JP2006142673A - Optical recording medium - Google Patents

Optical recording medium Download PDF

Info

Publication number
JP2006142673A
JP2006142673A JP2004336547A JP2004336547A JP2006142673A JP 2006142673 A JP2006142673 A JP 2006142673A JP 2004336547 A JP2004336547 A JP 2004336547A JP 2004336547 A JP2004336547 A JP 2004336547A JP 2006142673 A JP2006142673 A JP 2006142673A
Authority
JP
Japan
Prior art keywords
recording
layer
protective layer
thickness
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004336547A
Other languages
Japanese (ja)
Inventor
Koji Deguchi
浩司 出口
Kazunori Ito
和典 伊藤
Hiroko Okura
浩子 大倉
Masanori Kato
将紀 加藤
Mikiko Abe
美樹子 安部
Hiroyoshi Sekiguchi
洋義 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004336547A priority Critical patent/JP2006142673A/en
Publication of JP2006142673A publication Critical patent/JP2006142673A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical recording medium which is excellent in storage reliability and enables four-or-higher-speed recording with a recording density corresponding to DVD. <P>SOLUTION: The optical recording medium has a constitution wherein at least a lower protective layer, a recording layer formed of a phase change material, an upper protective layer and a reflection layer, and rewriting recording is performed therein by that the recording layer brings about a phase change between a crystalline phase and an amorphous phase under the irradiation of laser light. The phase change material of the recording layer is expressed by the composition formula: Ga<SB>α</SB>Sb<SB>β</SB>Sn<SB>γ</SB>Ge<SB>δ</SB>Cu<SB>ε</SB>(wherein α, β, γ, δ, ε are atomic ratios). Herein 0.03≤α≤0.10, 0.56≤β≤0.79, 0.10≤γ≤0.24, 0.04≤δ≤0.12, and 0.01≤ε≤0.05 are satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、相変化材料を用いた光記録媒体に関する。   The present invention relates to an optical recording medium using a phase change material.

近年、相変化材料を記録層とした光記録媒体、特に相変化光ディスクの開発が盛んに行われている。
一般に相変化光ディスクは、透明なプラスチック基板上に特定の溝を形成し、その上に薄膜を形成する。基板に用いられるプラスチック材料は主にポリカーボネートで、溝の形成には射出成形法がよく用いられる。基板上に成膜する薄膜は多層膜で、基板側から順番に下部保護層、記録層、上部保護層、反射層の構成が基本的なものである。下部及び上部保護層には酸化物、窒化物、硫化物などが用いられるが、中でもZnSとSiOを混合したZnS−SiOがよく用いられる。記録層にはSbTeを主成分とした相変化材料がよく用いられる。具体的には、Ge−Sb−Te、In−Sb−Te、Ag−In−Sb−Te、Ge−In−Sb−Te、Ge−Sn−Sb−Teなどが挙げられ、これら以外にもGe−Te、In−Sb、Ga−Sb、Ge−Sbなどが用いられる。反射層には金属材料が用いられるが、光学特性及び熱伝導率などからAl、Ag、Au、Cuなどの金属材料及びそれらの合金材料がよく用いられる。
In recent years, development of optical recording media using a phase change material as a recording layer, particularly phase change optical discs, has been actively conducted.
In general, in a phase change optical disk, a specific groove is formed on a transparent plastic substrate, and a thin film is formed thereon. The plastic material used for the substrate is mainly polycarbonate, and injection molding is often used to form the grooves. The thin film formed on the substrate is a multilayer film, and basically has a lower protective layer, a recording layer, an upper protective layer, and a reflective layer in order from the substrate side. Oxide in the lower and upper protective layer, a nitride, although such sulfides are used, often used ZnS-SiO 2 mixed inter alia ZnS and SiO 2. A phase change material containing SbTe as a main component is often used for the recording layer. Specific examples include Ge—Sb—Te, In—Sb—Te, Ag—In—Sb—Te, Ge—In—Sb—Te, and Ge—Sn—Sb—Te. -Te, In-Sb, Ga-Sb, Ge-Sb, or the like is used. Although a metal material is used for the reflective layer, metal materials such as Al, Ag, Au, and Cu and alloy materials thereof are often used from the viewpoint of optical characteristics and thermal conductivity.

これらの多層膜の成膜方法としては、抵抗線加熱法、電子ビーム蒸着法、スパッタ法、CVD法など様々な成膜方法を用いる事ができるが、中でも量産性に優れていることからスパッタ法がよく用いられる。これらの多層膜を形成後、薄膜を保護する為に樹脂層をスピンコートにより被覆する。
このようにして作製された相変化光ディスクは、記録層に用いられている相変化材料がアモルファス状態であり、これを結晶化状態にする所謂初期化工程を施す事が一般的である。相変化光ディスクの初期化にはディスクを回転させながら幅数μm、長さ数十〜数百μmの半導体レーザからレーザ光を照射し、半径方向にレーザ光を移動させる事で行う。レーザ光の照射にはフォーカシング機能を設けてより効率の良いレーザ照射を行う場合が多い。
As a method for forming these multilayer films, various film forming methods such as resistance wire heating method, electron beam evaporation method, sputtering method, and CVD method can be used. Is often used. After forming these multilayer films, the resin layer is coated by spin coating in order to protect the thin film.
In the phase change optical disc manufactured in this way, the phase change material used for the recording layer is in an amorphous state, and it is general to perform a so-called initialization process in which the phase change material is crystallized. The phase change optical disk is initialized by irradiating a laser beam from a semiconductor laser having a width of several μm and a length of several tens to several hundreds of μm while rotating the disk, and moving the laser beam in the radial direction. In many cases, laser beam irradiation is performed more efficiently by providing a focusing function.

このようにして作製した相変化光ディスクは任意に決められたレーザ発光パターン(以下、ストラテジー)を照射することで任意のアモルファスマークを形成する事ができる。更に、相変化光ディスクでは消去と記録を同時に行うダイレクトオーバーライト(以下、DOW)記録が可能である。ちなみに消去とはアモルファス状態のマークを結晶化させる事で、記録とは結晶状態からアモルファス状態のマークを形成する事である。
よく用いられるストラテジーとしては、記録パワー(Pw)、消去パワー(Pe)、バイアスパワー(Pb)の3値制御(Pw>Pe>Pb)がある。これに種々のパルス幅を組み合わせて特定のマーク長を記録する。データ記録・再生の変調方式としてはCDで使われているEFM変調やDVDで使われているEFM+変調などはマークエッジ記録方式である事からマーク長の制御が非常に重要である。このマーク長の制御の評価としてはジッター特性が一般的に用いられる。
The phase change optical disk thus manufactured can form an arbitrary amorphous mark by irradiating an arbitrarily determined laser emission pattern (hereinafter referred to as strategy). Furthermore, direct overwrite (hereinafter referred to as DOW) recording in which erasing and recording are performed simultaneously is possible with a phase change optical disk. Incidentally, erasing is to crystallize an amorphous mark, and recording is to form an amorphous mark from a crystalline state.
As a frequently used strategy, there is a three-value control (Pw>Pe> Pb) of recording power (Pw), erasing power (Pe), and bias power (Pb). This is combined with various pulse widths to record a specific mark length. As the data recording / reproducing modulation system, the EFM modulation used in the CD and the EFM + modulation used in the DVD are mark edge recording systems, and therefore, the control of the mark length is very important. Jitter characteristics are generally used for evaluating the mark length control.

