bottom of the container 2 on the other end side by welding, so that it is electrically connected to the printed board 11 respectively. An electric circuit is formed.

従って、コイルばね9と容器2との接触により常時は導通した電路が形成されるもので、移動可能に収納された球体10はコイルばね9の撓み変形を阻害することがなく、以って片持ち支持され球体10を収納したコイルばね9は所謂可動電極5として機能し、他方プリント基板11上に固定的に設けられた容器2は固定電極として機能し、これらは謂わばスイッチング機構を構成している。
なお、上記プリント基板11は、ポータブルコンピュータの機器内部に固定され、図示しないCPUに電気的に接続されており、リード線12およびコンタクト13間の導通時にはプリント基板11からCPUに導通信号が出力される。
Accordingly, an electric circuit that is normally conducted is formed by contact between the coil spring 9 and the container 2, and the spherical body 10 that is movably accommodated does not hinder the bending deformation of the coil spring 9, and thus is one piece. The coil spring 9 that is held and accommodates the spherical body 10 functions as a so-called movable electrode 5, while the container 2 fixedly provided on the printed circuit board 11 functions as a fixed electrode, which constitutes a so-called switching mechanism. ing.
The printed circuit board 11 is fixed inside the portable computer device and is electrically connected to a CPU (not shown). When the lead wire 12 and the contact 13 are electrically connected, a conduction signal is output from the printed circuit board 11 to the CPU. The

次に、上記構成の落下センサ1の作用について説明する。
ポータブルコンピュータに組み込まれた落下センサ1の動作状態については、静止状態にある常時は図1に示すように中心軸が略水平になる配置状態にあって、球体10の重力は片持ち支持された梁状のコイルばね9を弾性的に撓ませ、その自由端部が容器2の内面に接触している。従って、リード線12、導電ピン4、可動電極5として球体10を収納したコイルばね9、固定電極たる容器2、およびコンタクト13を介して電気的に導通され、謂わば常閉型のスイッチとして機能し、プリント基板11への電路が形成されてCPUに導通信号が出力される。
Next, the operation of the drop sensor 1 having the above configuration will be described.
The operation state of the drop sensor 1 incorporated in the portable computer is in a stationary state where the central axis is substantially horizontal as shown in FIG. 1, and the gravity of the sphere 10 is cantilevered. The beam-like coil spring 9 is elastically bent and its free end is in contact with the inner surface of the container 2. Accordingly, the lead wire 12, the conductive pin 4, and the coil spring 9 containing the sphere 10 as the movable electrode 5, the container 2 as the fixed electrode, and the contact 13 are electrically connected, and function as a so-called normally closed switch. Then, an electrical path to the printed circuit board 11 is formed and a conduction signal is output to the CPU.

一方、ポータブルコンピュータが落下状態のときの落下センサ1は、図2に示すようにコイルばね9と容器2との接触が解離される。すなわち、落下状態に入ると球体10にかかる重力が見かけ上減少するため、コイルばね9のばね力である弾性復元力により容器2の中心側に戻されるように変位する。しかして、斯かる球体10に作用する重力が規定の値まで減少するとコイルばね9の自由端側は完全に容器2の内面から解離し、リード線12とコンタクト13との間が電気的に完全に遮断され、プリント基板11からの導通信号が「OFF」する。   On the other hand, in the drop sensor 1 when the portable computer is in the fall state, the contact between the coil spring 9 and the container 2 is dissociated as shown in FIG. That is, when entering the fall state, the gravity applied to the sphere 10 apparently decreases, so that it is displaced so as to be returned to the center side of the container 2 by the elastic restoring force that is the spring force of the coil spring 9. Therefore, when the gravity acting on the sphere 10 is reduced to a predetermined value, the free end side of the coil spring 9 is completely dissociated from the inner surface of the container 2, and the lead wire 12 and the contact 13 are electrically completely separated. And the conduction signal from the printed circuit board 11 is turned “OFF”.

すると、CPUは該導通信号の「OFF」を検出すると、内部の駆動回路(図示せず)に異常信号を出力する。この駆動回路は、例えば内部のハードディスクのヘッドを駆動するものであり、異常信号を検出することに基づいてヘッドを退避位置に移動させ、ハードディスクからのデータおよびプログラム等の読取り動作または書き込み動作を停止するとともに、磁気データやヘッド等の損傷の危険性を最小限に止める回避処理が行なわれる。   Then, when the CPU detects “OFF” of the conduction signal, the CPU outputs an abnormal signal to an internal drive circuit (not shown). This drive circuit, for example, drives the head of an internal hard disk, moves the head to the retracted position based on detecting an abnormal signal, and stops reading or writing data and programs from the hard disk. In addition, avoidance processing is performed to minimize the risk of damage to the magnetic data and the head.

更に、上記構成および動作する落下センサ1の特には可動電極5の特徴とする作用について、特に図4および図5を参照して述べる。
本実施例では、5個の鋼球からなる球体10により錘として必要な重力を得るようにしている。この球体10は、特には自由長方向に十分に移動可能に収納されていること、および球状であるため、コイルばね9の撓み変形を阻害するような抵抗を有しない。しかも、球体10がコイルばね9内に装填された芯部材として機能し、落下時の衝撃の際、該コイルばね9の大きな座屈や塑性変形に至る大きな屈曲を有効に抑える抵抗体として作用する。
Further, the characteristic features of the above-configured and operating drop sensor 1, particularly the movable electrode 5, will be described with particular reference to FIGS. 4 and 5.
In the present embodiment, the sphere 10 made of five steel balls obtains the necessary gravity as a weight. In particular, the spherical body 10 is accommodated so as to be sufficiently movable in the free length direction and has a spherical shape, and thus does not have a resistance that inhibits the bending deformation of the coil spring 9. In addition, the spherical body 10 functions as a core member loaded in the coil spring 9 and acts as a resistor that effectively suppresses large buckling or plastic bending of the coil spring 9 when it is dropped. .

