JP2006143612A - Method for conveying slurry - Google Patents
Method for conveying slurry Download PDFInfo
- Publication number
- JP2006143612A JP2006143612A JP2004332845A JP2004332845A JP2006143612A JP 2006143612 A JP2006143612 A JP 2006143612A JP 2004332845 A JP2004332845 A JP 2004332845A JP 2004332845 A JP2004332845 A JP 2004332845A JP 2006143612 A JP2006143612 A JP 2006143612A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- terephthalic acid
- water
- washing water
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は繊維、フィルム、工業用部材、一般成形品等に広く使用されているポリエステル樹脂の主原料であるテレフタル酸の製造の際のテレフタル酸を含む水スラリーの送液方法に関する。さらに詳しくは、テレフタル酸の晶析槽の運転方法、あるいは、テレフタル酸ジメチルの加水分解法により製造され、ポリエチレンテレフタレートに代表されるポリエステル製造原料として好適なテレフタル酸を含む水スラリーの送液方法に関するものである。 The present invention relates to a method for feeding a water slurry containing terephthalic acid in the production of terephthalic acid, which is a main raw material of polyester resin widely used for fibers, films, industrial members, general molded articles and the like. More specifically, the present invention relates to a method for operating a terephthalic acid crystallization tank, or a method for feeding an aqueous slurry containing terephthalic acid which is produced by a hydrolysis method of dimethyl terephthalate and is suitable as a polyester production raw material represented by polyethylene terephthalate. Is.
高温高圧下の溶液又はスラリーを晶析槽若しくは反応槽に供給する方法にはいくつかの方法があるが、その一つに輸送するべき溶液又はスラリーを、減圧弁を経てより低い圧力下にある槽に連続的に輸送する方法がある。例えば、粗テレフタル酸の水添精製工程では約300℃で貴金属触媒床を通過させて水添精製した後、晶析槽に供給し、水の蒸発による温度低下によりテレフタル酸結晶を析出させることが行われている。この場合、晶析槽は3〜6個が直列に接続されており、各晶析槽への供給管にはそれぞれ減圧弁が設置されていて各晶析槽間で逐次降温して結晶が析出するようになっている。また、原料としてテレフタル酸ジメチルを用い水と共に高温高圧下で加水分解を行い、テレフタル酸を製造する場合、1つ以上の連続反応槽を用い生成するスラリーを、減圧弁を経てより低い圧力下にある反応槽に供給しながら反応率の向上による純度の調整が行われる。 There are several methods for supplying a solution or slurry under high temperature and high pressure to the crystallization tank or reaction tank, and the solution or slurry to be transported to one of them is under a lower pressure through a pressure reducing valve. There is a method of continuous transportation to the tank. For example, in the hydrorefining process of crude terephthalic acid, after passing through a noble metal catalyst bed at about 300 ° C. and hydrorefining, the terephthalic acid crystals can be precipitated by supplying to the crystallization tank and lowering the temperature due to water evaporation. Has been done. In this case, 3 to 6 crystallization tanks are connected in series, and a pressure reducing valve is installed in each supply pipe to each crystallization tank, so that crystals are precipitated by sequentially cooling between the crystallization tanks. It is supposed to be. In addition, when producing terephthalic acid by using dimethyl terephthalate as a raw material with water at high temperature and high pressure to produce terephthalic acid, the slurry produced using one or more continuous reaction tanks is subjected to a lower pressure through a pressure reducing valve. The purity is adjusted by improving the reaction rate while being supplied to a certain reaction vessel.