上記のような相変化光ディスクは現在DVDの書き換え型媒体として広く使用されている。DVDの書き換え型媒体としてはDVD−RAM、DVD−RW、DVD+RWの3種類がある。これらの記録容量は何れも同じで4.7GBであるが記録線速度が異なる。中でもDVD+RWは最高記録線速がDVDの基準線速3.5m/sの4倍速である14m/sを実現し、書き換え型DVDの中で最も高速記録が可能である。しかし、更なるデータ記録時間の短縮を目的に、より高線速記録が可能な媒体の開発が各方式で活発に行われている。
高線速記録を実現する方法としては、記録層に用いる相変化材料の結晶化速度が十分速く、高速記録の線速でも結晶状態が得られる事が必要となる。相変化材料の結晶化速度を向上させる最も効果的な方法は、相変化材料自体を調整する事である。
例えば、これまで商品化されている書き換え型相変化光ディスクで用いられている記録層材料としては、Ag−In−Sb−TeやGe−Sb−Teに代表されるSb−Te系が主なものであるが、この系ではSb量を増やす方法や結晶化速度を向上させるIn、Ga、Snなどを添加する方法等を用いる事ができる。しかし、これらの方法では初期化による結晶化が困難であったり、保存信頼性が劣化するなどの不具合が発現し、これらの不具合と高速記録とのトレードオフが問題になる。特に記録密度が高くなるとこの傾向が顕著となり、DVD相当の記録密度では4倍速以上の記録線速を実現するのは非常に困難である。
The phase change optical disc as described above is currently widely used as a rewritable medium for DVD. There are three types of DVD rewritable media: DVD-RAM, DVD-RW, and DVD + RW. All of these recording capacities are 4.7 GB, but the recording linear velocities are different. In particular, DVD + RW achieves a maximum recording linear velocity of 14 m / s, which is four times the standard linear velocity of DVD of 3.5 m / s, and is the fastest recording among rewritable DVDs. However, for the purpose of further reducing the data recording time, a medium capable of higher linear velocity recording has been actively developed in each method.
As a method for realizing high linear velocity recording, it is necessary that the phase change material used for the recording layer has a sufficiently high crystallization speed and that a crystalline state can be obtained even at a high linear velocity. The most effective way to increase the crystallization rate of the phase change material is to adjust the phase change material itself.
For example, as a recording layer material used in a rewritable phase change optical disk that has been commercialized so far, Sb-Te series typified by Ag-In-Sb-Te and Ge-Sb-Te are mainly used. However, in this system, a method of increasing the amount of Sb or a method of adding In, Ga, Sn or the like for improving the crystallization speed can be used. However, in these methods, problems such as difficulty in crystallization by initialization and deterioration in storage reliability occur, and a trade-off between these problems and high-speed recording becomes a problem. In particular, this tendency becomes more prominent when the recording density becomes high, and it is very difficult to realize a recording linear velocity of 4 times or more at a recording density equivalent to DVD.

このような状況の中、最近になってGaSbやGeSb(例えば、特許文献1〜2)、InSb(例えば、非特許文献1)、SnSb(例えば、特許文献3)、BiGeTe(例えば、特許文献4〜5)などの材料をベースにした相変化材料を用いた光記録媒体の提案がなされている。しかし、何れも高速記録は実現できるものの、記録密度が低かったり、保存信頼性や繰り返し特性などのディスク特性が実用レベルに達していなかったりという問題がある。   Under such circumstances, recently, GaSb, GeSb (for example, Patent Documents 1 and 2), InSb (for example, Non-Patent Document 1), SnSb (for example, Patent Document 3), BiGeTe (for example, Patent Document 4) There have been proposals of optical recording media using phase change materials based on materials such as ˜5). However, although both can realize high-speed recording, there are problems that the recording density is low and disk characteristics such as storage reliability and repetitive characteristics have not reached a practical level.

特開2004−224040号公報JP 2004-224040 A 特開2004−224041号公報JP 2004-224041 A 特開2004−203011号公報JP 2004-203011 A 特開2004−259443号公報JP 2004-259443 A 特開2004−255889号公報JP 2004-255889 A Technical Digest ISOM’04 p.266:“In−Sb Phase−Change Material for 16X DVD−Rewritable Media”Technical Digest ISOM'04 p. 266: “In-Sb Phase-Change Material for 16X DVD-Rewritable Media”

本発明は、上記の問題を解決し、保存信頼性が良好で、DVD相当の記録密度で4倍速以上の高速記録が行える光記録媒体の提供を目的とする。   An object of the present invention is to provide an optical recording medium that solves the above-described problems, has good storage reliability, and can perform high-speed recording at a quadruple speed or higher with a recording density equivalent to a DVD.