更には、図4に示すようなダンピング作用を奏する。このうち、図4(a),(b)は本実施例について、同図(c)は従来例のそれぞれ主要部分の概略構成を示している。
まず、図4(a)に基づき上記ダンピング作用につき説明すると、本実施例における片持ち支持された円筒形状横長のコイルばね9は、その自由端側ほど大きく下方に弾性変形した形態にあるが、容器2との確実な接触状態を確保する上から5個の構成からなる球体10を収納して必要な重量を確保している。しかるに、コイルばね9の基端部9aは連結固定されており、その自由端側が容器2と急激に接触(衝突)するのであるが、このときコイルばね9の中間部位が上下方向に弾性変形して、図中矢印Yで示すように上下に振幅することで、衝突による衝撃を緩衝的に受け止めることができ、所謂ダンピング作用による衝撃緩衝効果が得られる。しかもこの場合、コイルばね9の自由端部は容器2の内面と接触状態に維持され、頻繁なバウンド(繰り返し衝突動作)は免れ振動は大いに軽減される。
Furthermore, the damping action as shown in FIG. 4 is achieved. 4 (a) and 4 (b) show the schematic configuration of the main part of this embodiment, and FIG. 4 (c) shows the schematic configuration of the main part of the conventional example.
First, the above-described damping action will be described with reference to FIG. 4 (a). The cantilever-supported cylindrical horizontally long coil spring 9 in this embodiment is in a form that is elastically deformed downward toward the free end side. The sphere 10 consisting of five components is accommodated from the top to ensure a reliable contact state with the container 2 to ensure the necessary weight. However, the base end portion 9a of the coil spring 9 is connected and fixed, and its free end abruptly contacts (collises) with the container 2. At this time, the intermediate portion of the coil spring 9 is elastically deformed in the vertical direction. Thus, by swinging up and down as indicated by an arrow Y in the figure, the impact caused by the collision can be received in a buffering manner, and a so-called damping effect by a damping action can be obtained. Moreover, in this case, the free end portion of the coil spring 9 is maintained in contact with the inner surface of the container 2, and frequent bounce (repetitive collision operation) is avoided and vibration is greatly reduced.

更に、可動電極5は落下時の衝撃に対して、上記ダンピング作用に加えてコイルばね9の基端部9aを、本実施例では図1,2に示したように密巻きにして接続固定した構成にあるので、機械的強度が増すだけでなく、落下衝撃時の曲げ応力等を集中させることなく適度に拡散して柔軟性を確保でき、従って塑性変形や座屈変形を一層起こし難くしている。   Furthermore, the movable electrode 5 is connected and fixed by tightly winding the base end portion 9a of the coil spring 9 in the present embodiment as shown in FIGS. Because of the structure, not only the mechanical strength increases, but also it can be appropriately diffused without concentrating the bending stress at the time of dropping impact and ensure flexibility, thus making it more difficult to cause plastic deformation and buckling deformation. Yes.

一方、気密な容器2内に例えば窒素ガスなどを封入して酸化防止を図ることは有効であるが、封入前の接触部位の酸化や汚れ、或いは長期使用により容器2の内面やコイルばね9の接触部位などの電極表面が、酸化したり汚れたりして安定した導通が得られなくなるおそれがある。これに対し、本実施例では図4(b)に示すように、球体10を移動可能に収納したコイルばね9が容器2に衝突の都度、上記ダンピング作用と共にコイルばね9の特徴として長さ方向(左右方向)において弾性的な伸縮作用(図中、矢印X方向で示す)を奏することから、振動や落下衝撃を受けると接触部位が左右に摺動する所謂ワイピング効果が得られ、接触面の汚れや酸化膜を除去することができ、従って小型化による電極の接触圧が小さくなる傾向にあっても長期安定したスイッチング動作を実行する。   On the other hand, it is effective to prevent the oxidation by enclosing, for example, nitrogen gas or the like in the airtight container 2, but the inner surface of the container 2 or the coil spring 9 may be deteriorated due to oxidation or contamination of the contact portion before the enclosure or long-term use. There is a possibility that the surface of the electrode such as a contact portion may be oxidized or soiled and stable conduction may not be obtained. On the other hand, in this embodiment, as shown in FIG. 4 (b), the coil spring 9 in which the spherical body 10 is movably accommodated collides with the container 2, and as a feature of the coil spring 9 along with the damping action, the length direction Since the elastic expansion and contraction action (indicated by the arrow X direction in the figure) is exerted in the (left-right direction), a so-called wiping effect is obtained in which the contact portion slides left and right when subjected to vibration and a drop impact. Dirt and oxide films can be removed, and therefore a long-term stable switching operation is performed even when the electrode contact pressure tends to decrease due to miniaturization.

上記本実施例に対し、同じく図4(c)に示す従来例では、片持ち支持された1本の棒状のばね部材イに、鋼球の錘ロを設けた構成にあって、錘ロの重心位置Gの下方一点において容器ハとの接触が行われる。従って、従来技術として既述した如く1本のばね部材イでは座屈変形し易く、しかもその傾向は棒材を径小とするなどしてばね力を小さくするほど顕著になるため、該ばね力を小さくするには不向きであり無理があることから、当然錘ロも小型化には制約を受けることになる。しかも、錘ロの重心位置Gの下方における1点で接触が行なわれるので、長期使用にてこれら接触面が汚れたり酸化した場合には安定した導通状態が得られない危惧もあり、更なる小型化には極めて不利である。   In contrast to the above-described embodiment, in the conventional example shown in FIG. 4 (c), a steel ball weight rod is provided on one rod-like spring member a that is cantilevered. Contact with the container C is performed at one point below the center of gravity position G. Accordingly, as already described in the prior art, a single spring member a is easily buckled and the tendency becomes more prominent as the spring force is reduced by reducing the diameter of the rod member. Since it is unsuitable and unreasonable to reduce the weight, naturally the weights are also restricted by downsizing. In addition, since contact is made at one point below the center of gravity position G of the weight B, there is a concern that a stable conduction state may not be obtained if these contact surfaces become dirty or oxidized after long-term use. It is extremely disadvantageous for conversion.

また、本実施例ではコイルばね9を片持ち支持による梁状に配設するに際し、ばね座8を介して一端に導電ピン4を、他端にコイルばね9を接続する構成とした。この種、落下センサ1を構成する上で、導電ピン4、ばね座8およびコイルばね9を水平な中心軸線上に直線的な連結形態とすることが望ましく、特に、薄型や小型化するほどコイルばね9と容器2との空隙も微少なものとなり、且つ取付角度(360度)に関係なく可動電極5として安定したスイッチング動作を得るためにも、組み込まれたコイルばね9の軸心精度は重要である。しかも、コイルばね9はそのコイル形態にあることから柔軟で撓み易く、ばね座8を介して接続固定するに際し中心軸を一致させるのは必ずしも容易ではない。   Further, in this embodiment, when the coil spring 9 is arranged in a beam shape by cantilever support, the conductive pin 4 is connected to one end via the spring seat 8 and the coil spring 9 is connected to the other end. In constructing this type of drop sensor 1, it is desirable that the conductive pin 4, the spring seat 8 and the coil spring 9 be linearly connected on the horizontal central axis, and in particular, as the thickness and size become smaller, the coil The gap between the spring 9 and the container 2 is very small, and the axial center accuracy of the incorporated coil spring 9 is important in order to obtain a stable switching operation as the movable electrode 5 regardless of the mounting angle (360 degrees). It is. Moreover, since the coil spring 9 is in its coil form, the coil spring 9 is flexible and easily bent, and it is not always easy to match the central axes when connecting and fixing via the spring seat 8.