ところが、主にテレフタル酸と水からなるスラリー(以下単にテレフタル酸スラリーと称することがある。)の輸送においては長期間輸送を継続するとテレフタル酸スラリー中のテレフタル酸の一部が供給配管の内面に付着固化して堆積し、テレフタル酸スラリーの輸送ができなくなるという問題があった。このため、定期的に付着物をかきとって除去する必要があった。また、テレフタル酸スラリーを高温高圧で取り扱う場合にはフラッシュ蒸発等によりスラリー輸送配管内の弁付近では著しく結晶析出及び配管への付着が発生し、最終的に設備の休止が避けられず稼働率の低下や製品のロスを生じるという問題があった。これに対し、スラリー輸送配管に設置された減圧弁を急激に開閉することにより付着している結晶に衝撃を与えて器壁から剥離させる方法(例えば特許文献1参照。)が報告されているが、本方法では付着している結晶に対し、溶解度を持たないスラリーを、大きな圧力差を用いて急激に流すことにより生じる衝撃のみでの洗浄効果であり、著しい結晶析出には不十分であることが多く、最終的に設備の休止が避けられず稼働率の低下や製品のロスを生じるという問題があった。また、送液先の圧力変動が大きく、吹き抜け等により安全上の問題に対応するため設備費が多く必要となる等の問題もあった。 However, in the transportation of a slurry mainly composed of terephthalic acid and water (hereinafter sometimes simply referred to as terephthalic acid slurry), if the transportation is continued for a long period of time, a part of the terephthalic acid in the terephthalic acid slurry is deposited on the inner surface of the supply pipe. There was a problem that the terephthalic acid slurry could not be transported due to adhesion and solidification. For this reason, it was necessary to scrape and remove the deposits periodically. In addition, when handling terephthalic acid slurry at high temperature and high pressure, crystal precipitation and adhesion to the pipes occur in the vicinity of the valves in the slurry transport pipe due to flash evaporation, etc. There was a problem of causing a drop and product loss. On the other hand, although a method has been reported in which the attached crystal is impacted and peeled off from the vessel wall by abruptly opening and closing a pressure reducing valve installed in the slurry transport pipe (see, for example, Patent Document 1). In this method, it is a cleaning effect only by the impact caused by abruptly flowing a slurry having no solubility with respect to the attached crystal using a large pressure difference, and is insufficient for remarkable crystal precipitation. In many cases, there was a problem that the downtime of the equipment was unavoidable and the operating rate was lowered and the product was lost. There is also a problem that the pressure fluctuation at the liquid delivery destination is large and a large equipment cost is required to cope with safety problems due to blow-through.
また、多孔質材を用いたジャケットをもつ配管を使用し、窒素ガスの吹き込みによるバブリング効果でスラリー輸送配管内面への固体結晶付着防止を図る方法(例えば特許文献2参照。)も報告されているが、テレフタル酸スラリーを高温高圧で取り扱う場合には高圧窒素(N2)を必要とするだけでなく、フラッシュ蒸発等によりスラリー輸送配管内の弁付近では著しく結晶析出及び配管への付着が発生し、N2バブリング効果では効果が不十分である。これに対し、振動発生器を用いて詰まり箇所に振動を与え閉塞防止を図る方法(例えば特許文献3参照。)も報告されているが、テレフタル酸の場合内面への付着が激しくこれらの方法では不十分である。また、テレフタル酸スラリー取出しと清浄液若しくは加圧空気等の気体成分を交互に流す方法(例えば特許文献4参照。)では間欠押し出し方式であり、テレフタル酸スラリーの送液が間欠となる上、清浄液の量が多く、取り出し液中の固形分濃度が著しく低下するため、テレフタル酸製造設備で使用する場合には製品テレフタル酸の粒子径に悪影響を与える可能性が高い。 In addition, a method of using a pipe having a jacket made of a porous material and preventing solid crystals from adhering to the inner surface of the slurry transport pipe by a bubbling effect by blowing nitrogen gas has been reported (for example, see Patent Document 2). However, when handling terephthalic acid slurry at high temperature and high pressure, not only high pressure nitrogen (N2) is required, but also crystal precipitation and adhesion to the pipe occur in the vicinity of the valve in the slurry transport pipe due to flash evaporation, etc. The N2 bubbling effect is insufficient. On the other hand, methods have been reported to prevent clogging by applying vibration to the clogging site using a vibration generator (see, for example, Patent Document 3), but in the case of terephthalic acid, adhesion to the inner surface is severe, and these methods It is insufficient. Further, the method of alternately taking out the terephthalic acid slurry and flowing a gas component such as a cleaning liquid or pressurized air (for example, refer to Patent Document 4) is an intermittent extrusion method, in which the liquid feeding of the terephthalic acid slurry is intermittent and the cleaning is performed. Since the amount of the liquid is large and the solid concentration in the extracted liquid is remarkably reduced, there is a high possibility that the particle diameter of the product terephthalic acid will be adversely affected when used in a terephthalic acid production facility.