上記課題は次の1)〜5)の発明(以下、本発明1〜5という)によって解決される。
1) 透光性を有する基板上に、少なくとも下部保護層、相変化材料から成る記録層、上部保護層及び反射層を設けた構成から成り、該記録層がレーザ光の照射により結晶相とアモルファス相との相変化を引き起こす事で書き換え記録を行う光記録媒体において、該記録層の相変化材料が、以下に示すような組成式(但し、α、β、γ、δ、εは原子比)から成る事を特徴とする光記録媒体。
GaαSbβSnγGeδCuε
0.03≦α≦0.10
0.56≦β≦0.79
0.10≦γ≦0.24
0.04≦δ≦0.12
0.01≦ε≦0.05
2) 下部保護層の膜厚が50〜100nm、記録層の膜厚が10〜20nm、上部保護層の膜厚が3〜10nm、反射層の膜厚が100〜300nmの範囲にある事を特徴とする1)記載の光記録媒体。
3) 記録層と接する下部保護層及び上部保護層の材料がZnSとSiOの混合物から成り、SiOの混合割合が、全体を100モル%として、15〜35モル%の範囲にある事を特徴とする1)又は2)記載の光記録媒体。
4) 下部保護層と記録層の間にSiO膜が挿入され、その膜厚が1〜3nmの範囲である事を特徴とする1)〜3)の何れかに記載の光記録媒体。
5) 基板として、溝ピッチ0.74±0.03μm、溝深さ22〜50nm、溝幅0.2〜0.4μmの蛇行溝を有する事を特徴とする1)〜4)の何れかに記載の光記録媒体。
The above problems are solved by the following inventions 1) to 5) (hereinafter referred to as the present inventions 1 to 5).
1) A structure in which at least a lower protective layer, a recording layer made of a phase change material, an upper protective layer, and a reflective layer are provided on a light-transmitting substrate, and the recording layer becomes crystalline and amorphous by irradiation with laser light. In an optical recording medium in which rewritable recording is performed by causing a phase change with a phase, the phase change material of the recording layer has the following composition formula (where α, β, γ, δ, and ε are atomic ratios) An optical recording medium characterized by comprising:
GaαSbβSnγGeδCuε
0.03 ≦ α ≦ 0.10
0.56 ≦ β ≦ 0.79
0.10 ≦ γ ≦ 0.24
0.04 ≦ δ ≦ 0.12
0.01 ≦ ε ≦ 0.05
2) The lower protective layer has a thickness of 50 to 100 nm, the recording layer has a thickness of 10 to 20 nm, the upper protective layer has a thickness of 3 to 10 nm, and the reflective layer has a thickness of 100 to 300 nm. 1) The optical recording medium according to 1).
3) The material of the lower protective layer and the upper protective layer in contact with the recording layer is composed of a mixture of ZnS and SiO 2 , and the mixing ratio of SiO 2 is in the range of 15 to 35 mol% with the total being 100 mol%. The optical recording medium described in 1) or 2).
4) The optical recording medium according to any one of 1) to 3), wherein an SiO 2 film is inserted between the lower protective layer and the recording layer, and the thickness thereof is in the range of 1 to 3 nm.
5) The substrate has meandering grooves with a groove pitch of 0.74 ± 0.03 μm, a groove depth of 22 to 50 nm, and a groove width of 0.2 to 0.4 μm. The optical recording medium described.

以下、上記本発明について詳しく説明する。
GaSbSnGeにAg、In、Zn、Cu、Teを添加した相変化材料についてはこれまで本発明者等が開発しており(特願2004−29923号)、記録信号の保存特性、所謂アーカイバル特性が改善される事が確認されている。本発明では更に保存信頼性の内容として、未記録状態で保存後記録した場合のジッター特性、所謂シェルフ特性について検討を行った結果、本発明1に示すような構成で顕著な改善効果を得る事ができた。
GaSbSnGeにCuを添加する事でシェルフ特性が改善される理由の詳細は不明であるが、以下のように考えられる。
シェルフ特性は未記録状態の保存性が問題になる事から、結晶化状態の安定性が重要になる。Cu自体は原子半径(金属結合半径)が1.28Åであり、Ag(1.44Å)、In(1.62Å)、Zn(1.33Å)、Te(1.43Å)に比べて小さい事から、GaSbSnGeの格子間に入って結晶構造の変化を止める効果があると考えられる。但し、これだけでは結晶状態が安定になり過ぎてしまい、アモルファスマークを形成する事が難しくなる。その点、Cuは結合配位数が最も少ない1であり、この事が結晶化を阻害して必要以上に結晶状態が安定にならない働きをしていると考えられる。これらの2つの性質を持っている事が重要であり、この性質が同族元素であるAgや単に原子半径が小さい元素を添加してもシェルフ特性が改善されない理由と考えられる。
Hereinafter, the present invention will be described in detail.
The present inventors have so far developed a phase change material obtained by adding Ag, In, Zn, Cu, and Te to GaSbSnGe (Japanese Patent Application No. 2004-29923), and has a recording signal storage characteristic, so-called archival characteristic. It has been confirmed that it will improve. In the present invention, as a content of the storage reliability, the jitter characteristic in the case of recording after storage in an unrecorded state, that is, the so-called shelf characteristic is examined, and as a result, a remarkable improvement effect is obtained with the configuration shown in the present invention 1. I was able to.
Details of the reason why shelf characteristics are improved by adding Cu to GaSbSnGe are unknown, but are considered as follows.
As shelf characteristics, storage stability in an unrecorded state becomes a problem, and thus stability of a crystallized state is important. Cu itself has an atomic radius (metal bond radius) of 1.28Å, and is smaller than Ag (1.44Å), In (1.62Å), Zn (1.33Å), and Te (1.43Å). It is considered that there is an effect of stopping the change of the crystal structure by entering between the lattices of GaSbSnGe. However, this alone makes the crystal state too stable and makes it difficult to form an amorphous mark. In that respect, Cu is 1 having the smallest number of bond coordinations, and this is considered to function to inhibit crystallization and make the crystal state more unstable than necessary. It is important to have these two properties, and this property is considered to be the reason why the shelf properties are not improved even when Ag, which is a similar element, or an element having a small atomic radius is added.

次に、各構成元素の最適な組成については本発明1に示すような範囲が望ましい。
Gaの組成量(原子比)については、0.03より少ないと初期化後の反射信号の周内分布が悪くなり、0.10より多いと結晶化速度が遅くなるため、何れの場合も記録特性を悪くする。望ましくは0.03〜0.08、更に望ましくは0.03〜0.05の範囲である。
Sbの組成量(原子比)については、0.56より少ないと十分な結晶化速度が得られず高速記録ができなくなり、0.79より多いとアモルファス化が困難になり良好な記録特性が得られない。望ましくは0.60〜0.75、更に望ましくは0.65〜0.70の範囲である。
Snの組成量(原子比)については、0.10より少ないと十分な結晶化速度が得られず高速記録ができなくなり、0.24より多いとアモルファス化が困難になり良好な記録特性が得られなくなったり、保存信頼性の一つである反射率の低下やシェルフ特性の劣化が見られたりする。望ましくは0.10〜0.20、更に望ましくは0.10〜0.18の範囲である。
Next, the optimum composition of each constituent element is preferably within the range shown in the present invention 1.
When the Ga compositional amount (atomic ratio) is less than 0.03, the distribution of the reflected signal in the periphery after the initialization deteriorates, and when it exceeds 0.10, the crystallization speed decreases. Deteriorate characteristics. Preferably it is 0.03-0.08, More preferably, it is the range of 0.03-0.05.
When the Sb composition amount (atomic ratio) is less than 0.56, a sufficient crystallization speed cannot be obtained and high-speed recording is impossible, and when it exceeds 0.79, amorphization becomes difficult and good recording characteristics are obtained. I can't. Preferably it is 0.60-0.75, More preferably, it is the range of 0.65-0.70.
If the Sn composition amount (atomic ratio) is less than 0.10, a sufficient crystallization speed cannot be obtained and high-speed recording is impossible, and if it exceeds 0.24, amorphization becomes difficult and good recording characteristics are obtained. In some cases, the reflectance is lowered and shelf characteristics are deteriorated, which is one of the storage reliability. The range is desirably 0.10 to 0.20, and more desirably 0.10 to 0.18.