しかしながら、本実施例によればその軸心を容易に調整でき、必要とする組立精度を確保できる。以下、図5に基づき可動電極5を中心軸に直線的に連結した形態に調整する手段につき説明する。この図5には、封鎖部材3に気密に挿通された導電ピン4と、可動電極5を構成するばね座8や球体10を具備したコイルばね9等からなる組立構成体を示しており、従って容器2に対し圧入により組み込む前の構成体を示している。そして、同図(a)は調整前の組立構成体、同図(b)は調整後の組立構成体を示し、且つ同図(a)−1および(b)−1は構成体を自然状態で例えば縦配置に置いた状態を示し、同図(a)−2および(b)−2は構成体をコイルばね9の自由端側から見た所謂矢印B方向から見た矢視図である。   However, according to this embodiment, the axis can be easily adjusted, and the required assembly accuracy can be ensured. Hereinafter, a means for adjusting the movable electrode 5 to be linearly connected to the central axis will be described with reference to FIG. FIG. 5 shows an assembly structure comprising a conductive pin 4 hermetically inserted into the sealing member 3 and a coil spring 9 having a spring seat 8 and a spherical body 10 constituting the movable electrode 5. A structure before being assembled into the container 2 by press fitting is shown. 2A shows the assembly structure before adjustment, FIG. 2B shows the assembly structure after adjustment, and FIGS. 1A-1 and 1B-1 show the structure in a natural state. For example, FIGS. 2 (a) -2 and 2 (b) -2 are views of the component viewed from the direction of the arrow B as viewed from the free end side of the coil spring 9. FIG. .

このような、構成体とした組立段階で、同図(a)に示すように構成体の軸心(中心線R0で示す)が、例えば僅か図示符号R1で示す右方に傾きずれた状態にあったとした場合、図(a)−2の矢視図に示すように、円形状の封鎖部材3に対しコイルばね9の円形状外径部分が偏心位置にあることから、どちらに傾倒しているか容易に視認できる。そこで、図(b)−1に示すようにばね座8の適宜の部位を例えばピンセットで挟み、その傾きを是正する方向に図中矢印E方向またはF方向に僅か撓ませる。   In such an assembly stage as a component, the axis of the component (indicated by the center line R0) is slightly shifted to the right as indicated by the reference symbol R1, as shown in FIG. As shown in FIG. 2A-2, the circular outer diameter portion of the coil spring 9 is in an eccentric position with respect to the circular sealing member 3, so Is easily visible. Therefore, as shown in FIG. 1B, an appropriate portion of the spring seat 8 is sandwiched by tweezers, for example, and is slightly bent in the direction of arrow E or F in the drawing in a direction to correct the inclination.

そして、図(b)−2のようにコイルばね9が中心位置に調整されたことを確認して、コイルばね9の軸心配置延いては可動電極5の適正な軸心配置を得ることができる。なお、前記したようにばね座8は導電ピン4とは溶接されているが、該ばね座8の筒状部8aに嵌合状態に接続固定されたコイルばね9は、そのばね座8の僅少の角度変位にて十分に上記軸心調整を可能としている。
このような、調整後の構成体を容器2内に圧入し最終的に組立構成された落下センサ1は、従来では全体の厚さ寸法が5mm程度が限界であったが、本実施例によれば1mm程度の薄型化も可能となるとともに、勿論実用に供することが可能となった。
Then, confirming that the coil spring 9 has been adjusted to the center position as shown in FIG. 2B-2, it is possible to obtain the proper axial center arrangement of the movable electrode 5 by extending the axial center arrangement of the coil spring 9. it can. Although the spring seat 8 is welded to the conductive pin 4 as described above, the coil spring 9 connected and fixed to the tubular portion 8a of the spring seat 8 in a fitted state is a little of the spring seat 8. The above-mentioned axial center adjustment is sufficiently possible with the angular displacement of.
Such a fall sensor 1 finally assembled and assembled by press-fitting the adjusted structure into the container 2 has been limited to a total thickness of about 5 mm in the past. For example, the thickness can be reduced to about 1 mm and, of course, it can be put to practical use.

以上説明したように、上記実施例によれば次のような効果を奏する。
落下センサ1として、固定電極たる容器2、および可動電極5とするコイルばね9等は、いずれも円形状の構成としているので、360度取付角度に制約受けることなくポータブルコンピュータ等の機器内に容易に且つコンパクトに組み込むことができ、そして落下状態を正常なスイッチング動作にて検出し、素早い対応措置を講ずることができるとする落下センサ1本来の機能と共に、特に下記する優れた特徴を奏する。
As described above, according to the above embodiment, the following effects can be obtained.
As the drop sensor 1, the container 2 as the fixed electrode and the coil spring 9 as the movable electrode 5 have a circular configuration, so that they can be easily installed in devices such as portable computers without being restricted by the mounting angle of 360 degrees. In addition to the original function of the drop sensor 1 that can be incorporated in a compact manner and can detect a falling state by a normal switching operation and take quick countermeasures, it has the following excellent features.

まず、可動電極5の錘を構成する球体10をコイルばね9の内方に設けたので、コイルばね9が極端な屈折変形する場合、球体10がその変形を阻止する抵抗作用をなし、所謂コイルばね9の芯部材の役目をなして落下衝撃時に該コイルばね9の座屈変形や塑性変形に至るほどの大きな変形を抑制するに有効に機能する。また、可動電極5としては該コイルばね9の外径部分を実質的に最大の外郭となし得るので、これを径小化して薄型化するに極めて有利である。しかるに、球体10は円筒形状のコイルばね9の内径より径小とするとともに、更には球体10の自由長方向の全体長さL1を短くするなどして、該コイルばね9内を主に自由長方向に対し容易に移動可能に設けたので、コイルばね9が可動電極5として弾性的に撓み変形するのを何ら阻害することはない。   First, since the spherical body 10 constituting the weight of the movable electrode 5 is provided inward of the coil spring 9, when the coil spring 9 undergoes extreme refraction deformation, the spherical body 10 has a resistance action to prevent the deformation, so-called coil. It acts effectively as a core member of the spring 9 and effectively functions to suppress large deformations such as buckling deformation and plastic deformation of the coil spring 9 at the time of a drop impact. Further, since the outer diameter portion of the coil spring 9 can be a substantially maximum outer diameter of the movable electrode 5, it is extremely advantageous for reducing the diameter and reducing the thickness. However, the spherical body 10 has a smaller diameter than the inner diameter of the cylindrical coil spring 9 and further shortens the entire length L1 of the spherical body 10 in the free length direction so that the inside of the coil spring 9 is mainly free length. Since it is provided so as to be easily movable with respect to the direction, the coil spring 9 does not obstruct the elastic deformation as the movable electrode 5 at all.