そこで本発明は、テレフタル酸スラリーを高温高圧で取り扱う場合において、減圧弁等を経て、より低い圧力下にある槽にテレフタル酸水溶液又はテレフタル酸スラリーを供給する方法の最大の問題点であるスラリー輸送配管、各槽の取り出し口若しくは各槽の受け入れ口での固体堆積、減圧弁等を通過した直後の溶液若しくはテレフタル酸スラリーからの結晶析出及びこれに伴うスラリー輸送配管の閉塞に対する解決方法を提案するものである。すなわち簡便かつ確実な方法で固体の堆積や結晶の析出を防止し、連続的なスラリー送液方法を提供しようとするものである。 Therefore, the present invention is a slurry transport which is the biggest problem of a method of supplying a terephthalic acid aqueous solution or a terephthalic acid slurry to a tank under a lower pressure through a pressure reducing valve or the like when the terephthalic acid slurry is handled at a high temperature and a high pressure. Proposed solution to solid deposition at piping, outlet of each tank or receiving port of each tank, crystal precipitation from solution or terephthalic acid slurry immediately after passing through pressure reducing valve, etc., and clogging of slurry transport piping accompanying this Is. That is, it is intended to provide a continuous slurry feeding method by preventing solid deposition and crystal precipitation by a simple and reliable method.
上記目的を達成するために、本発明者らは鋭意検討を行った結果、送液用の開閉可能な減圧弁があるスラリー輸送配管を介して少なくとも2つ以上の連続槽型反応槽が直列に接続され、該減圧弁の上流側のスラリー輸送配管に洗浄水供給配管及び洗浄水流量調整弁を接続した構造を持つテレフタル酸製造設備において、高温高圧下で水とテレフタル酸からなるスラリーを一の連続槽型反応槽から他の連続槽型反応槽へ輸送するにあたり、スラリーを連続的に供給しながら、該連続槽型反応槽間を接続しているスラリー輸送配管に接続された洗浄水供給配管にある洗浄水流量調整弁を調整し、洗浄水を定期的に供給しながら、洗浄水流量を変化させることを特徴とするスラリーの送液方法により上記課題が解決することができることを見出した。 In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, at least two or more continuous tank reactors are connected in series via a slurry transport pipe having an openable / closable pressure reducing valve. In a terephthalic acid production facility having a structure in which a washing water supply pipe and a washing water flow rate regulating valve are connected to a slurry transport pipe upstream of the pressure reducing valve, a slurry of water and terephthalic acid is When transporting from a continuous tank type reaction tank to another continuous tank type reaction tank, the washing water supply pipe connected to the slurry transport pipe connecting the continuous tank type reaction tanks while continuously supplying the slurry. It was found that the above problem can be solved by a slurry feeding method characterized in that the washing water flow rate adjustment valve is adjusted and the washing water flow rate is changed while periodically supplying the washing water.
本発明のスラリー送液方法は、複数の連続槽型撹拌反応槽間に接続されたスラリー輸送配管と、これに設置される減圧弁と該弁の上流側に接続される洗浄水供給配管及び洗浄水流量調整弁から構成される設備を考案し、連続にてスラリーを供給しながら、洗浄水を定期的に且つ流量を変化させながら供給することにより、スラリー輸送配管及び減圧弁への結晶の付着を防止する。また、付着した結晶を溶解度に余裕のある洗浄水を混合して使用することにより、衝撃のみでなく、溶解による洗浄効果によりスラリー輸送を停止することなく、スラリーの送液が可能である。また、同時に下流の送液先の圧力変動を抑制しながらスラリー輸送配管の閉塞を抑制し、連続的にスラリーを送液することを実現したものである。また、洗浄水として温度制御されたテレフタル酸の溶解度よりも低い濃度のテレフタル酸濃度若しくはテレフタル酸を含まない純水を用いることによりスラリー輸送配管内で析出した結晶を溶解洗浄除去することもでき、閉塞抑制効果が大きい。 The slurry feeding method of the present invention includes a slurry transporting pipe connected between a plurality of continuous tank-type stirred reaction tanks, a pressure reducing valve installed in this, a cleaning water supply pipe connected to the upstream side of the valve, and a cleaning By devising equipment consisting of a water flow control valve and supplying slurry continuously while supplying the washing water periodically and while changing the flow rate, crystals adhere to the slurry transport piping and pressure reducing valve. To prevent. Moreover, by using the adhering crystals mixed with washing water having a sufficient solubility, the slurry can be fed not only by impact but also without stopping the slurry transportation due to the washing effect by dissolution. At the same time, it is possible to suppress the blockage of the slurry transport pipe while suppressing the pressure fluctuation of the downstream liquid supply destination, and to continuously feed the slurry. In addition, by using pure water not containing terephthalic acid concentration or terephthalic acid at a concentration lower than the solubility of terephthalic acid whose temperature is controlled as washing water, the crystals precipitated in the slurry transport pipe can be dissolved and removed by washing, The effect of suppressing occlusion is great.