Geの組成量(原子比)については、0.04より少ないと保存信頼性の一つである反射率の低下やシェルフ特性の劣化が見られ、0.12より多いと結晶化速度が遅くなり高速記録ができなくなる。望ましくは0.05〜0.12、更に望ましくは0.08〜0.10の範囲である。
Cuの組成量(原子比)については、0.01より少ないと保存信頼性の一つであるシェルフ特性の劣化が見られ、0.05より多いと結晶化速度が遅くなり高速記録ができなくなる。望ましくは0.01〜0.03の範囲である。
更に、結晶化速度を速くする元素がSbとSnで、遅くする元素がGa、Ge、Cuである事を考慮して、結晶化速度を最適化するように上記のそれぞれの組成範囲内で調整をする必要がある。
When the Ge compositional amount (atomic ratio) is less than 0.04, a decrease in reflectance and shelf characteristics, which are one of the storage reliability, are observed, and when it exceeds 0.12, the crystallization rate is slowed down. High-speed recording is not possible. The range is desirably 0.05 to 0.12, and more desirably 0.08 to 0.10.
When the Cu composition amount (atomic ratio) is less than 0.01, the shelf characteristic, which is one of storage reliability, is deteriorated. When the Cu content is more than 0.05, the crystallization speed is reduced and high-speed recording is impossible. . Desirably, it is in the range of 0.01 to 0.03.
Furthermore, considering that the elements that increase the crystallization speed are Sb and Sn, and the elements that decrease the speed are Ga, Ge, and Cu, adjustments are made within the respective composition ranges to optimize the crystallization speed. It is necessary to do.

次に、各層の膜厚は、本発明2で規定する範囲が望ましい。
下部保護層の膜厚は光記録媒体の反射率を調整する働きがあり、望ましい膜厚の範囲は50〜100nmである。50nmより薄いと、膜厚に対する反射率変動が大きい事から安定に作製する事が難しく、100nmより厚いと、成膜時間が長くなり光記録媒体の生産性が落ちる。
記録層の膜厚は10〜20nmの範囲が望ましい。10nmより薄いと繰り返し記録特性の劣化などの不具合が生じるし、20nmより厚いと初回記録のジッター特性が悪くなる。より望ましくは12〜18nmである。また本発明では、下部保護層の膜厚が70nm以上の場合、記録層の膜厚を最小10nmまで薄くしても良好な記録特性が得られる事を見出した。これは記録層の膜厚が薄い事により生じる繰り返し記録特性の劣化が、下部保護層を厚くする事で防止できた為と考えられる。
上部保護層の膜厚は3〜10nmの範囲が望ましい。3nmより薄いと記録感度が悪くなったり、変調度が低下したりする不具合が生じる。また、10nmより厚いと放熱効果が無くなりジッター特性や繰り返し記録特性が悪くなる。より望ましくは5〜10nmである。
反射層の膜厚は100〜300nmの範囲が望ましい。更に望ましくは120〜150nmの範囲である。100nmより薄いと放熱効果が得られない可能性がある。また、300nmより厚くしても放熱効果は変わらず、単に必要のない膜厚を成膜する事になる。
Next, the film thickness of each layer is preferably within the range specified in the present invention 2.
The film thickness of the lower protective layer serves to adjust the reflectance of the optical recording medium, and the desirable film thickness range is 50 to 100 nm. If the thickness is less than 50 nm, it is difficult to produce stably because the reflectance fluctuation with respect to the film thickness is large. If the thickness is more than 100 nm, the film formation time becomes long and the productivity of the optical recording medium decreases.
The film thickness of the recording layer is preferably in the range of 10 to 20 nm. If the thickness is less than 10 nm, problems such as repeated recording characteristics are deteriorated. If the thickness is more than 20 nm, the jitter characteristics of the initial recording are deteriorated. More desirably, the thickness is 12 to 18 nm. In the present invention, it has also been found that when the thickness of the lower protective layer is 70 nm or more, good recording characteristics can be obtained even if the thickness of the recording layer is reduced to a minimum of 10 nm. This is presumably because the deterioration of the repetitive recording characteristics caused by the thin recording layer can be prevented by increasing the thickness of the lower protective layer.
The thickness of the upper protective layer is preferably in the range of 3 to 10 nm. If it is thinner than 3 nm, the recording sensitivity is deteriorated or the modulation degree is lowered. On the other hand, if it is thicker than 10 nm, the heat dissipation effect is lost, and the jitter characteristics and the repeated recording characteristics deteriorate. More desirably, it is 5 to 10 nm.
The thickness of the reflective layer is preferably in the range of 100 to 300 nm. More desirably, it is in the range of 120 to 150 nm. If it is thinner than 100 nm, the heat dissipation effect may not be obtained. Further, even if it is thicker than 300 nm, the heat dissipation effect does not change, and a film thickness that is not necessary is simply formed.

反射層の材料としては、光学特性及び熱伝導率などからAl、Ag、Au、Cuなどの金属及びそれらの合金を用いる事ができる。特に本発明では、高速記録を可能とするため急冷構造が望ましいので、熱伝導率が最も高いAg又はその合金が適している。Ag又はその合金を用い上部保護層に硫化物を含む材料を用いた場合には、硫黄成分によるAgの硫化が問題になる為、上部保護層と反射層の間に硫化防止層を設ける必要がある。硫化防止層には硫化に対して強い材料を用いる必要があり、例えばSi、Alなどの金属、SiO、TiOなどの酸化物、SiN、AlNなどの窒化物、SiC、TiCなどの炭化物、或いはこれらの混合物などが用いられる。
硫化防止層の膜厚は2〜5nm程度が望ましい。更に望ましくは3〜5nmの範囲である。2nmより薄いと硫化防止の効果が無くなる可能性があり、5nmより厚いと放熱効果や光学的な影響が大きくなる可能性がある為である。
As the material of the reflective layer, metals such as Al, Ag, Au, and Cu and alloys thereof can be used from the viewpoint of optical characteristics and thermal conductivity. In particular, in the present invention, since a rapid cooling structure is desirable to enable high-speed recording, Ag having the highest thermal conductivity or an alloy thereof is suitable. In the case where a material containing sulfide is used for the upper protective layer using Ag or an alloy thereof, it is necessary to provide a sulfidation preventive layer between the upper protective layer and the reflective layer, because sulfur sulfiding of Ag due to a sulfur component becomes a problem. is there. For the sulfidation prevention layer, it is necessary to use a material resistant to sulfidation. For example, a metal such as Si or Al, an oxide such as SiO 2 or TiO 2 , a nitride such as SiN or AlN, a carbide such as SiC or TiC, Alternatively, a mixture of these is used.
The film thickness of the sulfidation prevention layer is preferably about 2 to 5 nm. More desirably, it is in the range of 3 to 5 nm. This is because if it is thinner than 2 nm, the effect of preventing sulfidation may be lost, and if it is thicker than 5 nm, the heat dissipation effect and optical influence may be increased.