また、本実施例では錘を複数個の鋼球からなる球体10の構成としたので、該球体10は鍛造加工にて容易に球状化でき製造コストも安価に提供できるばかりか、複数個の鋼球を採用することで、コイルばね9の設計仕様に応じた錘としての必要数の球体10を用意することができ、精度を要する適正な重量を調整設定するに有利である。   Further, in this embodiment, since the weight is configured as a sphere 10 made of a plurality of steel balls, the sphere 10 can be easily spheroidized by forging and can be provided at a low manufacturing cost. By adopting the sphere, the necessary number of spheres 10 as weights corresponding to the design specifications of the coil spring 9 can be prepared, which is advantageous for adjusting and setting an appropriate weight that requires accuracy.

しかも、コイルばね9内に収納された球体10の抜け止め手段として、コイルばね9の自由端部を先細巻回部9bとして開口を完全に封鎖するか、或いは径小とするなど封鎖口形状とすることにより、確実に抜け止め状態に収納保持できる。このように、コイルばね9自体を利用して抜け止めできることは、他の部品や固定手段を必要とせず、しかも可動電極5としてもコイルばね9の基端部9aを接合するだけの簡単な作業で済み、それだけ高精度のもとに組立性にも優れ一層コスト的に有利である。また、基端部9aを密巻部としたことで接着剤による十分な接合強度が得られる他、落下時などの大きな衝撃を受けても強度的に耐え、且つ該コイルばね9が容易に座屈変形することを阻止するにも有効である。   Moreover, as a means for preventing the spherical body 10 housed in the coil spring 9 from being removed, the free end portion of the coil spring 9 is used as a tapered winding portion 9b to completely block the opening or to reduce the diameter, and so on. By doing so, it can be securely stored and held in a retaining state. In this way, the coil spring 9 itself can be used to prevent it from coming off, so that no other parts or fixing means are required, and the movable electrode 5 can be simply operated by simply joining the base end portion 9a of the coil spring 9. Therefore, it is excellent in assembling property with high accuracy and more advantageous in cost. In addition, since the base end portion 9a is a tightly wound portion, sufficient bonding strength by an adhesive can be obtained, and it can withstand strength even when subjected to a large impact such as dropping, and the coil spring 9 can be easily seated. It is also effective in preventing bending deformation.

更には、可動電極5を移動可能な球体10を内包したコイルばね9とから構成したことにより、図4(a)に基づき開示したように固定電極たる容器2と衝突する際に、その衝撃を緩衝的に受け止めるダンピング効果が期待できる。すなわち、容器2との衝突は従来では錘であったのに対し、本実施例ではコイルばね9が介在するので本来的に消音効果が期待できる上に、コイルばね9の先端部が容器2の内面に接触した状態のまま、或いはそのような傾向に維持される中で中間部位が振幅し、落下時の衝撃が緩衝され且つバウンドしたとしても僅少回数に抑え得るとともに微小距離でのバウンドとなるので、その衝突音による騒音を効果的に低減できる。従って、電極間の接離動作の繰り返しによるスイッチング機能のチャタリング現象を改善することができ、例えば「OFF」動作による誤動作を招くおそれも回避できる。   Further, since the movable electrode 5 is composed of a coil spring 9 containing a movable sphere 10, the impact is applied when it collides with the container 2 as a fixed electrode as disclosed based on FIG. Damping effect can be expected to be received as a buffer. That is, the collision with the container 2 was conventionally a weight, but in the present embodiment, the coil spring 9 is interposed, so that a silencing effect can be expected inherently, and the tip of the coil spring 9 is the tip of the container 2. Even if the middle part remains in contact with the inner surface or is maintained in such a tendency, the intermediate part will swing, and even if the impact at the time of falling is buffered and bound, it can be suppressed to a small number of times and it will bounce at a minute distance Therefore, noise due to the collision sound can be effectively reduced. Therefore, the chattering phenomenon of the switching function due to the repeated contact / separation operation between the electrodes can be improved, and for example, the possibility of erroneous operation due to the “OFF” operation can be avoided.

なお、上記電極間たるコイルばね9と容器2との衝突音は落下時に限らず、これを組み込んだ機器であるポータブルコンピュータなどの携帯時にも、不自然な異音として発生する可能性もあり得るので、この場合にも上記ダンピング作用による効果は有効で商品価値を高め得る。また、本実施例ではコイルばね9の自由端部の先細巻回部9bを密巻きとし、容器2と接触する構成としたので、落下衝撃時の衝突作用を繰り返し受けても十分に耐え得る強度を確保でき、勿論この場合の衝突音も上記同様の緩衝作用にて極小さいことは言うまでもない。   The collision sound between the coil spring 9 between the electrodes and the container 2 is not limited to being dropped, and may be generated as an unnatural noise even when being carried by a portable computer or the like that is a device incorporating the same. Therefore, also in this case, the effect of the damping action is effective and the commercial value can be increased. Further, in this embodiment, the taper winding portion 9b at the free end of the coil spring 9 is closely wound and is in contact with the container 2, so that it can sufficiently withstand even when repeatedly subjected to a collision action during a drop impact. Needless to say, the collision sound in this case is also extremely small due to the same buffering action as described above.

また、コイルばね9には、静止状態の常時はもとより落下時や上記ダンピング作用により、その基端部9aの接合部近傍には曲げ応力などが集中し易いが、これは圧縮コイルばねが柔軟性に富む特性に加え、密巻き構成としてばね座8を介して導電ピン4と接続固定しているので、応力が1点に集中することなく拡散でき、座屈変形を起こし難い。従って、可動電極5としてコイルばね9と容器2の内面と接離するスイッチング動作を、長期安定状態に維持でき信頼性を高め得る。   Also, the coil spring 9 tends to concentrate bending stress in the vicinity of the joint portion of the base end portion 9a due to the dropping action or the above-described damping action as well as the stationary state. In addition to the rich characteristics, the tightly wound structure is connected and fixed to the conductive pin 4 via the spring seat 8, so that stress can be diffused without concentrating on one point, and buckling deformation is unlikely to occur. Therefore, the switching operation of contacting and separating the coil spring 9 and the inner surface of the container 2 as the movable electrode 5 can be maintained in a long-term stable state and the reliability can be improved.