以下、本発明の実施例について図に基づき説明する。図中、図1は本発明実施例のスラリー送液方法を示す概略図である。1つ以上の連続槽型反応槽にてテレフタル酸ジメチルを高温高圧下にて加水分解を行い、テレフタル酸を製造する場合、連続槽型反応槽内のテレフタル酸スラリーを圧力差若しくはポンプを用いてテレフタル酸スラリー輸送配管を通して次の反応槽へ導く。テレフタル酸ジメチルを原料とする加水分解法を用いたテレフタル酸製造方法では、各反応槽内の温度は通常180〜300℃とし、圧力は1.0〜10MPaの範囲で加水分解反応しテレフタル酸を製造する。本発明の送液は図1に示すようにテレフタル酸スラリーは供給されてくるテレフタル酸スラリーの液量に対し反応槽内の液保有量が一定となるようにレベル制御される。そのテレフタル酸スラリー輸送配管6には、該テレフタル酸スラリーの流量を調整するための減圧弁4を有し、該減圧弁の上流側に流量制御のための弁を有する洗浄水供給配管5をもつ構造のものであって、スラリー輸送配管に設置する減圧弁のタイプはいかなるものでもよい。さらにテレフタル酸製造設備が、多段の連続攪拌槽を用い、テレフタル酸を100℃以上且つ0.1013MPa以上で水処理した後、段階的に圧力を低下させながら再結晶操作を行う晶析設備である場合がより好ましい。 Embodiments of the present invention will be described below with reference to the drawings. In the figure, FIG. 1 is a schematic view showing a slurry feeding method according to an embodiment of the present invention. When producing terephthalic acid by hydrolyzing dimethyl terephthalate under high temperature and high pressure in one or more continuous tank type reaction tanks, the terephthalic acid slurry in the continuous tank type reaction tanks is subjected to pressure difference or a pump. Lead to the next reactor through terephthalic acid slurry transport pipe. In the terephthalic acid production method using a hydrolysis method using dimethyl terephthalate as a raw material, the temperature in each reaction tank is usually 180 to 300 ° C., and the pressure is hydrolyzed within a range of 1.0 to 10 MPa to convert terephthalic acid. To manufacture. As shown in FIG. 1, the liquid feeding of the present invention is level-controlled so that the terephthalic acid slurry has a constant liquid holding amount in the reaction tank with respect to the amount of terephthalic acid slurry supplied. The terephthalic acid slurry transport pipe 6 has a pressure reducing valve 4 for adjusting the flow rate of the terephthalic acid slurry, and a washing water supply pipe 5 having a valve for controlling the flow rate upstream of the pressure reducing valve. Any type of pressure reducing valve may be installed in the slurry transport pipe. Furthermore, the terephthalic acid production facility is a crystallization facility in which a multistage continuous stirring tank is used, and after terephthalic acid is water-treated at 100 ° C. or higher and 0.1013 MPa or higher, a recrystallization operation is performed while gradually reducing the pressure. The case is more preferred.
通常、第一段目の連続槽型撹拌反応槽1には連続で原料であるテレフタル酸ジメチルと水が供給され、第一段目の連続槽型撹拌反応槽1内の液保有量が一定となるように減圧弁4を介して第二段目の連続槽型撹拌反応槽2に供給される。この折、減圧弁4の上流側に接続されている洗浄水供給配管5より洗浄水流量調整弁3を調整しながら常時少量の洗浄水を供給し、また定期的に洗浄水流量調整弁3を短時間開放し、洗浄水の供給量を増加させて、スラリーの輸送を停止することなく、上記減圧弁4及びスラリー輸送配管6への結晶付着を除去する。洗浄水流量調整弁3を開放している時間は数秒〜60秒程度が好ましい。また、洗浄に使用する洗浄水流量は多ければ多いほど洗浄効果は大きくなるが、第二段目の連続槽型撹拌反応槽2への洗浄水の供給量が著しく多くなり、第二段目の連続槽型撹拌反応槽2の液保有量及び圧力の管理が困難となる。また、少ない場合には洗浄効果がなく、通常スラリー送液流量に対して洗浄以外の時には0.01倍〜0.1倍の流量、洗浄の時には0.5〜1倍の流量となるように洗浄水を供給することが好ましい。洗浄水としては通常水を使用し、テレフタル酸の溶解度を超過しなければテレフタル酸を含む水、例えば溶解度を超えない範囲内で溶質を溶解している水又はテレフタル酸スラリーより固形濃度の低い液体、例えば工程内循環水等でもよく、該洗浄水の温度は送液するスラリーの温度以上の温度が好ましい。また水は特にその純度等が限定されるものではなく、工業用水で十分使用に耐えうる。当該条件の洗浄水を用いることによりスラリーの急激な温度変化を抑制することができると共に、スラリー輸送配管等の閉塞を効率よく防止することができる。さらに洗浄水を定期的に供給する際に、一定間隔にて洗浄水流量調整弁を開閉する操作を行うことも好ましい。該操作を定期的に繰り返しすることにより運転停止を伴う閉塞を発生させることなく、安定してテレフタル酸製造を可能にすることができる。 Usually, the first stage continuous tank type stirred reaction tank 1 is continuously supplied with dimethyl terephthalate and water as raw materials, and the liquid holding amount in the first stage continuous tank type stirred reaction tank 1 is constant. In this way, it is supplied to the second-stage continuous tank type stirred reaction tank 2 through the pressure reducing valve 4. At this time, a small amount of cleaning water is constantly supplied from the cleaning water supply pipe 5 connected to the upstream side of the pressure reducing valve 4 while adjusting the cleaning water flow rate adjusting valve 3. It opens for a short time, increases the supply amount of washing water, and removes the crystal adhesion to the pressure reducing valve 4 and the slurry transport