次に、下部保護層と上部保護層の材料については本発明3で規定する材料が望ましい。従来技術では両保護層共に酸化物、窒化物、硫化物、炭化物などの誘電体材料或いはこれらの混合物などが用いられ、単層又は複数層から成る。本発明者等は、少なくとも記録層に接する保護層を、ZnSとSiOの混合物からなる誘電体材料で形成する事により、記録特性が改善される事を見出した。この理由については不明であるが、以下のように考えられる。
本発明で用いる相変化材料は結晶化速度が速い事から、結晶化を促進する効果を与える事で瞬時に結晶化状態になると考えられる。保護層材料の中には結晶化促進効果を有する材料があり、そのような保護層が該相変化材料に接した場合、アモルファス状態の形成を阻害し、記録特性を悪くすると考えられる。特に繰り返し記録時は熱が篭り易く、アモルファス化が困難になる傾向がある。そのため比較的結晶化促進効果が小さいZnSとSiOの混合物が適していると考えられる。
また、ZnSとSiOの混合物からなる保護層材料中のSiOの混合割合は、本発明3で規定する範囲が望ましい事を見出した。更に望ましくは20〜30モル%である。15モル%未満では繰り返し記録や初期化によるZnSの結晶化が発生し、記録層のアモルファス化を阻害する。また、35モル%を超えると屈折率が小さくなってしまい、十分な光学的特性を得る事ができない。
Next, as the material of the lower protective layer and the upper protective layer, the material specified in the present invention 3 is desirable. In the prior art, both protective layers use dielectric materials such as oxides, nitrides, sulfides and carbides, or mixtures thereof, and are composed of a single layer or a plurality of layers. The present inventors have found that recording characteristics can be improved by forming at least a protective layer in contact with the recording layer with a dielectric material made of a mixture of ZnS and SiO 2 . Although the reason for this is unknown, it is considered as follows.
Since the phase change material used in the present invention has a high crystallization rate, it is considered that the phase change material is instantly crystallized by providing an effect of promoting crystallization. Some protective layer materials have a crystallization promoting effect, and when such a protective layer is in contact with the phase change material, it is considered that the formation of an amorphous state is hindered and the recording characteristics are deteriorated. In particular, during repetitive recording, heat tends to be generated and it tends to be difficult to make amorphous. Therefore, it is considered that a mixture of ZnS and SiO 2 having a relatively small crystallization promoting effect is suitable.
Further, it has been found that the mixing ratio of SiO 2 in the protective layer material composed of a mixture of ZnS and SiO 2 is preferably within the range specified in the present invention 3. More preferably, it is 20-30 mol%. If it is less than 15 mol%, ZnS crystallization will occur due to repeated recording and initialization, thereby inhibiting the recording layer from becoming amorphous. On the other hand, if it exceeds 35 mol%, the refractive index becomes small, and sufficient optical properties cannot be obtained.

更に、本発明4の構成とする事で繰り返し特性、特にその高パワー側のジッター特性を改善する事ができる。この理由の詳細は不明であるが、高パワーでの繰り返し記録の場合、非常に大きな熱量が記録層に発生する事が予想され、反射層側に熱が放熱されるのに対し、基板側は熱伝導率の小さい材料で構成されている為に局部的に熱が下部保護層側に集中すると考えられる。そこで、機械的に補強するという効果により特性が改善されると考えられる。また、このような事から、膜厚が厚いと熱のダメージが増大する為、なるべく薄い方が望ましく、3nm以下とする。しかし、膜厚1nm未満の膜は、実際上、成膜が難しい。更に、上述したように結晶化促進効果のある材料は使用する事ができない。
以上の事を考慮すると、スパッタ製膜後に非晶質で且つ膜厚1〜3nmの範囲でも十分な強度を有する材料としてはSiOが最も適していると考えられる。
Furthermore, with the configuration of the present invention 4, it is possible to improve the repetition characteristics, particularly the jitter characteristics on the high power side. The details of this reason are unknown, but in the case of repeated recording at high power, it is expected that a very large amount of heat is generated in the recording layer, and heat is radiated to the reflective layer side, whereas the substrate side is It is thought that heat is concentrated locally on the lower protective layer side because it is made of a material having a low thermal conductivity. Therefore, it is considered that the characteristics are improved by the effect of mechanical reinforcement. In addition, for this reason, if the film thickness is large, heat damage increases. Therefore, it is desirable that the film be as thin as possible. However, a film having a thickness of less than 1 nm is actually difficult to form. Furthermore, as described above, a material having an effect of promoting crystallization cannot be used.
Considering the above, it is considered that SiO 2 is most suitable as a material which is amorphous after sputtering film formation and has a sufficient strength even in a film thickness range of 1 to 3 nm.

以上の本発明1〜4の要件を満たした上で、本発明5で規定する蛇行溝を有する基板を用いれば、現状のDVD+RW媒体の規格に準拠し、4倍速以上の高速記録が可能なDVD+RW媒体を提供する事ができる。溝を蛇行させる目的としては、未記録の特定トラックにアクセスさせる事や基板を一定線速度で回転させる事などが挙げられる。   DVD + RW capable of high-speed recording at 4 × speed or higher in accordance with the current standard of DVD + RW media if the substrate having meandering grooves defined in the present invention 5 is used after satisfying the above requirements of the present invention 1-4. Media can be provided. Examples of the purpose of meandering the groove include accessing a specific unrecorded track and rotating the substrate at a constant linear velocity.

本発明1〜5によれば、高線速記録に対して優れた記録特性とシェルフ特性を示す光記録媒体を提供する事ができる。
更に本発明3〜4によれば、高線速時の繰り返し記録特性に優れた光記録媒体を提供する事ができる。
更に本発明5によれば、4倍速以上の高速記録が可能なDVD+RW媒体を提供する事ができる。
According to the first to fifth aspects of the present invention, it is possible to provide an optical recording medium that exhibits excellent recording characteristics and shelf characteristics for high linear velocity recording.
Furthermore, according to the present invention 3 to 4, it is possible to provide an optical recording medium excellent in repetitive recording characteristics at a high linear velocity.
Furthermore, according to the fifth aspect of the present invention, it is possible to provide a DVD + RW medium capable of high-speed recording at a quadruple speed or higher.

以下、本発明の実施例及び比較例を示すが、これらの実施例は本発明を何ら制限するものではない。例えば、本発明の効果は、実施例で用いた特定の保護層材料や反射層材料、層構成、作製装置や作製方法、評価装置などを採用した場合に限定されるものではない。なお、実施例及び比較例で作製した光記録媒体(光ディスク)の層構造の概略は図1に示す通りである。   Examples of the present invention and comparative examples are shown below, but these examples do not limit the present invention. For example, the effects of the present invention are not limited to the case where the specific protective layer material, reflective layer material, layer configuration, manufacturing apparatus, manufacturing method, evaluation apparatus, and the like used in the examples are employed. In addition, the outline of the layer structure of the optical recording medium (optical disk) produced by the Example and the comparative example is as showing in FIG.