しかるに、上記ダンピング効果はコイルばね9の主に上下方向の伸縮であるのに対し、ワイピング効果は図4(b)に基づき開示したように長さ方向の伸縮作用を有効利用したものである。すなわち、容器2の内面にコイルばね9の自由端部が接触した状態で左右に摺動するため、互いの接触面の汚れや酸化膜が除去できるのである。これにより、長期安定したスイッチング動作が得られるとともに、特に小型化を図る上で電極間の接触圧が小さくなることによる不安定動作の懸念を一掃できる点で有効である。   However, the damping effect is mainly the vertical expansion and contraction of the coil spring 9, whereas the wiping effect effectively utilizes the longitudinal expansion and contraction action as disclosed based on FIG. That is, since the free end portion of the coil spring 9 is in contact with the inner surface of the container 2 and slides to the left and right, dirt and oxide film on the contact surfaces can be removed. This is effective in that a stable switching operation can be obtained for a long period of time, and in particular, the concern about unstable operation due to the decrease in contact pressure between the electrodes can be eliminated in miniaturization.

また、落下センサ1を小型化で特に薄型にするためには、容器2内における可動電極5を構成するコイルばね9周囲の間隙も最小限の設計仕様となり、例えば厚さが1.7mm以下の薄型化では0.数mm程度の微小な間隙となるため、導電ピン4に対するコイルばね9の連結固定は、水平な中心軸上に直線的に接続する組立精度が要求される。しかるに、導電ピン4に直接コイルばね9を接続固定することで、可動電極を構成しても機能的には何ら問題はない。但し、コイルばね9を接続固定する際に高精度の組立作業が強いられると作業性も低下するので、固定後のコイルばね9の軸心調整が容易にできることが望ましい。しかるに、本実施例ではばね座8を介して導電ピン4とコイルばね9間を接続するようにしたので、図5に基づき開示したように、これらを接続した組立後にあっても該コイルばね9を固定支持したばね座8の僅かの変位にて軸心調整ができる。   Further, in order to make the drop sensor 1 small and particularly thin, the gap around the coil spring 9 constituting the movable electrode 5 in the container 2 has a minimum design specification. For example, the thickness is 1.7 mm or less. 0. Since the gap is as small as several millimeters, the coupling and fixing of the coil spring 9 to the conductive pin 4 requires assembly accuracy for linear connection on a horizontal central axis. However, there is no functional problem even if the movable electrode is formed by connecting and fixing the coil spring 9 directly to the conductive pin 4. However, it is desirable that the axial center of the coil spring 9 after fixing can be easily adjusted because workability is reduced when a highly accurate assembly operation is forced when the coil spring 9 is connected and fixed. However, in the present embodiment, since the conductive pin 4 and the coil spring 9 are connected via the spring seat 8, as disclosed based on FIG. The shaft center can be adjusted by a slight displacement of the spring seat 8 that is fixedly supported.

斯くして、コイルばね9の軸心配置延いては可動電極5として正確な軸心配置ができるので、薄型化による容器2内の狭い空間に配置するにも好適し、しかも360度いずれの方向に組み込まれようとも正確な落下状態を検出することができ、この点でも薄型化への実現の可能性を大いに高め得るとともに、ポータブルコンピュータ等の一層小型軽量化、特には薄型指向の傾向が強い中で大いに有効である。   Thus, since the axial center arrangement of the coil spring 9 and the movable electrode 5 can be accurately arranged, the coil spring 9 can be arranged in a narrow space in the container 2 due to thinning, and any direction of 360 degrees. Even if it is installed in a computer, it is possible to detect an accurate fall state. In this respect as well, the possibility of realizing a thin shape can be greatly increased, and further downsizing of a portable computer etc. It is very effective inside.

なお、上記実施例ではコイルばね9の自由端部からの球体10の抜け止め手段として、その開口径を順次径小とする先細巻回部9bを形成したが、これに限定されることなく種々展開可能で、以下図6〜10に上記抜け止め手段の変形例を示すとともに、上記実施例と実質的に同一部分には同一符号を付して説明を省略し、異なる部分につき説明する。   In the above embodiment, the taper winding portion 9b whose opening diameter is sequentially reduced is formed as a means for preventing the spherical body 10 from coming off from the free end portion of the coil spring 9, but the invention is not limited to this. 6 to 10 show modifications of the above-described retaining means, and substantially the same parts as those of the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts will be described.

<第1の変形例>
まず、図6〜8は本発明の第1の変形例を示す図1〜3相当図であって、実質的に球体10のコイルばね9からの抜け止め手段以外は、上記実施例と共通の構成である。
すなわち、このものは上記実施例の先細巻回部9bに代えて、自由端部を円筒形状のまま密巻きとするとともに、その端末を開口する内方側に折曲形成した折曲端末9cを備えた構成としたものである。従って、この折曲端末9cも開口を二分するほぼ中心位置に延出されることで、円筒形状の開口は封鎖口形状となり球体10は折曲端末9cに当接して抜け出るおそれはない。なお、本来の落下センサとしての機能、および他の作用効果については上記実施例と同様であることは言うまでもない。
<First Modification>
First, FIGS. 6 to 8 are views corresponding to FIGS. 1 to 3 showing a first modification of the present invention, and are substantially the same as those in the above embodiment except for the means for preventing the spherical body 10 from coming off from the coil spring 9. It is a configuration.
That is, in place of the tapered winding portion 9b of the above embodiment, the bent end 9c is formed by tightly winding the free end portion in a cylindrical shape and bending the inner end opening the end. It is set as the structure provided. Accordingly, the bent terminal 9c is also extended to a substantially central position that bisects the opening, so that the cylindrical opening has a sealing port shape and the sphere 10 does not come out of contact with the bent terminal 9c. Needless to say, the function as the original drop sensor and other functions and effects are the same as those in the above embodiment.

<第2の変形例>
次いで、図9は本発明の第2の変形例を示す図1相当図である。このものは、上記各実施例がコイルばね9自体を加工した錘の抜け止め手段としているのに対し、導電性の接着剤14を塗布してなる構成にある。すなわち、コイルばね9の自由端部は上記実施例と同様に密巻き構成とするが、その円筒状開口のまま開放した形態とする。そして、この開放端部を封鎖するように導電性の接着剤14を塗布し、そのまま硬化させる。
<Second Modification>
Next, FIG. 9 is a view corresponding to FIG. 1 showing a second modification of the present invention. This is a structure formed by applying a conductive adhesive 14 while each of the above embodiments uses the coil spring 9 itself as a means for preventing the weight from being processed. That is, the free end portion of the coil spring 9 has a close winding configuration as in the above embodiment, but is open with its cylindrical opening. And the conductive adhesive 14 is apply | coated so that this open end part may be sealed, and it hardens | cures as it is.