pipe 6 without stopping the transport of the slurry. The time for opening the washing water flow rate adjusting valve 3 is preferably about several seconds to 60 seconds. In addition, the larger the washing water flow rate used for washing, the greater the washing effect, but the amount of washing water supplied to the second-stage continuous tank-type stirred reaction tank 2 is remarkably increased. It becomes difficult to manage the liquid holding amount and pressure of the continuous tank type stirring reaction tank 2. In addition, when the amount is small, there is no cleaning effect, and the normal flow rate of the slurry is 0.01 to 0.1 times the flow rate other than cleaning, and 0.5 to 1 times the flow rate for cleaning. It is preferable to supply washing water. Normal water is used as the washing water, and if the solubility of terephthalic acid is not exceeded, water containing terephthalic acid, for example, water in which the solute is dissolved within the range not exceeding the solubility or liquid having a lower solid concentration than terephthalic acid slurry For example, in-process circulating water may be used, and the temperature of the washing water is preferably equal to or higher than the temperature of the slurry to be fed. The purity of water is not particularly limited, and it can be sufficiently used with industrial water. By using the washing water under the above conditions, it is possible to suppress a rapid temperature change of the slurry and to efficiently prevent the clogging of the slurry transport pipe and the like. Further, when supplying the cleaning water periodically, it is also preferable to perform an operation of opening and closing the cleaning water flow rate adjusting valve at regular intervals. By repeating this operation periodically, it is possible to stably produce terephthalic acid without causing blockage accompanied by operation stop.
以下、実施例により本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例1]
テレフタル酸ジメチルの加水分解反応によるテレフタル酸製造設備において、加水分解反応を、図1に示すような洗浄設備を複数有する4段の連続槽型撹拌反応器で実施する方法において、第一段目の反応槽内の、温度約250℃、圧力4MPa、スラリー濃度約50%のテレフタル酸スラリーを、減圧弁を経て、温度約235℃、圧力3MPaに保持されている第二段反応槽に連続的に送液した。引き続いて第二段目の連続槽型撹拌反応槽内のテレフタル酸スラリーを、ポンプにて温度約235℃、圧力3MPaに保持されている第三段目の連続槽型撹拌反応槽に連続的に送液した。引き続いて第三段目の連続槽型撹拌反応槽内のテレフタル酸スラリーを、減圧弁を経て、温度約220℃、圧力2.2MPaに保持されている第四段目の連続槽型撹拌反応槽に連続的に送液した。この間減圧及び温度低下によりテレフタル酸の結晶が再結晶により徐々に析出してきた。引き続いて第四段目の連続槽型撹拌反応槽内のテレフタル酸スラリーを、減圧弁を経て、温度約100℃、大気圧に保持されているスラリー貯槽に連続的に送液した。
[Example 1]
In a terephthalic acid production facility using a hydrolysis reaction of dimethyl terephthalate, the hydrolysis reaction is carried out in a four-stage continuous tank type reactor having a plurality of cleaning facilities as shown in FIG. A terephthalic acid slurry having a temperature of about 250 ° C., a pressure of 4 MPa, and a slurry concentration of about 50% in the reaction vessel is continuously passed through a pressure reducing valve to a second-stage reaction vessel maintained at a temperature of about 235 ° C. and a pressure of 3 MPa. Liquid was sent. Subsequently, the terephthalic acid slurry in the second-stage continuous tank-type stirred reaction tank is continuously fed to the third-stage continuous tank-type stirred reaction tank that is maintained at a temperature of about 235 ° C. and a pressure of 3 MPa by a pump. Liquid was sent. Subsequently, the terephthalic acid slurry in the third-stage continuous tank-type stirred reaction tank is passed through a pressure reducing valve, and is maintained at a temperature of about 220 ° C. and a pressure of 2.2 MPa. The solution was continuously fed. During this time, crystals of terephthalic acid gradually precipitated by recrystallization due to reduced pressure and temperature drop. Subsequently, the terephthalic acid slurry in the fourth-stage continuous tank-type stirred reaction tank was continuously fed through a pressure reducing valve to a slurry storage tank maintained at a temperature of about 100 ° C. and atmospheric pressure.