<実施例1〜10>及び<比較例1〜10>
基板には、直径120mmφ、厚さ0.6mmのポリカーボネート製で、トラックピッチ0.74μm、グルーブ(凹部)幅0.3μm、溝深さ約30nmの溝形状を有するものを用い、その上に次の各層を順に積層した。
下部保護層にはZnS(80モル%)SiO(20モル%)を用い、成膜レート9nm/secで厚さ60nm成膜した。
記録層には表1に示す各相変化材料を用い、成膜レート5nm/secで厚さ15nm成膜した。
上部保護層にはZnS(80モル%)SiO(20モル%)を用い、成膜レート4nm/secで厚さ7nm成膜した。
硫化防止層にはSiCを用い、成膜レート1nm/secで厚さ4nm成膜した。
反射層にはAgを用い、成膜レート35nm/secで厚さ140nm成膜した。
ここで硫化防止層としてSiCを用いたのは、反射層であるAgと上部保護層に含まれる硫黄との反応を防ぐ為である。また、ZnS(80モル%)SiO(20モル%)の成膜にはRFマグネトロンスパッタ法を採用し、記録層、硫化防止層、反射層の成膜にはDCマグネトロンスパッタ法を採用した。
続いて環境保護層としてUV硬化樹脂を塗布し硬化させた。
最後に、環境保護層の上に上記基板と同様な基板を貼り合わせて、厚さが約1.2mmの光ディスクとしたが、この貼り合わせ基板については図示しなかった。
次に、これらの各光ディスクを、出力波長830nm、幅約1μm、長さ約75μm、最大出力約2Wのレーザ光にフォーカシング機能を付加したレーザヘッドを有する初期化装置(日立CP社製POP120−7AH)を用いて初期化した。初期化条件としては初期化パワー1400mW、線速11m/s、ヘッドの送り速度37μm一定とした。
<Examples 1-10> and <Comparative Examples 1-10>
The substrate is made of polycarbonate having a diameter of 120 mmφ and a thickness of 0.6 mm, and has a groove shape with a track pitch of 0.74 μm, a groove (recess) width of 0.3 μm, and a groove depth of about 30 nm. Each layer of was laminated in order.
ZnS (80 mol%) SiO 2 (20 mol%) was used for the lower protective layer, and a film having a thickness of 60 nm was formed at a film formation rate of 9 nm / sec.
For the recording layer, each phase change material shown in Table 1 was used, and a film having a thickness of 15 nm was formed at a film formation rate of 5 nm / sec.
As the upper protective layer, ZnS (80 mol%) SiO 2 (20 mol%) was used, and a film was formed to a thickness of 7 nm at a film formation rate of 4 nm / sec.
SiC was used for the sulfidation prevention layer, and a film having a thickness of 4 nm was formed at a film formation rate of 1 nm / sec.
Ag was used for the reflective layer, and a film having a thickness of 140 nm was formed at a film formation rate of 35 nm / sec.
The reason why SiC is used as the sulfidation prevention layer is to prevent reaction between Ag as the reflection layer and sulfur contained in the upper protection layer. In addition, an RF magnetron sputtering method was used for the film formation of ZnS (80 mol%) SiO 2 (20 mol%), and a DC magnetron sputtering method was used for the film formation of the recording layer, the sulfidation prevention layer, and the reflection layer.
Subsequently, a UV curable resin was applied as an environmental protection layer and cured.
Finally, a substrate similar to the above substrate was bonded onto the environmental protection layer to obtain an optical disk having a thickness of about 1.2 mm, but this bonded substrate was not shown.
Next, an initialization device (POP120-7AH manufactured by Hitachi CP Co., Ltd.) having a laser head in which each of these optical discs has a focusing function added to laser light having an output wavelength of 830 nm, a width of about 1 μm, a length of about 75 μm, and a maximum output of about 2 W. ). The initialization conditions were an initialization power of 1400 mW, a linear speed of 11 m / s, and a constant head feed speed of 37 μm.

Figure 2006142673
Figure 2006142673

上記のようにして作製した各光ディスクについて、記録線速28m/s(DVDでの8倍速相当)での繰り返し記録特性(ダイレクトオーバーライト特性)について評価した。
評価には、波長650nm、NA0.65のピックアップを有する光ディスク評価装置(パルステック社製DDU−1000)を用いた。評価するトラックは、隣接したトラックを5トラック記録し、その真中のトラックを再生した。記録方式はパルス変調法を用い、変調方式はEFM+〔8/16(2,10)RLL〕変調方式で行った。記録線密度は0.267μm/bitとし、グルーブに記録した。記録パワーPw及び消去パワーPeについては最適な条件を用いた。ボトムパワーPbはPb=0.1mWで一定とした。
このようにして記録された信号のData to Clock(データ・ツー・クロック)ジッターを測定し、ジッターσ/Tw(Tw:ウィンドウ幅)を評価項目とした。
同様な方法で1回記録、2回記録、10回記録、100回記録でのジッターの変化を各光ディスクについて評価した。
結果を図2に示すが、図から、<比較例>では、比較例1と9を除き、<実施例>に比較して初期特性及び繰り返し特性が悪い事が分かる。
次に<実施例1〜10>及び<比較例1、9>のディスクを同様な記録方法で1回記録した後、80℃85%の環境に置き、300時間後の反射率Itopの変化を比較した。
結果を図3に示す。図から、本発明の構成を採用すると反射率の変動が小さくなる傾向にあり、Geの組成量については本発明1で規定する範囲が望ましいことが分る。但し、比較例1は本発明と差異がないが、後述(図5)するように保存特性がよくない。
Each optical disk produced as described above was evaluated for repetitive recording characteristics (direct overwrite characteristics) at a recording linear velocity of 28 m / s (equivalent to 8 × speed on DVD).
For the evaluation, an optical disk evaluation apparatus (DDU-1000 manufactured by Pulstec Corp.) having a pickup with a wavelength of 650 nm and NA of 0.65 was used. As tracks to be evaluated, five adjacent tracks were recorded, and the middle track was reproduced. The recording method was a pulse modulation method, and the modulation method was an EFM + [8/16 (2,10) RLL] modulation method. The recording linear density was 0.267 μm / bit, and recording was performed in the groove. Optimal conditions were used for the recording power Pw and the erasing power Pe. The bottom power Pb was constant at Pb = 0.1 mW.
Data to clock (data to clock) jitter of the recorded signal was measured, and jitter σ / Tw (Tw: window width) was used as an evaluation item.
In the same manner, the change in jitter in the one-time recording, two-time recording, ten-time recording, and 100-time recording was evaluated for each optical disc.
The results are shown in FIG. 2. From the figure, it can be seen that <Comparative Example>, except for Comparative Examples 1 and 9, has poor initial characteristics and repeated characteristics compared to <Example>.
Next, the discs of <Examples 1 to 10> and <Comparative Examples 1 and 9> were recorded once by the same recording method, then placed in an environment of 80 ° C. and 85%, and the change in reflectance Itop after 300 hours was observed. Compared.
The results are shown in FIG. From the figure, it can be seen that when the configuration of the present invention is employed, the variation in reflectivity tends to be small, and the range defined in the present invention 1 is desirable for the Ge composition amount. However, although Comparative Example 1 is not different from the present invention, the storage characteristics are not good as described later (FIG. 5).