これにより、コイルばね9の自由端部の開口は、膜状に固化した接着剤14により封鎖され、その後に収納された錘たる球体10の抜け止めとして機能する。ところで、薄型化が可能な本発明によれば、コイルばね9の内径D2は1.0mm程度の極小サイズとなるため、接着剤14は僅少塗布すればよい。しかるに、この極小サイズであるため接着剤14を塗布する際、その一部が例えばコイルばね9の外方にはみ出すことも推測される。しかしながら、本実施例では接着剤14は導電性接着剤を採用しているので、容器2との電気的な導通状態が阻害されることはない。但し、上記の如く導電性接着剤を利用する利点は有するが必ずしも導電性を必須とするものではなく、また接着剤14にてコイルばね9の円筒状開口を完全に封鎖する必要はない。   As a result, the opening at the free end of the coil spring 9 is sealed by the adhesive 14 solidified in a film shape, and functions as a retainer for the spherical body 10 that is stored thereafter. By the way, according to the present invention which can be reduced in thickness, the inner diameter D2 of the coil spring 9 becomes a minimum size of about 1.0 mm, and therefore the adhesive 14 may be applied little. However, since it is this extremely small size, when applying the adhesive 14, it is estimated that a part of the adhesive 14 protrudes outside the coil spring 9, for example. However, in this embodiment, since the adhesive 14 employs a conductive adhesive, the electrical conduction state with the container 2 is not hindered. However, although there is an advantage of using a conductive adhesive as described above, the conductivity is not necessarily required, and it is not necessary to completely seal the cylindrical opening of the coil spring 9 with the adhesive 14.

<第3の変形例>
そして、図10は本発明の第3の変形例を示す図1相当図である。このものは、錘の抜け止め手段として、コイルばね9の基端部9aを接続固定した前記ばね座8を共通に利用して、つまり該コイルばね9の自由端部側に接続固定したものである。すなわち、まずコイルばね9の形態としては、上記第2の変形例と同様に全長円筒形状にあって、基端部9aおよび自由端側も密巻きとして開放した構成にある。しかして、基端部9aを導電性のばね座8に接続固定したと同様に、自由端側にあっても筒状部8aに嵌合接続し、これを導電性の接着剤にて固定したもので、内部の球体10の抜け止め手段以外は上記実施例と共通である。なお、錘としての球体10は、ここでは2種類の異なる径の鋼球を採用していて、例えば自由端側の2個を重量として大きい径大球10aを収納し、基端部9a側にこれより軽量の径小球10bを3個収納している。
<Third Modification>
FIG. 10 is a view corresponding to FIG. 1 showing a third modification of the present invention. This means uses the spring seat 8 to which the base end portion 9a of the coil spring 9 is connected and fixed in common as a means for preventing the weight from coming off, that is, is connected and fixed to the free end side of the coil spring 9. is there. That is, first, the coil spring 9 has a full-length cylindrical shape as in the second modified example, and has a configuration in which the proximal end portion 9a and the free end side are also opened in close winding. As in the case of connecting and fixing the base end portion 9a to the conductive spring seat 8, the base end portion 9a is fitted and connected to the cylindrical portion 8a even on the free end side, and this is fixed with a conductive adhesive. However, this embodiment is the same as the above embodiment except for the means for preventing the internal sphere 10 from coming off. Here, the spherical body 10 as the weight employs two types of steel balls of different diameters. For example, a large-diameter large sphere 10a with two pieces on the free end side as a weight is accommodated, and the base end 9a side is accommodated. Three lighter diameter balls 10b that are lighter than this are housed.

このものの場合も上記実施例と同様に、球体10が落下衝撃時にはコイルばね9の軸芯構成体として機能し、該コイルばね9の極端な屈折変形を抑制できる以外に、共通のばね座8を相対した配置とするだけで球体10の抜け止め手段として利用でき、所謂新規部品の増加はない。しかも、このように球体10を収納し抜け止め状態としてなるユニット化が可能であるため、保管或いは移送作業等における取り扱いが容易となり、例えばユニット化したものを導電ピン4と溶接し連結することも可能となるなど、組立の汎用性に富む構成が得られる。   In this case as well, the common spring seat 8 is provided in addition to the function of the spherical body 10 as a shaft core structure of the coil spring 9 when the ball 10 is dropped and impacted, so that extreme refraction deformation of the coil spring 9 can be suppressed. It can be used as a means for preventing the sphere 10 from being removed simply by making the arrangement opposite to each other, and so-called new parts do not increase. In addition, since it is possible to unitize the spherical body 10 so as to prevent it from coming off, handling in storage or transfer work becomes easy. For example, the unitized one may be welded and connected to the conductive pin 4. This makes it possible to obtain a configuration that is versatile in assembly.

また、自由端側に設けた金属製のばね座8は、錘としての球体10の重力を受けて容器2と直接接触するが、上記実施例等で述べた弾性のコイルばね自体による接触、或いは導電性接着剤を介した接触などの形態に比し、その剛体による接触状態は極めて良好で所謂可動電極5の可動接点として長期安定して機能する点で優れている。しかも、本実施例では錘たる球体10として5個のうちの2個を重量大とする径大球10aとし、これをコイルばね9の自由端側に収納配置したので、可動電極5として容器2との接触状態をより一層確実に維持できる。
なお、このような異なる重量構成とする球体10は、径の大小に限らず、例えば同径のまま材質により軽重を求めるようにしてもよいし、当然それらの個数もコイルばね9の設計仕様等に応じて適宜設定すればよいことは言うまでもなく、広く展開して実施できる。
Further, the metal spring seat 8 provided on the free end side receives the gravity of the sphere 10 as a weight and directly contacts the container 2, but the contact by the elastic coil spring itself described in the above-described embodiments or the like, or Compared to a form such as contact via a conductive adhesive, the contact state by the rigid body is very good, and is excellent in that it functions stably as a movable contact of the so-called movable electrode 5 for a long period of time. In addition, in this embodiment, since the spherical sphere 10 serving as the weight is a large-diameter sphere 10a in which two of the five spheres 10 are heavy, and this is housed and arranged on the free end side of the coil spring 9, the container 2 is used as the movable electrode 5. The contact state with can be maintained more reliably.
The spheres 10 having different weight configurations are not limited to the size of the diameter. For example, the weight of the sphere 10 may be obtained by using the same diameter, and the number of the spheres 10 is naturally the design specification of the coil spring 9 or the like. Needless to say, it may be set appropriately according to the above, and can be widely deployed and implemented.