その際、各スラリー輸送配管についてスラリー輸送配管に設置される減圧弁と該弁の上流側に接続されている洗浄水供給配管から供給される260℃に加温された水を洗浄水として使用し、連続にてスラリーを供給しながら通常はスラリー輸送流量の0.05倍流量で連続的に洗浄水を供給し、20分間に1回の頻度でスラリー輸送流量の0.5倍流量の洗浄水を20秒間供給した。ここでその洗浄水とはテレフタル酸製造設備に補給される水であり、その純水は溶解度を超過する溶質は含まず、テレフタル酸スラリー中の水に比べてスラリー中に含有している固形分に対する溶解度は大であった。その操作をすることによりテレフタル酸スラリー輸送を停止することなく、減圧弁等へのテレフタル酸の付着を防止し、安定した運転を長時間継続することができた。 At that time, water heated to 260 ° C. supplied from a pressure reducing valve installed in the slurry transport pipe and a wash water supply pipe connected to the upstream side of the valve is used as the wash water for each slurry transport pipe. While supplying the slurry continuously, usually the cleaning water is continuously supplied at a flow rate of 0.05 times the slurry transport flow rate, and the wash water at a flow rate of 0.5 times the slurry transport flow rate once every 20 minutes. Was fed for 20 seconds. Here, the washing water is water supplied to the terephthalic acid production facility, and the pure water does not include solutes exceeding the solubility, and the solid content contained in the slurry compared to the water in the terephthalic acid slurry. The solubility in was great. By performing this operation, it was possible to prevent terephthalic acid from adhering to the pressure reducing valve or the like without stopping the transportation of the terephthalic acid slurry, and to maintain a stable operation for a long time.
[実施例2]
実施例1において、第四段目の連続槽型撹拌反応槽から大気圧に保持されているスラリー貯槽へのスラリー輸送配管において、第四段目の連続槽型撹拌反応槽の内部温度である220℃より高い225℃の純水を洗浄水として用い実施例1と同様に通常はスラリー輸送流量の0.05倍流量で連続的に洗浄水を供給し、20分間に1回の頻度でスラリー輸送流量の0.5倍流量の洗浄水を20秒間供給することによりスラリー輸送を停止することなく、減圧弁等へのテレフタル酸の付着を防止し、安定した運転を長時間継続することができた。
[Example 2]
In Example 1, in the slurry transport piping from the fourth-stage continuous tank-type stirred reaction tank to the slurry storage tank maintained at atmospheric pressure, the internal temperature of the fourth-stage continuous tank-type stirred reaction tank is 220. Using pure water at 225 ° C., which is higher than ℃, as the washing water, the washing water is normally supplied continuously at a flow rate 0.05 times the slurry conveyance flow rate as in Example 1, and the slurry is conveyed once every 20 minutes. By supplying cleaning water at a flow rate of 0.5 times the flow rate for 20 seconds, it was possible to prevent terephthalic acid from adhering to the pressure reducing valve, etc. without stopping slurry transportation, and to continue stable operation for a long time. .
[比較例1]
実施例1において、洗浄水の供給を実施しなかった場合、機器内部の付着物が剥離したと思われる塊状のスラリーにより遮断弁、減圧弁部が閉塞し、長期安定運転ができなかった。
[Comparative Example 1]
In Example 1, when the supply of cleaning water was not performed, the shutoff valve and the pressure reducing valve were blocked by a lump of slurry in which the deposits inside the device were thought to have peeled off, and long-term stable operation was not possible.