<比較例11〜15>
相変化材料を表2に示した材料に変えた点以外は、<実施例1>と同様にして光ディスクを作製し初期化した。
これらの光ディスクについて、<実施例1>と同様にして1回記録、2回記録、10回記録、100回記録でのジッターを評価した。
結果を図4に示す。比較の為に<実施例1>の光ディスクの結果も同時に示すが、何れの光ディスクもほぼ同様な特性である事が分かる。なお、図3の場合と同様な方法を用いて<比較例11〜15>の保存特性を評価したところ、<実施例1〜10>及び<比較例1>と同様に反射率の変動が小さい事が確認された。
次に、<実施例1〜10>及び<比較例1及び11〜15>の光ディスクを、未記録状態で80℃85%の環境に100時間保存した後に<実施例1〜10>及び<比較例1〜10>と同様な記録方法で1回記録、2回記録のジッターを評価し、保存前後のジッターの差について各光ディスクを比較した。
結果を図5に示す。何れの光ディスクも保存による劣化が見られるが、明らかに本発明の構成を採用した光ディスクの方が劣化が小さい事が分かる。
<Comparative Examples 11-15>
An optical disc was prepared and initialized in the same manner as in Example 1 except that the phase change material was changed to the material shown in Table 2.
With respect to these optical discs, jitter was evaluated in the same manner as in <Example 1> in one-time recording, two-time recording, ten-time recording, and 100-time recording.
The results are shown in FIG. For comparison, the results of the optical disc of <Example 1> are also shown, and it can be seen that all the optical discs have substantially the same characteristics. When the storage characteristics of <Comparative Examples 11 to 15> were evaluated using the same method as in FIG. 3, the variation in reflectance was small as in <Examples 1 to 10> and <Comparative Example 1>. Things were confirmed.
Next, after the optical disks of <Examples 1-10> and <Comparative Examples 1 and 11-15> were stored in an unrecorded state in an environment of 80 ° C. and 85% for 100 hours, <Examples 1-10> and <Comparison In the same recording method as in Examples 1 to 10>, the jitter of one-time recording and two-time recording was evaluated, and each optical disk was compared with respect to the difference in jitter before and after storage.
The results are shown in FIG. Although any optical disk shows deterioration due to storage, it is apparent that the optical disk adopting the configuration of the present invention is less deteriorated.

Figure 2006142673
以上の結果から、本発明の構成を採用する事で、高線速記録特性と保存信頼性に優れた光ディスクを提供できることが分かる。
Figure 2006142673
From the above results, it can be seen that by adopting the configuration of the present invention, an optical disk excellent in high linear velocity recording characteristics and storage reliability can be provided.

<実施例11〜19>
上部保護層材料を表3に示す材料に変えた点以外は、<実施例1>と同様にして各光ディスクを作製した。比較の為に<実施例1>の上部保護層材料も一緒に示した。
上記の各光ディスクを<実施例1>と同様の評価方法で比較した。
結果を図6に示す。図から<実施例1>と<実施例13〜15>が他の実施例に比べて繰り返し特性が優れていることが分かる。なお、本実施例において、基準となる実施例1を実施例2などの他の実施例に置き換え、上部保護層材料を表3に示す材料に変えた場合にも、ほぼ類似の結果が得られる。

Figure 2006142673
<Examples 11 to 19>
Each optical disk was manufactured in the same manner as in Example 1 except that the upper protective layer material was changed to the material shown in Table 3. For comparison, the upper protective layer material of <Example 1> is also shown.
The above optical disks were compared by the same evaluation method as in <Example 1>.
The results are shown in FIG. From the figure, it can be seen that <Example 1> and <Examples 13 to 15> have better repeatability than the other examples. In this example, when the reference example 1 is replaced with another example such as the example 2 and the upper protective layer material is changed to the material shown in Table 3, almost similar results can be obtained. .
Figure 2006142673

<実施例20〜27>
下部保護層と記録層の間に表4に示すような材料(以下、界面層材料と称する)を挿入した点以外は、<実施例1>と同様にして各光ディスクを作製した。界面層材料の膜厚は何れも2nmとした。
上記各光ディスクに対し、<実施例1>における評価方法で用いた記録パワーよりも4mW高いパワーで記録を行い、その500回記録のジッターを比較した。
結果を図7に示す。比較の為に界面層を挿入していない<実施例1>の結果も示すが、図から、本発明の構成を採用する事で、高パワー記録での繰り返し特性が改善される事が分かる。

Figure 2006142673
<Examples 20 to 27>
Each optical disc was manufactured in the same manner as in Example 1 except that a material as shown in Table 4 (hereinafter referred to as an interface layer material) was inserted between the lower protective layer and the recording layer. The film thickness of the interface layer material was 2 nm.
Recording was performed on each of the above optical disks at a power 4 mW higher than the recording power used in the evaluation method in <Example 1>, and the jitter of 500 times recording was compared.
The results are shown in FIG. Although the result of <Example 1> in which no interface layer is inserted is also shown for comparison, it can be seen from the figure that the repetition characteristics in high power recording can be improved by adopting the configuration of the present invention.
Figure 2006142673

<実施例28〜30>
界面層膜厚を表5に示すように変えた点以外は、<実施例20>と同様にして光ディスクを作製し評価を行った。結果を図8に示す。比較の為に<実施例1>及び<実施例20>の結果も示す。
図8の結果から、本発明4の界面層膜厚の範囲が最適である事が分かる。

Figure 2006142673
<Examples 28 to 30>
An optical disc was produced and evaluated in the same manner as in Example 20 except that the interface layer thickness was changed as shown in Table 5. The results are shown in FIG. The results of <Example 1> and <Example 20> are also shown for comparison.
From the result of FIG. 8, it can be seen that the range of the interface layer thickness of the present invention 4 is optimal.
Figure 2006142673

実施例及び比較例で作製した光記録媒体(光ディスク)の層構造の概略を示す図。The figure which shows the outline of the layer structure of the optical recording medium (optical disk) produced by the Example and the comparative example. 実施例1〜10及び比較例1〜10の光ディスクの評価結果を示す図。The figure which shows the evaluation result of the optical disk of Examples 1-10 and Comparative Examples 1-10. 実施例1〜10及び比較例1と9の光ディスクを初期化した後、光ディスク評価装置を用いてDC照射を行い評価を行った結果を示す図。The figure which shows the result of having evaluated DC irradiation using the optical disk evaluation apparatus, after initializing the optical disk of Examples 1-10 and Comparative Examples 1 and 9. FIG. 実施例1及び比較例11〜15の光ディスクの評価結果を示す図。The figure which shows the evaluation result of the optical disk of Example 1 and Comparative Examples 11-15. 実施例1〜10及び比較例1と比較例11〜15の光ディスクの評価結果を示す図。The figure which shows the evaluation result of Examples 1-10 and the optical disk of the comparative example 1 and the comparative examples 11-15. 実施例1と実施例11〜19の光ディスクの保存特性の評価結果を示す図。The figure which shows the evaluation result of the storage characteristic of the optical disk of Example 1 and Examples 11-19. 実施例1と実施例20〜27の光ディスクの評価結果を示す図。The figure which shows the evaluation result of the optical disk of Example 1 and Examples 20-27. 実施例1、20、28〜30の光ディスクの評価結果を示す図。The figure which shows the evaluation result of the optical disk of Examples 1, 20, and 28-30.

符号の説明Explanation of symbols

1 基板
2 下部保護層
3 記録層
4 上部保護層
5 硫化防止層
6 反射層
7 環境保護層
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Lower protective layer 3 Recording layer 4 Upper protective layer 5 Antisulfuration layer 6 Reflective layer 7 Environmental protective layer

Claims (5)

透光性を有する基板上に、少なくとも下部保護層、相変化材料から成る記録層、上部保護層及び反射層を設けた構成から成り、該記録層がレーザ光の照射により結晶相とアモルファス相との相変化を引き起こす事で書き換え記録を行う光記録媒体において、該記録層の相変化材料が、以下に示すような組成式(但し、α、β、γ、δ、εは原子比)から成る事を特徴とする光記録媒体。
GaαSbβSnγGeδCuε
0.03≦α≦0.10
0.56≦β≦0.79
0.10≦γ≦0.24
0.04≦δ≦0.12
0.01≦ε≦0.05
It comprises a structure in which at least a lower protective layer, a recording layer made of a phase change material, an upper protective layer, and a reflective layer are provided on a light-transmitting substrate, and the recording layer is separated into a crystalline phase and an amorphous phase by laser light irradiation. In an optical recording medium on which rewrite recording is performed by causing a phase change of the above, the phase change material of the recording layer has the following composition formula (where α, β, γ, δ, and ε are atomic ratios): An optical recording medium characterized by things.
GaαSbβSnγGeδCuε
0.03 ≦ α ≦ 0.10
0.56 ≦ β ≦ 0.79
0.10 ≦ γ ≦ 0.24
0.04 ≦ δ ≦ 0.12
0.01 ≦ ε ≦ 0.05
下部保護層の膜厚が50〜100nm、記録層の膜厚が10〜20nm、上部保護層の膜厚が3〜10nm、反射層の膜厚が100〜300nmの範囲にある事を特徴とする請求項1記載の光記録媒体。   The lower protective layer has a thickness of 50 to 100 nm, the recording layer has a thickness of 10 to 20 nm, the upper protective layer has a thickness of 3 to 10 nm, and the reflective layer has a thickness of 100 to 300 nm. The optical recording medium according to claim 1. 記録層と接する下部保護層及び上部保護層の材料がZnSとSiOの混合物から成り、SiOの混合割合が、全体を100モル%として、15〜35モル%の範囲にある事を特徴とする請求項1又は2記載の光記録媒体。 The material of the lower protective layer and the upper protective layer in contact with the recording layer is composed of a mixture of ZnS and SiO 2 , and the mixing ratio of SiO 2 is in the range of 15 to 35 mol% with 100 mol% as a whole. The optical recording medium according to claim 1 or 2. 下部保護層と記録層の間にSiO膜が挿入され、その膜厚が1〜3nmの範囲である事を特徴とする請求項1〜3の何れかに記載の光記録媒体。 SiO 2 film is inserted between the lower protective layer and the recording layer, an optical recording medium according to any one of claims 1 to 3 the film thickness thereof, characterized in that in the range of 1 to 3 nm. 基板として、溝ピッチ0.74±0.03μm、溝深さ22〜50nm、溝幅0.2〜0.4μmの蛇行溝を有する事を特徴とする請求項1〜4の何れかに記載の光記録媒体。
5. The substrate according to claim 1, wherein the substrate has meandering grooves having a groove pitch of 0.74 ± 0.03 μm, a groove depth of 22 to 50 nm, and a groove width of 0.2 to 0.4 μm. Optical recording medium.
JP2004336547A 2004-11-19 2004-11-19 Optical recording medium Withdrawn JP2006142673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336547A JP2006142673A (en) 2004-11-19 2004-11-19 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336547A JP2006142673A (en) 2004-11-19 2004-11-19 Optical recording medium

Publications (1)

Publication Number Publication Date
JP2006142673A true JP2006142673A (en) 2006-06-08

Family

ID=36622900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336547A Withdrawn JP2006142673A (en) 2004-11-19 2004-11-19 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2006142673A (en)

Similar Documents

Publication Publication Date Title
JP2006192876A (en) Optical recording medium
JP2006044215A (en) Optical recording medium and its manufacturing method, sputtering target, usage for optical recording medium, and optical recording apparatus
US7626915B2 (en) Phase-change optical recording medium and recording and reproducing method thereof
JP4046955B2 (en) Optical information recording medium
JP3509807B2 (en) Information recording medium, medium manufacturing method, information recording method and reproducing method
JP2004220699A (en) Optical recording medium
JPH10112028A (en) Optical information recording medium
JP4227957B2 (en) Optical recording medium
JP2006099927A (en) Phase transition type optical recording medium
JP3927410B2 (en) Optical recording medium
JP4393806B2 (en) Optical recording medium
JP2005145061A (en) Optical recording medium
JP2006142673A (en) Optical recording medium
JP2006212880A (en) Phase change type optical recording medium
JP4550042B2 (en) Optical recording medium
JP4322927B2 (en) Optical recording method, optical recording medium, and multilayer optical recording medium optical recording apparatus
JP2004111016A (en) Phase transition optical recording medium
JP2005125676A (en) Optical recording medium
JP2006130854A (en) Optical recording medium and manufacturing method thereof
JP2005119116A (en) Optical recording medium
JP3691501B2 (en) Optical recording medium
JP4607062B2 (en) Optical recording medium
JP4248645B2 (en) Optical information recording medium
JP2004181742A (en) Phase changing optical recording medium
JP2004241046A (en) Phase change optical information recording medium and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080804