(第2の実施の形態)
図11は、本発明の第2実施例を示す図1相当図で、上記第1実施例と実質的に同一部分には同一符号を付して説明を省略し、異なる部分のみにつき説明する。
本実施例では、上記実施例はいずれも錘としての球体10を備えた構成であったのに対し、プラスチックやアルミニュームなどの軽量材質の球体15を採用したこと、および錘を兼ねた別部材からなる抜け止め部材16を具備してなる可動電極17の構成を特徴としている。
(Second Embodiment)
FIG. 11 is a view corresponding to FIG. 1 showing a second embodiment of the present invention. The same reference numerals are given to the substantially same parts as those of the first embodiment, and the description thereof will be omitted. Only different parts will be described.
In this embodiment, each of the above embodiments has a configuration including the sphere 10 as a weight, but the use of a sphere 15 made of a lightweight material such as plastic or aluminum, and another member also serving as a weight. The structure of the movable electrode 17 comprising the retaining member 16 made of is characterized.

すなわち、球体15はコイルばね9の軸芯構成体としては機能するが、錘としては機能しない。そこで、コイルばね9の自由端部に球体15の抜け止め手段として別部材の抜け止め部材16を装着し、該抜け止め部材16を重量大なる導電性部材により形成したものである。しかるに、抜け止め部材16の形状としては全体に円柱状をなし、一端に段差状に径小部16aを形成し、この径小部16aにコイルばね9の開放した密巻き状の自由端部を嵌合し、導電性の接着剤にて連結固定した構成にある。なお、抜け止め部材16の外径はコイルばね9の外径より僅か大きい形状としているが、必要な重量は特に径寸法のみに限らず、長さ寸法の調整により容易に設定できる。   That is, the sphere 15 functions as an axial core component of the coil spring 9 but does not function as a weight. Therefore, a separate retaining member 16 is attached to the free end of the coil spring 9 as a means for retaining the spherical body 15, and the retaining member 16 is formed of a conductive member that is heavy. However, the retaining member 16 has a cylindrical shape as a whole, a small diameter portion 16a is formed in a stepped shape at one end, and the closely wound free end portion where the coil spring 9 is opened is formed in the small diameter portion 16a. The configuration is such that they are fitted and connected and fixed with a conductive adhesive. The outer diameter of the retaining member 16 is slightly larger than the outer diameter of the coil spring 9, but the required weight is not limited to the diameter, and can be easily set by adjusting the length.

斯かる構成によれば、上記第1実施例と同様の作用効果が得られるとともに、錘は抜け止め部材16を兼用した構成のため簡易な構成にて提供できる。また、錘は単一の抜け止め部材16にて重量調整できるので、上記実施例のように複数個からなる錘たる球体10に比し、その重量設定が容易となる利点を有する。更には、抜け止め部材16は容器2と接触する可動電極17の接点としても機能し、且つコイルばね10が接触する第1実施例に比し確実な接触状態が得られ長期安定して機能する点で優れている。   According to such a configuration, the same effects as those of the first embodiment can be obtained, and the weight can be provided with a simple configuration because of the configuration that also serves as the retaining member 16. Further, since the weight of the weight can be adjusted by the single retaining member 16, the weight can be easily set as compared with the plurality of weighted spheres 10 as in the above embodiment. Further, the retaining member 16 also functions as a contact point of the movable electrode 17 that contacts the container 2, and provides a more reliable contact state than the first embodiment in which the coil spring 10 contacts, and functions stably for a long time. Excellent in terms.

但し、抜け止め部材16を錘として兼用する構成上、若干大きくなり長さ寸法が大きくなる可能性はあるが、本実施例における球体15は錘としての機能は不要なので、個数の削減や径寸法を縮小するなど、コイルばね9と併せて調整することで抑制できるとともに、この長さ寸法は特に求められている薄型化によるコンパクト化に対し格別な支障なく十分に達成できる。また、本実施例では錘を兼ねた抜け止め部材16の構成としたが、これに限らず例えば夫々専用の抜け止め手段と錘とを用意して組み込む構成としてもよい。   However, since the retaining member 16 is also used as a weight, it may be slightly larger and the length dimension may be increased. However, since the sphere 15 in this embodiment does not need a function as a weight, the number of parts can be reduced and the diameter dimension can be reduced. It can be suppressed by adjusting it together with the coil spring 9 such as reducing the length, and this length dimension can be sufficiently achieved without any particular hindrance to the compactness due to the thinning that is particularly required. In the present embodiment, the retaining member 16 also serves as a weight. However, the present invention is not limited to this. For example, a dedicated retaining member and a weight may be prepared and incorporated.

なお、本発明は上記し且つ図面に示した各実施例に限定されず、例えばコイルばねの基端部を接続固定するばね座の形状、或いはコイルばねの自由端部における錘の抜け止め手段の形状など、上記実施例構造に限定することなく種々展開可能であり、また基端部および自由端部を密巻き構成とすることで強度的に有利であるが、これは必要に応じて設ければよい。また、錘としての球体は5個に限らず1個或いは2個でも可能であるとともに、鋼球に限らず、更には質量の異なる材質や、その組合わせ構成からなる球体にて重量調整することも可能であり、例えば自由端部側ほど重力大となるように種々の組合わせによる選択肢があり、且つ微調整も可能である。更には、球体はコイルばねの軸芯として該コイルばねを衝撃から保護する機能として、錘を別部材に設ける構成も種々考えられるなど、実施に際して本発明の要旨を逸脱しない範囲で種々変更して実施できるものである。   The present invention is not limited to the embodiments described above and shown in the drawings. For example, the shape of a spring seat for connecting and fixing the proximal end of the coil spring, or the weight retaining means for the free end of the coil spring. Various shapes can be developed without being limited to the structure of the above-described embodiment, and it is advantageous in strength to make the base end portion and the free end portion a close winding configuration, but this is provided if necessary. That's fine. In addition, the number of spheres as weights is not limited to five, and one or two spheres are possible, and not only steel balls, but also weight adjustment with spheres made of materials with different masses or combinations thereof. For example, there are options by various combinations so that the gravity is increased toward the free end side, and fine adjustment is also possible. Furthermore, the spherical body can be variously modified without departing from the gist of the present invention in practice, such as various configurations in which a weight is provided as a separate member as a function of protecting the coil spring from impact as an axis of the coil spring. It can be implemented.