以上、本発明の代表的と思われる実施例について説明したが、加水分解法によるテレフタル酸製造のみでなく、テレフタル酸の晶析設備にも本発明は適用でき、また、本実施例の構造のみに限定されるものではなく、本発明にいう前記の構成要件を備え、かつ、本発明にいう目的を達成し、以下にいう効果を有する範囲内において適宜改変して実施することができるものである。 As mentioned above, although the Example considered to be typical of this invention was described, this invention can be applied not only to the production of terephthalic acid by the hydrolysis method but also to the crystallization equipment for terephthalic acid, and only the structure of this example. However, the present invention is not limited to the above-described configuration, and can be implemented with appropriate modifications within the scope having the above-described constituent requirements according to the present invention, achieving the object according to the present invention, and having the following effects. is there.
テレフタル酸ジメチルを直列に接続した少なくとも1つ以上の連続型反器を用いて加水分解しテレフタル酸を製造する方法、あるいはパラキシレンの酸化により得られるテレフタル酸を高温水素添加処理し、多段型晶析槽にて晶析する方法においてスラリー送液配管に設置された流量調整用の減圧弁上流側にテレフタル酸濃度の低い水若しくは純水を供給するための配管及び流量調整弁を設置しその洗浄水流量を定期的に変化させることにより閉塞を防止しながら連続的にテレフタル酸スラリーを送液することができる。 A method of producing terephthalic acid by hydrolysis using at least one continuous type reactor in which dimethyl terephthalate is connected in series, or terephthalic acid obtained by oxidation of para-xylene is subjected to high-temperature hydrogenation treatment to produce multistage crystals. In the method of crystallization in the precipitation tank, a pipe for supplying water with a low terephthalic acid concentration or pure water and a flow control valve are installed upstream of the flow control pressure reducing valve installed in the slurry feed pipe and washed. By periodically changing the water flow rate, the terephthalic acid slurry can be continuously fed while preventing clogging.
1 第一段目の連続槽型撹拌反応槽(送液元)
2 第二段目の連続槽型撹拌反応槽(送液先)
3 流量調整弁
4 送液先側の弁(減圧弁)
5 洗浄水供給配管
6 スラリー輸送配管
1 First-stage continuous tank-type stirred reaction tank (liquid source)
2 Second-stage continuous tank reaction tank (destination)
3 Flow rate adjustment valve 4 Valve on the destination side (pressure reducing valve)
5 Cleaning water supply piping 6 Slurry transportation piping
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004332845A JP2006143612A (en) | 2004-11-17 | 2004-11-17 | Method for conveying slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004332845A JP2006143612A (en) | 2004-11-17 | 2004-11-17 | Method for conveying slurry |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006143612A true JP2006143612A (en) | 2006-06-08 |
Family
ID=36623720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004332845A Pending JP2006143612A (en) | 2004-11-17 | 2004-11-17 | Method for conveying slurry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006143612A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290999A (en) * | 2006-04-24 | 2007-11-08 | Mitsubishi Gas Chem Co Inc | Crystallization method |
WO2007129669A1 (en) * | 2006-05-08 | 2007-11-15 | Mitsubishi Gas Chemical Company, Inc. | Method of crystallization |
JP2007302561A (en) * | 2006-05-08 | 2007-11-22 | Mitsubishi Gas Chem Co Inc | Method of crystallization |
JP2008001639A (en) * | 2006-06-22 | 2008-01-10 | Mitsui Chemicals Inc | System of detecting blockage of fluid transportation piping |
JP2009219947A (en) * | 2008-03-13 | 2009-10-01 | Wako Pure Chem Ind Ltd | Flow reactor apparatus and method |
JP2011036761A (en) * | 2009-08-07 | 2011-02-24 | Mitsubishi Rayon Co Ltd | System and method for generating solid |
WO2022108049A1 (en) * | 2020-11-17 | 2022-05-27 | 주식회사 엘지화학 | Method for preparing diester-based material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5018996B1 (en) * | 1970-12-29 | 1975-07-03 | ||
JPS55141433A (en) * | 1979-04-21 | 1980-11-05 | Dynamit Nobel Ag | Manufacture of terephthalic acid from dimethyl terephthalate |
JPS6239178A (en) * | 1985-08-12 | 1987-02-20 | Fuji Photo Film Co Ltd | Flushing method for slurry piping |
JPH0889706A (en) * | 1994-09-19 | 1996-04-09 | Mitsubishi Chem Corp | Operation method of crystallizer |