本発明の第1実施例を示す全体構成の断面図Sectional drawing of the whole structure which shows 1st Example of this invention 異なる状態を示す図1相当図1 equivalent diagram showing different states 図2中のA−A線に沿って切断して示す断面図Sectional drawing cut | disconnected and shown along the AA line in FIG. 異なる態様(a)、(b)、(c)の作用説明するための概略構成図Schematic configuration diagram for explaining the operation of different modes (a), (b), and (c) 組立調整前後の態様(a)、(b)の作用説明するための構成図Configuration diagram for explaining operation of modes (a) and (b) before and after assembly adjustment 第1の変形例を示す図1相当図FIG. 1 equivalent view showing a first modification 図2相当図2 equivalent diagram 図7中のG−G線に沿って切断して示す図3相当の断面図FIG. 3 is a cross-sectional view corresponding to FIG. 3, taken along line GG in FIG. 7. 第2の変形例を示す図1相当図FIG. 1 equivalent view showing a second modification 第3の変形例を示す図1相当図FIG. 1 equivalent view showing a third modification 本発明の第2実施例を示す図1相当図FIG. 1 equivalent view showing a second embodiment of the present invention.

符号の説明Explanation of symbols

図面中、1は落下センサ、2は容器(固定電極)、3は封鎖部材、4は導電ピン、5,17は可動電極、8はばね座、9はコイルばね、9aは基端部、9bは先細巻回部、9cは折曲端末、10は球体(錘)、14は接着剤、15は球体、および16は抜け止め部材(錘)を示す。   In the drawings, 1 is a drop sensor, 2 is a container (fixed electrode), 3 is a sealing member, 4 is a conductive pin, 5 and 17 are movable electrodes, 8 is a spring seat, 9 is a coil spring, 9a is a base end, 9b Is a tapered winding part, 9c is a bending terminal, 10 is a sphere (weight), 14 is an adhesive, 15 is a sphere, and 16 is a retaining member (weight).

Claims (8)

導電性容器内に可動電極を封鎖してなる落下センサにおいて、
前記可動電極は、基端部が前記容器内に挿入された導電ピンの端部に接続固定され片持ち支持されたコイルばねと、このコイルばねの内方に移動可能で抜け止め状態に収納された錘とを具備してなる構成を特徴とする落下センサ。
In a drop sensor formed by sealing a movable electrode in a conductive container,
The movable electrode includes a coil spring whose base end is connected and fixed to the end of a conductive pin inserted into the container and is cantilevered, and is movable inward of the coil spring and stored in a retaining state. A drop sensor characterized by comprising a weight.
錘は、コイルばねより径小な球体としたことを特徴とする請求項1記載の落下センサ。   The fall sensor according to claim 1, wherein the weight is a sphere having a diameter smaller than that of the coil spring. 錘は、複数個からなる球体の構成としたことを特徴とする請求項1または2記載の落下センサ。   The fall sensor according to claim 1 or 2, wherein the weight has a plurality of spheres. 錘は、コイルばねの自由長より短い構成としたことを特徴とする請求項1ないし3の何れかに記載の落下センサ。   4. The drop sensor according to claim 1, wherein the weight is shorter than the free length of the coil spring. 導電性容器内に可動電極を封鎖してなる落下センサにおいて、
前記可動電極は、基端部が前記容器内に挿入された導電ピンの端部に接続固定され片持ち支持されたコイルばねと、このコイルばねの内方に移動可能で抜け止め状態に収納された球体と、前記コイルばねの自由端部に設けられた錘とを具備してなる構成を特徴とする落下センサ。
In a drop sensor formed by sealing a movable electrode in a conductive container,
The movable electrode includes a coil spring whose base end is connected and fixed to the end of a conductive pin inserted into the container and is cantilevered, and is movable inward of the coil spring and stored in a retaining state. A drop sensor characterized by comprising a spherical body and a weight provided at the free end of the coil spring.
錘は、球体の抜け止め部材を兼用した構成としたことを特徴とする請求項5記載の落下センサ。   6. The drop sensor according to claim 5, wherein the weight is configured to also serve as a spherical retaining member. 球体は、複数個からなる構成としたことを特徴とする請求項5または6に記載の落下センサ。   The drop sensor according to claim 5 or 6, wherein the sphere has a plurality of configurations. 球体は、コイルばねの自由長より短い構成としたことを特徴とする請求項5ないし7の何れかに記載の落下センサ。

The drop sensor according to any one of claims 5 to 7, wherein the sphere is configured to be shorter than a free length of the coil spring.

JP2004331932A 2004-04-13 2004-11-16 Fall sensor Pending JP2006145235A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004331932A JP2006145235A (en) 2004-11-16 2004-11-16 Fall sensor
US11/060,817 US7243530B2 (en) 2004-04-13 2005-02-18 Free fall sensor
EP05250978A EP1586907A1 (en) 2004-04-13 2005-02-21 Free fall sensor
CNA2005100628897A CN1683932A (en) 2004-04-13 2005-04-05 Free fall sensor
TW094111305A TW200604529A (en) 2004-04-13 2005-04-11 Free fall sensor
KR1020050030463A KR20060045633A (en) 2004-04-13 2005-04-12 Free fall sensor
RU2005110708/28A RU2005110708A (en) 2004-04-13 2005-04-12 FREE DROP SENSOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331932A JP2006145235A (en) 2004-11-16 2004-11-16 Fall sensor

Publications (1)

Publication Number Publication Date
JP2006145235A true JP2006145235A (en) 2006-06-08

Family

ID=36625118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331932A Pending JP2006145235A (en) 2004-04-13 2004-11-16 Fall sensor

Country Status (1)

Country Link
JP (1) JP2006145235A (en)

Similar Documents

Publication Publication Date Title
US6612157B2 (en) Free fall sensor wherein normally closed circuit is opened in response to free fall conditions
JP6066490B2 (en) Load sensor
US8571399B2 (en) Photographic optical device
TWI681176B (en) Force sensor unit
WO2011162362A1 (en) Contact probe and probe unit
EP1316778B1 (en) Touch probe and method of assembling a touch probe
US7243530B2 (en) Free fall sensor
JP2006145235A (en) Fall sensor
JP2005302557A (en) Fall sensor
US20090008226A1 (en) Motion switch
JP2001185012A (en) Falling sensor
JP2006172984A (en) Fall sensor
KR100197064B1 (en) Earthquake detecting element
JP2008131554A (en) Imaging apparatus
JP2008058286A (en) Slide type contact
JP3874331B2 (en) Acceleration switch
JP4172468B2 (en) Spiral vibration detector
US10422813B2 (en) Miniature hermetic acceleration detection device
JP2001194382A (en) Falling sensor
WO2012141259A1 (en) Charging device
JP2002365307A (en) Acceleration sensor
US20090008227A1 (en) Motion switch
JP2006147441A (en) Falling switch
JP3810651B2 (en) Touch signal probe seating mechanism
JP2021043100A (en) Contact probe and socket for inspection equipped therewith