-
2004
- 2004-11-17 JP JP2004332845A patent/JP2006143612A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5018996B1 (en) * | 1970-12-29 | 1975-07-03 | ||
JPS55141433A (en) * | 1979-04-21 | 1980-11-05 | Dynamit Nobel Ag | Manufacture of terephthalic acid from dimethyl terephthalate |
JPS6239178A (en) * | 1985-08-12 | 1987-02-20 | Fuji Photo Film Co Ltd | Flushing method for slurry piping |
JPH0889706A (en) * | 1994-09-19 | 1996-04-09 | Mitsubishi Chem Corp | Operation method of crystallizer |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290999A (en) * | 2006-04-24 | 2007-11-08 | Mitsubishi Gas Chem Co Inc | Crystallization method |
US8178716B2 (en) | 2006-05-08 | 2012-05-15 | Mitsubishi Gas Chemical Company, Inc. | Method of crystallization |
WO2007129669A1 (en) * | 2006-05-08 | 2007-11-15 | Mitsubishi Gas Chemical Company, Inc. | Method of crystallization |
JP2007302561A (en) * | 2006-05-08 | 2007-11-22 | Mitsubishi Gas Chem Co Inc | Method of crystallization |
JP5296534B2 (en) * | 2006-05-08 | 2013-09-25 | 三菱瓦斯化学株式会社 | Crystallization method |
JP2008001639A (en) * | 2006-06-22 | 2008-01-10 | Mitsui Chemicals Inc | System of detecting blockage of fluid transportation piping |
JP2009219947A (en) * | 2008-03-13 | 2009-10-01 | Wako Pure Chem Ind Ltd | Flow reactor apparatus and method |
JP2011036761A (en) * | 2009-08-07 | 2011-02-24 | Mitsubishi Rayon Co Ltd | System and method for generating solid |
WO2022108049A1 (en) * | 2020-11-17 | 2022-05-27 | 주식회사 엘지화학 | Method for preparing diester-based material |
CN114829335A (en) * | 2020-11-17 | 2022-07-29 | 株式会社Lg化学 | Preparation method of diester material |
EP4029852A4 (en) * | 2020-11-17 | 2022-12-21 | LG Chem, Ltd. | Method for preparing diester-based material |
JP2023507541A (en) * | 2020-11-17 | 2023-02-24 | エルジー・ケム・リミテッド | Method for producing diester-based substance |
JP7331301B2 (en) | 2020-11-17 | 2023-08-23 | エルジー・ケム・リミテッド | Method for producing diester-based substance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10370276B2 (en) | Near-zero-release treatment system and method for high concentrated organic wastewater | |
JP2006143612A (en) | Method for conveying slurry | |
US20150299015A1 (en) | Method for controlling desalination and salt discharging in supercritical water oxidation system | |
JP2006142152A (en) | Method of cleaning slurry-supplying equipment | |
CA2195851C (en) | Pressure reduction system and method | |
KR101454034B1 (en) | Method of crystallization | |
JP6819087B2 (en) | Nickel powder manufacturing method, nickel powder manufacturing equipment | |
TWI303629B (en) | ||
JP4912735B2 (en) | Crystallization method | |
JP7459517B2 (en) | Autoclaves and methods for operating autoclaves | |
US20170327952A1 (en) | Apparatus for electroless metal deposition having filter system and associated oxygen source | |
RU2713420C2 (en) | Method and apparatus for purifying acrylic acid | |
JP4929816B2 (en) | Crystallization method | |
JP4751837B2 (en) | Method of adding additives to polymer powder | |
JPH0889706A (en) | Operation method of crystallizer | |
JP2004239395A (en) | Header pipe for slurry carriage | |
JP7034439B2 (en) | Nickel powder recovery method | |
EA034735B1 (en) | Bubble column reactor based digester and method for its use | |
JP2004315456A (en) | Method for producing high-purity terephthalic acid | |
JP2004168673A (en) | Method for treating slurry | |
CN213506670U (en) | PTA oxidation mother liquor solid recovery control system | |
JP2008143929A (en) | Method for producing olefinic polymer | |
JP2012162606A (en) | Apparatus for producing gas hydrate and method for producing gas hydrate | |
JP2010083706A (en) | Method and apparatus for producing group iii nitride semiconductor crystal | |
TW202300462A (en) | Liquid recycling system, liquid supply system and pressure adjustment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070704 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100608 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |