JP2006142438A - Polishing pad and polishing method using the same - Google Patents

Polishing pad and polishing method using the same Download PDF

Info

Publication number
JP2006142438A
JP2006142438A JP2004336972A JP2004336972A JP2006142438A JP 2006142438 A JP2006142438 A JP 2006142438A JP 2004336972 A JP2004336972 A JP 2004336972A JP 2004336972 A JP2004336972 A JP 2004336972A JP 2006142438 A JP2006142438 A JP 2006142438A
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
pad
support layer
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004336972A
Other languages
Japanese (ja)
Inventor
Hiroshige Nakagawa
裕茂 中川
Takeshi Furukawa
剛 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004336972A priority Critical patent/JP2006142438A/en
Publication of JP2006142438A publication Critical patent/JP2006142438A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing pad having very high flatness and capable of preventing the surface of a wafer from being damaged in surface planarization machining for a semiconductor device wafer. <P>SOLUTION: The polishing pad has a polishing molding as a constituent element. The tensile storage elastic modulus E'<SB>30</SB>at 30°C of the polishing molding is ≥3×10<SP>9</SP>dyn/cm<SP>2</SP>. A ratio (E'<SB>30</SB>/E'<SB>60</SB>) of the E'<SB>30</SB>at 30°C to E'<SB>60</SB>at 60°C of the polishing molding is 2-7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体、各種メモリーハードディスク用基板等の研磨に用いられる材料に関し、その中でも特に層間絶縁膜や金属配線等の、半導体デバイスウエハの表面平坦化加工に好適な研磨パッドに関するものである。   The present invention relates to a material used for polishing semiconductors and various memory hard disk substrates, and more particularly to a polishing pad suitable for surface planarization processing of a semiconductor device wafer, such as an interlayer insulating film and metal wiring.

半導体デバイスウエハの表面平坦化加工に用いられる、代表的なプロセスである化学的機械的研磨法(CMP)の一例を図1に示す。定盤(2)、試料ホルダー(5)を回転させ、研磨スラリー(4)をスラリー供給用配管(10)を通して供給しながら、半導体デバイスウエハ(1)を研磨パッド(12)の研磨用成形体(6)表面に押しあてることにより、デバイス表面を研磨し、高精度に平坦化するというものである。
研磨パッドの研磨用成形体としては、従来から、例えばポリウレタン発泡体が代表的に用いられてきたが、通常、研磨前、あるいは研磨中において、一般的にドレッサーと呼ばれる工具(3)を回転させながら研磨用成形体(6)表面に押しあてて目立て処理を行うことにより、研磨用成形体に内包されている気泡を開口させるというものであった。
研磨条件はもとより、研磨パッドの表面硬度、圧縮率が、また研磨用成形体が発泡体である場合は、研磨用成形体に含まれる気泡のサイズや密度等が、研磨後の被加工物の仕上がり状態に大きな影響を及ぼす。
従来から、例えば層間絶縁膜や金属配線等の研磨に用いられる研磨パッドの研磨用成形体としては、使用前、使用中におけるドレッシング、および研磨の進行に伴う研磨パッド表面の摩耗等により、スラリーを保持する機能を発現するような、例えば空孔を内包している部材等が使用されてきた。
代表的な研磨用成形体としては、ロデール社製のIC1000に代表される、中空高分子微小エレメントをマトリックス樹脂中に分散させた研磨用成形体が挙げられる(例えば、特許文献1参照。)。該マトリックス樹脂としては、例えば、硬質でかつ圧縮率の小さい、熱硬化性ポリウレタン樹脂等が使用されてきた。
エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきている。これら半導体素子における回路の集積度が急激に増大するにつれて、半導体デバイスのデザインルールは、年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面に求められる平坦性のレベルはますます厳しくなってきている。同時にウエハの大口径化も進行し、加工するデバイスウエハ面内の平坦性のばらつきをいかに抑えるか、つまりはウエハ面内およびウエハ間での均一性をいかに向上させるかが大きな課題であった。
平坦性と均一性を両立するためのアプローチとしては、従来の硬質な研磨用成形体を、クッション性を有する軟質の支持層と貼り合わせた、いわゆる二層構造の研磨パッドを用いることがこれまでの主流であった(例えば、特許文献2参照。)が、平坦性が十分でないという欠点があった。
An example of a chemical mechanical polishing method (CMP), which is a typical process used for surface planarization of a semiconductor device wafer, is shown in FIG. While rotating the surface plate (2) and the sample holder (5) and supplying the polishing slurry (4) through the slurry supply pipe (10), the semiconductor device wafer (1) is molded to polish the polishing pad (12). (6) By pressing against the surface, the device surface is polished and flattened with high accuracy.
Conventionally, for example, a polyurethane foam has been typically used as a polishing pad for a polishing pad, but a tool (3) generally called a dresser is usually rotated before or during polishing. On the other hand, the bubbles contained in the abrasive compact were opened by pressing the surface against the surface of the abrasive compact (6) and performing a sharpening treatment.
In addition to the polishing conditions, the surface hardness and compression rate of the polishing pad, and when the polishing molding is a foam, the size and density of the bubbles contained in the polishing molding are determined by the workpiece after polishing. It has a great influence on the finish.
Conventionally, as a polishing molded body of a polishing pad used for polishing, for example, an interlayer insulating film or a metal wiring, a slurry is used due to dressing before use, dressing during use, and abrasion of the surface of the polishing pad accompanying the progress of polishing. For example, a member containing a hole or the like that expresses the function of holding has been used.
As a typical polishing molded body, there is a polishing molded body in which hollow polymer microelements are dispersed in a matrix resin, represented by IC1000 manufactured by Rodel (see, for example, Patent Document 1). As the matrix resin, for example, a thermosetting polyurethane resin that is hard and has a low compressibility has been used.
Recent advances in the electronics industry have evolved into transistors, ICs, LSIs, and super LSIs. As the degree of integration of circuits in these semiconductor elements increases rapidly, the design rules of semiconductor devices are becoming finer year by year, the depth of focus in the device manufacturing process becomes shallower, and the level of flatness required for the pattern formation surface is It has become increasingly severe. At the same time, the diameter of the wafer has increased, and how to suppress variations in flatness within the device wafer surface to be processed, that is, how to improve the uniformity within the wafer surface and between wafers has been a major issue.
As an approach for achieving both flatness and uniformity, a so-called two-layer polishing pad in which a conventional hard abrasive compact is bonded to a soft support layer having cushioning properties has been used so far. However, there was a drawback that the flatness was not sufficient.

特許第3013105号Patent No. 3013105 特開平6−21028号JP-A-6-21028

本発明は、半導体デバイスウエハの表面平坦化加工において、非常に高い平坦性を有し、且つウエハ表面に傷を生じさせない研磨パッドを提供することにある。   It is an object of the present invention to provide a polishing pad that has very high flatness and does not cause scratches on the wafer surface in the surface flattening process of a semiconductor device wafer.

本発明者らは、前記従来の問題点を鑑み、鋭意検討を重ねた結果、以下の手段により、本発明を完成するに至った。すなわち本発明は、
(1)研磨用成形体を構成要素とする研磨パッドであって、研磨用成形体の30℃における引張貯蔵弾性率E’30が3×109dyn/cm2以上であり、且つ研磨用成形体の30℃のE’30と60℃のE’60の比(E’30/E’60)が2〜7であることを特徴とする研磨パッド、
(2)前記研磨パッドがさらに熱可塑性エラストマーからなる支持層を構成要素とする(1)記載の研磨パッド、
(3)溝を有するものである(1)または(2)記載の研磨パッド、
(4)(1)〜(3)いずれか記載の研磨パッドを研磨機に装着して、被加工物表面を平坦化する研磨方法、
である。
In view of the above-mentioned conventional problems, the present inventors have made extensive studies and have completed the present invention by the following means. That is, the present invention
(1) A polishing pad comprising a polishing molded body as a constituent element, the tensile storage elastic modulus E ′ 30 at 30 ° C. of the polishing molded body being 3 × 10 9 dyn / cm 2 or more and polishing molding. A polishing pad, wherein the ratio of E ′ 30 at 30 ° C. to E ′ 60 at 60 ° C. (E ′ 30 / E ′ 60 ) of the body is 2 to 7;
(2) The polishing pad according to (1), wherein the polishing pad further comprises a support layer made of a thermoplastic elastomer,
(3) The polishing pad according to (1) or (2), which has a groove,
(4) A polishing method in which the polishing pad according to any one of (1) to (3) is attached to a polishing machine to flatten the surface of a workpiece,
It is.

本発明により得られる研磨パッドおよびこれを用いた研磨方法は半導体デバイスウエハの表面平坦化加工用の研磨用途に好適に用いることができる。   The polishing pad obtained by the present invention and the polishing method using the same can be suitably used for polishing for surface flattening of a semiconductor device wafer.

本発明は、研磨パッドを、研磨機に装着し、被加工物表面を平坦化するものである。研磨用成形体を構成要素とする研磨パッドであり、研磨用成形体の30℃における引張貯蔵弾性率E’30が3×109dyn/cm2以上であり、且つ研磨用成形体の30℃のE’30と60℃のE’60の比(E’30/E’60)が2〜7である研磨パッドであるため非常に高い平坦性を有し、且つウエハ表面に傷を生じさせないため非常に好ましい。 In the present invention, a polishing pad is mounted on a polishing machine to flatten the surface of a workpiece. A polishing pad comprising a polishing molded body as a constituent, the tensile storage elastic modulus E ′ 30 at 30 ° C. of the polishing molded body being 3 × 10 9 dyn / cm 2 or more, and 30 ° C. of the polishing molded body. does not cause damage to the very high has flatness and wafer surface for E '30 and 60 ° C. of E' 60 ratio of (E '30 / E' 60 ) are the abrasive pad is 2-7 Therefore, it is very preferable.

本発明の研磨パッドは、研磨用成形体を必須の構成要素とするものであり、他の構成要素として例えば研磨用成形体を装着するための部材等を含むものであっても良い。例えば、積層構造を持たない研磨用成形体や、研磨用成形体と支持層を積層した研磨用積層体を含むものとし、クッション性の両面テープ等をあらかじめ研磨機の定盤等に貼っておいて、研磨用成形体をこれに直接装着する場合は、研磨用成形体のみが研磨パッドであると定義する。   The polishing pad of the present invention includes a molded article for polishing as an essential component, and may include, for example, a member for mounting the molded article for polishing as another component. For example, it shall include an abrasive compact that does not have a laminated structure, or an abrasive laminate in which an abrasive compact and a support layer are laminated, and a cushioning double-sided tape or the like is pasted on a surface plate of a polishing machine in advance. When the abrasive compact is directly attached to this, only the abrasive compact is defined as a polishing pad.

本発明の研磨パッドは非常に高い平坦性を有するために、高弾性体でなければならない。具体的には研磨用成形体の30℃における引張貯蔵弾性率E’30が3×109dyn/cm2以上であり、また研磨中に摩擦等により熱が生じるため高温時においても高弾性体を維持しなくてはならない、具体的には研磨用成形体の30℃のE’30と60℃のE’60の比(E’30/E’60)が2〜7であり、好ましくは4〜7である。 Since the polishing pad of the present invention has very high flatness, it must be highly elastic. Specifically, the molded article for polishing has a tensile storage elastic modulus E ′ 30 at 30 ° C. of 3 × 10 9 dyn / cm 2 or more, and heat is generated by friction during polishing. More specifically, the ratio of E ′ 30 at 30 ° C. to E ′ 60 at 60 ° C. (E ′ 30 / E ′ 60 ) of the molded article for polishing is 2 to 7, preferably 4-7.

引張貯蔵弾性率は一般の動的粘弾性測定装置にて求めることができる。具体例を挙げるならセイコーインスツルメンツ社のDMS200を用いて厚さ1.5mm、幅6mm、長さ30mmのサンプルをセットし、2℃/min、10Hzで30℃、60℃における引張貯蔵弾性率E’30、E’60を求めることができる。 The tensile storage modulus can be obtained with a general dynamic viscoelasticity measuring apparatus. As a specific example, a sample having a thickness of 1.5 mm, a width of 6 mm, and a length of 30 mm is set using DMS200 of Seiko Instruments Inc., and a tensile storage elastic modulus E ′ at 30 ° C. and 60 ° C. at 2 ° C./min and 10 Hz. 30 and E ′ 60 can be obtained.

研磨開始直前における研磨用成形体の厚みについては特に限定しないが、2mm以下が好ましい。   The thickness of the molded body for polishing immediately before the start of polishing is not particularly limited, but is preferably 2 mm or less.

本発明の研磨用成形体は特に限定しないが、研磨スラリーを保持する又は研磨に適した表面状態を、ドレッサー等による目立て処理により形成する上で気泡を内包していることがより好ましい。気泡を内包する場合、気泡の平均径は特に限定しないが、好ましくは0.1〜100μm、より好ましくは0.1〜50μm、最も好ましくは0.1〜30μmである。   The molded article for polishing of the present invention is not particularly limited, but it is more preferable that air bubbles are included when a polishing slurry is held or a surface state suitable for polishing is formed by a dressing process using a dresser or the like. When enclosing bubbles, the average diameter of the bubbles is not particularly limited, but is preferably 0.1 to 100 μm, more preferably 0.1 to 50 μm, and most preferably 0.1 to 30 μm.

気泡の平均径が0.1μm未満であると、研磨の進行に伴い発生する研磨屑や、例えば研磨スラリー中に砥粒が含まれている場合は、該砥粒の凝集物等が、気泡が開口してできた空孔内から排出されにくく、空孔が目詰まりすることがある。その結果、研磨性能ばらつきを引き起こしやすく、さらには研磨性能の経時変動が大きくなることがあるので好ましくない。逆に100μmを超えると、例えばドレッサーによる目立て処理後の表面粗さが粗くなる。つまりは研磨面の凹凸が大きくなるために研磨スラリーの保持性能が研磨面内においてばらつき安くなり、その結果、研磨性能ばらつきが大きくなることがあるので好ましくない。   When the average diameter of the bubbles is less than 0.1 μm, polishing scraps generated as the polishing progresses, for example, when abrasive grains are contained in the polishing slurry, aggregates of the abrasive grains, etc. There is a possibility that the air holes are clogged because they are not easily discharged from the open air holes. As a result, it is not preferable because variations in polishing performance are likely to occur, and further, fluctuations in polishing performance with time may increase. On the other hand, when the thickness exceeds 100 μm, for example, the surface roughness after dressing with a dresser becomes rough. In other words, since the unevenness of the polishing surface becomes large, the holding performance of the polishing slurry becomes less variable in the polishing surface, and as a result, the variation in polishing performance may increase, which is not preferable.

本発明の研磨用成形体の主原料は特に限定しないが、熱可塑性エラストマーを用いることが好ましく、例えばウレタン系やオレフィン系の熱可塑性エラストマーが好適である。
上記成分の他にフィラー等の添加剤を添加しても構わない。
Although the main raw material of the molded article for polishing of the present invention is not particularly limited, it is preferable to use a thermoplastic elastomer, for example, a urethane-based or olefin-based thermoplastic elastomer is suitable.
In addition to the above components, additives such as fillers may be added.

本発明に使用する支持層の素材は特に限定しない。求める研磨性能に応じて、例えばプラスチック、熱可塑性エラストマー、ゴム等の可撓性基材を適宜用いることができる。これらは気泡を内包していても良いし、あるいは気泡を内包していなくても良い。またガラス繊維、炭素繊維、合成繊維、あるいはこれらの織布、不織布等で補強したものであっても良い。さらにはステンレス鋼に代表される、可撓性を有する金属の薄板等も用いることができる。具体的には、エポキシ樹脂、熱可塑性ポリウレタンを含めたポリウレタン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート等の無発泡基材およびこれらをガラス繊維で補強したものが好適に用いられるがこの限りではない。好ましくは熱可塑性ポリウレタンエラストマーと熱可塑性ポリエステルエラストマーを混合したものである。
あるいは、各種接着剤や、例えば、PET基材の両面にアクリル系の接着剤を塗布してある、透明性の高い両面テープ等を支持層として用いても良い。
The material of the support layer used in the present invention is not particularly limited. Depending on the desired polishing performance, for example, a flexible substrate such as plastic, thermoplastic elastomer, or rubber can be used as appropriate. These may contain bubbles or may not contain bubbles. Further, it may be reinforced with glass fiber, carbon fiber, synthetic fiber, or a woven or nonwoven fabric thereof. Furthermore, a flexible metal thin plate represented by stainless steel can also be used. Specifically, non-foamed substrates such as epoxy resins, polyurethane resins including thermoplastic polyurethane, polyethylene terephthalate, polybutylene terephthalate, polycarbonate and the like and those reinforced with glass fibers are preferably used. . Preferably, a thermoplastic polyurethane elastomer and a thermoplastic polyester elastomer are mixed.
Or you may use various adhesive agents, for example, the highly transparent double-sided tape etc. which apply | coated the acrylic adhesive to both surfaces of PET base material, etc. as a support layer.

本発明において、研磨用成形体と支持層を積層する方法は特に限定しない。接着剤や両面テープ等の媒体を用いても良いし、用いなくても良いが、コスト面や、特に品質バラツキの要因を抑えるという点において、例えば、接着剤や両面テープ等の媒体を用いずに積層されている構造が好ましい。具体的には、共押出法や、研磨用成形体に溶融状態にある支持層を、通常サーマルラミと呼ばれる方法で貼り合わせる方法等が好適である。   In the present invention, the method for laminating the molded body for polishing and the support layer is not particularly limited. A medium such as an adhesive or a double-sided tape may or may not be used. However, for example, a medium such as an adhesive or a double-sided tape is not used in terms of suppressing the cost and particularly the factor of quality variation. The structure laminated | stacked on is preferable. Specifically, a coextrusion method, a method in which a support layer in a molten state is bonded to a polishing molded body by a method usually called thermal lamination, and the like are preferable.

本発明の研磨パッドを用いてデバイスウエハの研磨を行う場合、必要に応じて研磨スラリーを保持し、研磨に適した表面状態とする、および/または研磨スラリーの流路となる溝を有していても良い。溝の形状は特に限定しないが、例えば平行、格子状、同心円状、さらには渦巻き状等、随時選定することができる。あるいは円柱状の貫通孔を、多数施すこともできる。
溝を施すことにより、研磨面全域に研磨スラリーがより行き渡り安くなって、均一性を確保するという点や、研磨性能ばらつき、さらには研磨性能の経時変動の点で、好適である。
また溝サイズ、つまりは溝幅、隣り合う溝同士の間隔、溝深さは特に限定しない。なお図2において、溝幅とはAの距離を、隣り合う溝と溝との間隔とはBの距離を、また溝深さとはCを指す。
本発明の溝においては、所望のサイズを選定することが可能である。特に溝深さについては、研磨用成形体の途中まで溝が入っていても良いし、あるいは研磨用成形体を貫通し、支持層表面に達していても良い。さらには支持層を貫通し、支持層の途中まで溝が入っていても良く、支持層にのみ溝があっても良い。
When polishing a device wafer using the polishing pad of the present invention, the polishing slurry is held as necessary to obtain a surface state suitable for polishing and / or a groove serving as a flow path for the polishing slurry. May be. The shape of the groove is not particularly limited, but can be selected as needed, for example, parallel, lattice, concentric, or spiral. Alternatively, a large number of cylindrical through holes can be provided.
By providing the grooves, the polishing slurry is more widely spread and cheaper over the entire polishing surface, which is preferable in terms of ensuring uniformity, polishing performance variation, and time-dependent fluctuations in the polishing performance.
Further, the groove size, that is, the groove width, the interval between adjacent grooves, and the groove depth are not particularly limited. In FIG. 2, the groove width indicates the distance A, the distance between adjacent grooves indicates the distance B, and the groove depth indicates C.
In the groove of the present invention, a desired size can be selected. In particular, with respect to the groove depth, a groove may be provided partway through the abrasive compact, or it may penetrate through the abrasive compact and reach the surface of the support layer. Furthermore, a groove may be provided through the support layer and partway through the support layer, or a groove may be provided only in the support layer.

溝の加工方法については特に限定しないが、加工コストや加工精度等を加味した実用的な観点からは、旋盤やフライス、レーザー等による機械加工が好適である。
なお、図2は研磨用成形体(30)と支持層(31)をサーマルラミ法で直接貼り合わせた研磨用積層体を、両面テープ(35)を用いて研磨機の定盤(34)に固定した状態を示している。
図3は研磨用成形体(50)と支持層(51)を両面テープ(54)を介して貼り合わせた研磨用積層体を、両面テープ(56)を用いて研磨機の定盤(55)に固定した状態を示している。
図4は研磨用成形体(60)を、厚塗りの接着層(61)を介して研磨機の定盤(34)に固定した状態である。
図5は、研磨用成形体(70)を、両面テープ(77)を介して研磨機の定盤(76)に固定した状態である。両面テープ(77)をより詳細に分割すると、基材(71)と接着層(74)、(75)とに分けられるが、初めに研磨用成形体(70)に、両面テープ(77)を貼る場合は、両面テープ基材(71)が本発明の支持層に該当する。また、逆に両面テープ(77)を初めに定盤(76)の方に貼る場合は、研磨用成形体(70)が本発明の研磨パッドに相当する。
なお図2と図3はあらかじめ研磨用成形体と支持層を貼り合わせて作製した研磨用積層体を定盤に貼り付ける場合であるため、いずれも支持層に達する深さまで溝を入れることが可能である。
一方、図4と図5は、研磨用成形体を、接着剤や両面テープ等の媒体を介して定盤に直接貼り付ける場合であり、この場合はいずれも、溝は研磨用成形体の途中で止まっている。
本発明の研磨用積層体は、所望のサイズ、所望の形状、例えば円盤状、ベルト状他、様々な形状を得ることができる。
The groove processing method is not particularly limited, but from a practical viewpoint in consideration of processing cost, processing accuracy, etc., machining by a lathe, a milling machine, a laser, or the like is preferable.
Note that FIG. 2 shows a polishing laminate in which a polishing compact (30) and a support layer (31) are directly bonded together by a thermal lamination method, and is fixed to a surface plate (34) of a polishing machine using a double-sided tape (35). Shows the state.
FIG. 3 shows a polishing laminate in which a polishing compact (50) and a support layer (51) are bonded via a double-sided tape (54), and a polishing platen (55) using a double-sided tape (56). A fixed state is shown.
FIG. 4 shows a state in which the molded body for polishing (60) is fixed to the surface plate (34) of the polishing machine through the thick coating layer (61).
FIG. 5 shows a state in which the molded article for polishing (70) is fixed to the surface plate (76) of the polishing machine via a double-sided tape (77). When the double-sided tape (77) is divided in more detail, it can be divided into a base material (71) and adhesive layers (74), (75). First, the double-sided tape (77) is applied to the abrasive compact (70). When sticking, a double-sided tape base material (71) corresponds to the support layer of this invention. Conversely, when the double-sided tape (77) is first applied to the surface plate (76), the molded article for polishing (70) corresponds to the polishing pad of the present invention.
2 and 3 show a case where a polishing laminate prepared by previously bonding a molded body for polishing and a support layer is pasted on a surface plate, so that both can be grooved to a depth reaching the support layer. It is.
On the other hand, FIG. 4 and FIG. 5 show the case where the abrasive compact is directly attached to the surface plate via a medium such as an adhesive or double-sided tape, and in this case, the groove is in the middle of the abrasive compact. It stops at.
The polishing laminate of the present invention can have a desired size and a desired shape, for example, a disk shape, a belt shape, and other various shapes.

以下に、実施例により本発明を具体的に説明するが、本発明は、実施例の内容になんら限定されるものではない。
(実施例1)
<研磨用積層体の作製>
本発明の実施例で使用した研磨用成形体の製造設備の概略を図6に示す。バレル径50mm、L/D=32の第一押出機(101)とバレル径65mm、L/D=36の第二押出機(108)を中空の単管(107)で連結したタンデム型押出機の先端に、リップ幅300mmの金型(109)を取り付けた。
主原料である大日精化工業(株)製熱可塑性ポリウレタンエラストマー100重量部(商品名:レザミンP−4230)に、同社の架橋剤(商品名:クロスネートEM−30)3.5重量部をあらかじめ混合した原料を使用した。
ボンベ(106)から取り出した後に、ガスブースターポンプ(105)により昇圧した二酸化炭素を、第一押出機(101)の中央前寄りに取り付けた注入口(104)を通して注入した。なお第一押出機(101)のバレルに取り付けた圧力センサーで注入口(104)の直前と直後の圧力を測定したところ、それぞれ24MPa、21MPaであった。
押し出した直後にピンチロール(111)でピンチするのとほぼ同時に水槽(110)中に入れて冷却し、発泡成形体を得た。
得られた発泡体を幅210mm、630mm長に裁断し、研磨用成形体を作製した。研磨用成形体から所定のサイズを切り出し、30℃における引張貯蔵弾性率E’30とE’30/E’60を求めたところ、各々7.8×109dyn/cm2、5.6であった。
成形条件を表1に示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the contents of the examples.
Example 1
<Production of polishing laminate>
FIG. 6 shows an outline of a production facility for a molded article for polishing used in the examples of the present invention. Tandem type extruder in which a first extruder (101) having a barrel diameter of 50 mm and L / D = 32 and a second extruder (108) having a barrel diameter of 65 mm and L / D = 36 are connected by a hollow single pipe (107). A die (109) having a lip width of 300 mm was attached to the tip of the plate.
100 parts by weight of thermoplastic polyurethane elastomer (trade name: Resamine P-4230) manufactured by Dainichi Seikagaku Co., Ltd., which is the main raw material, and 3.5 parts by weight of its cross-linking agent (trade name: Crossnate EM-30) Premixed raw materials were used.
After taking out from the cylinder (106), carbon dioxide pressurized by the gas booster pump (105) was injected through an injection port (104) attached to the center front side of the first extruder (101). The pressure immediately before and after the injection port (104) was measured by a pressure sensor attached to the barrel of the first extruder (101), and they were 24 MPa and 21 MPa, respectively.
Immediately after the extrusion, pinching with a pinch roll (111) was carried out and cooled in a water tank (110) almost at the same time to obtain a foam molded article.
The obtained foam was cut into a width of 210 mm and a length of 630 mm to produce a molded article for polishing. When a predetermined size was cut out from the molded article for polishing and the tensile storage elastic modulus E ′ 30 and E ′ 30 / E ′ 60 at 30 ° C. were determined, they were 7.8 × 10 9 dyn / cm 2 and 5.6, respectively. there were.
Table 1 shows the molding conditions.

Figure 2006142438
Figure 2006142438

本発明の実施例で使用した積層設備の概略を図7に示す。
バレル径50mm、L/D=32の押出機(201)の先端に、リップ幅800mmの金型(202)を取り付けた。ローラーコンベア(203)上に支持板(205)を設置した。支持板としては厚み5mmのベニヤ板を用いた。
幅210mm、630mm長の研磨用成形体(206)3枚を、研磨面が支持板に接するように、また各々のつなぎ目がきっちりと合うように支持板上にならべ、つなぎ目をホッチキスで仮止めした。
An outline of the stacking equipment used in the examples of the present invention is shown in FIG.
A die (202) having a lip width of 800 mm was attached to the tip of an extruder (201) having a barrel diameter of 50 mm and L / D = 32. A support plate (205) was installed on the roller conveyor (203). A veneer plate having a thickness of 5 mm was used as the support plate.
Three abrasive compacts (206) having a width of 210 mm and a length of 630 mm were placed on the support plate so that the polishing surface was in contact with the support plate and each joint was tightly fitted, and the joints were temporarily fixed with staples. .

大日精化工業(株)製熱可塑性ポリウレタンエラストマー(商品名:レザミンP−4250)100重量部に同社の架橋剤(商品名:クロスネートEM−30)3.5重量部を原料ホッパ(208)に投入し金型(202)から押し出した。
金型(202)の下を、研磨用成形体を載せた支持板(205)を、ローラーコンベア(203)上を滑らせながら通過させ、金型(202)より押し出された溶融樹脂が、研磨用成形体(206)上に積層された直後に、ピンチロール(204)を通し、研磨用成形体と支持層を圧着した。
支持層が十分に冷却した後に、ホッチキスの針を外した。
その後、得られた630mm角の積層体の研磨面側を、丸源鐵工所製ベルトサンダー(商品名:MNW−610−C2)で研磨し、研磨用成形体表面近傍の無発泡層を除去し、研磨用積層体を得た。
100 parts by weight of a thermoplastic polyurethane elastomer (trade name: Resamine P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd. 3.5 parts by weight of the cross-linking agent (trade name: Crossnate EM-30) as a raw material hopper (208) And pushed out from the mold (202).
Under the mold (202), a support plate (205) on which a molded article for polishing is placed is passed while sliding on a roller conveyor (203), and the molten resin extruded from the mold (202) is polished. Immediately after being laminated on the molded article for use (206), a pinch roll (204) was passed, and the molded article for polishing and the support layer were pressure bonded.
After the support layer had cooled sufficiently, the staples were removed.
Then, the polishing surface side of the obtained 630 mm square laminate was polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Steel Works, and the non-foamed layer near the surface of the polishing molded body was removed. Thus, a polishing laminate was obtained.

<溝加工>
ショーダテクトロン社製クロスワイズソーを用いて、幅2mmの溝を、隣り合う溝と溝との間隔が13mmとなるように、研磨面全域に格子状に施した。
溝加工の際、隣り合う研磨用成形体同士のつなぎ目には必ず溝が入るように溝間隔を、また溝が研磨用成形体(30)を貫通して支持層(31)まで達するように溝深さをプログラムで設定した。
得られた研磨用積層体の支持層側に、透明性の高い厚み75μmのPET基材両面テープを貼り付けた後、直径610mmφの円盤状に切り取り、研磨パッドを得た。
<Groove processing>
Using a crosswise saw manufactured by Shoda Techtron Co., Ltd., a groove having a width of 2 mm was applied in a lattice pattern over the entire polished surface so that the distance between adjacent grooves was 13 mm.
At the time of grooving, the groove interval is set so that grooves are always inserted at the joints between adjacent molded bodies for polishing, and the groove is formed so as to reach the support layer (31) through the molded body for polishing (30). The depth was set programmatically.
A highly transparent PET base double-sided tape having a thickness of 75 μm was attached to the support layer side of the obtained laminate for polishing, and then cut into a disk shape having a diameter of 610 mmφ to obtain a polishing pad.

(実施例2)
<研磨用積層体の作製>
大日精化工業(株)製熱可塑性ポリウレタンエラストマー(商品名:レザミンP−4250)100重量部と同社の架橋剤(商品名:クロスネートEM−30)3.5重量部を用いて、実施例1と同じ方法で研磨用成形体を作製した。研磨用成形体から所定のサイズを切り出し、30℃における引張貯蔵弾性率E’30とE’30/E’60を求めたところ、各々5.0×109dyn/cm2、6.8であった。
実施例1で使用したものと同じ積層設備を用いて、実施例1と同じ方法で支持層の押出し及び研磨用成形体と支持層の圧着を行った。支持層は研磨用成形体に用いたものと同じ配合のものを用いた。
その後、得られた630mm角の積層体の研磨面側を、丸源鐵工所製ベルトサンダー(商品名:MNW−610−C2)で研磨し、研磨用成形体表面近傍の無発泡層を除去し、研磨用積層体を得た。
実施例1と同様な溝加工を行い、研磨パッドを得た。
(Example 2)
<Production of polishing laminate>
Example using 100 parts by weight of a thermoplastic polyurethane elastomer (trade name: Resamine P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd. and 3.5 parts by weight of the cross-linking agent (trade name: Crossnate EM-30) A polishing compact was produced in the same manner as in Example 1. A predetermined size was cut out from the molded body for polishing, and the tensile storage elastic modulus E ′ 30 and E ′ 30 / E ′ 60 at 30 ° C. were determined to be 5.0 × 10 9 dyn / cm 2 and 6.8, respectively. there were.
Using the same laminating equipment as used in Example 1, the support layer was extruded and the abrasive compact and the support layer were pressed in the same manner as in Example 1. The support layer had the same composition as that used for the molded article for polishing.
Then, the polishing surface side of the obtained 630 mm square laminate was polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Steel Works, and the non-foamed layer near the surface of the polishing molded body was removed. Thus, a polishing laminate was obtained.
Groove processing similar to that in Example 1 was performed to obtain a polishing pad.

(比較例)
直径610mmのロデール社製積層パッド(商品名:IC1000/SUBA400)を比較例として使用した。研磨用成形体から所定のサイズを切り出し、30℃における引張貯蔵弾性率E’30とE’30/E’60を求めたところ、各々6.2×109dyn/cm2、1.5であった。
なお、本比較例の積層パッドの研磨面全域においては、実施例同様、幅2mm、隣り合う溝と溝との間隔13mmの格子状溝が施されている。
(Comparative example)
A laminated pad (trade name: IC1000 / SUBA400) manufactured by Rodel with a diameter of 610 mm was used as a comparative example. A predetermined size was cut out from the molded body for polishing, and the tensile storage elastic modulus E ′ 30 and E ′ 30 / E ′ 60 at 30 ° C. were determined to be 6.2 × 10 9 dyn / cm 2 and 1.5, respectively. there were.
Note that the entire polishing surface of the laminated pad of this comparative example is provided with a grid-like groove having a width of 2 mm and a gap of 13 mm between adjacent grooves, as in the example.

<研磨性能評価>
被研磨物として、3インチのシリコンウエハ上に、電解メッキで10000ÅのCuを製膜したものを準備した。
研磨には定盤径200mmの片面研磨機を用いた。研磨機の定盤には、研磨パッドを両面テープで貼り付け、ダイヤモンドを電着したドレッシングディスクにより、荷重10kPa、定盤の回転数60rpm、ドレッシングディスクホルダーの回転数50rpmの条件で2時間、研磨パッド表面をドレッシングした後に、Cabot社製研磨スラリー(商品名:iCue5003)を流し、1分間、Cu膜を研磨した。
研磨条件としては、ウエハに加える荷重を350g/cm2、定盤の回転数を70rpm、ウエハ回転数を70rpm、研磨スラリーの流量を200ml/minとした。
研磨後のウエハを洗浄、乾燥後、シート抵抗測定機を用いてCu膜厚を測定し、平均研磨速度およびウエハ面内における研磨速度ばらつき、平坦性を従来パッドと比較した。
<Polishing performance evaluation>
As an object to be polished, a 10,000-inch Cu film was prepared by electrolytic plating on a 3-inch silicon wafer.
A single-side polishing machine with a platen diameter of 200 mm was used for polishing. A polishing pad is affixed to the surface plate of the polishing machine with double-sided tape, and a dressing disk electrodeposited with diamond is polished for 2 hours under conditions of a load of 10 kPa, a surface plate rotation speed of 60 rpm, and a dressing disk holder rotation speed of 50 rpm. After dressing the pad surface, a polishing slurry (product name: iCue5003) manufactured by Cabot was passed to polish the Cu film for 1 minute.
As polishing conditions, the load applied to the wafer was 350 g / cm 2 , the rotation speed of the surface plate was 70 rpm, the rotation speed of the wafer was 70 rpm, and the flow rate of the polishing slurry was 200 ml / min.
After cleaning and drying the polished wafer, the Cu film thickness was measured using a sheet resistance measuring machine, and the average polishing rate, the polishing rate variation in the wafer surface, and the flatness were compared with the conventional pad.

<評価結果>
(実施例1)及び(実施例2)は、(比較例)に対し、ウエハ面内における研磨速度ばらつきが低減し、平坦性が向上した。また、(比較例)で研磨した後のウエハ表面には傷のようなものが存在したが、(実施例1)及び(実施例2)で研磨した後のウエハ表面には傷のようなものは存在しなかった。
<Evaluation results>
In (Example 1) and (Example 2), the polishing rate variation in the wafer surface was reduced and the flatness was improved as compared with (Comparative Example). Also, the surface of the wafer after polishing in (Comparative Example) was scratched, but the surface of the wafer after polishing in (Example 1) and (Example 2) was scratched. Did not exist.

本発明により得られる研磨パッドは、半導体デバイスウエハの表面平坦化加工の研磨等に好適に用いることができる。   The polishing pad obtained by the present invention can be suitably used for polishing a surface flattening process of a semiconductor device wafer.

化学的機械的研磨法(CMP)の標準的なプロセスの一例である。It is an example of a standard process of chemical mechanical polishing (CMP). 本発明の、研磨パッドを定盤に貼り付けた状態の一例を示す断面図である。It is sectional drawing which shows an example of the state which affixed the polishing pad on the surface plate of this invention. 本発明の、研磨パッドを定盤に貼り付けた他の状態の一例を示す断面図である。It is sectional drawing which shows an example of the other state which affixed the polishing pad on the surface plate of this invention. 本発明の、研磨パッドを定盤に貼り付けた他の状態の一例を示す断面図である。It is sectional drawing which shows an example of the other state which affixed the polishing pad on the surface plate of this invention. 本発明の、研磨パッドを定盤に貼り付けた他の状態の一例を示す断面図である。It is sectional drawing which shows an example of the other state which affixed the polishing pad on the surface plate of this invention. 実施例で用いた研磨用成形体製造設備の概略図である。It is the schematic of the molded object manufacturing apparatus for grinding | polishing used in the Example. 実施例で用いた積層設備の概略図である。It is the schematic of the lamination equipment used in the Example.

符号の説明Explanation of symbols

1 半導体ウエハ
2 定盤
3 ドレッサー
4 研磨スラリー
5 試料ホルダー
6 研磨用成形体
7 回転軸
8 ウエハ固定用治具
9 バッキング材
10 スラリー供給用配管
11 支持層
12 研磨パッド
30、50、60、70 研磨用成形体
31、51 支持層
61 接着層
71 両面テープ基材
32、52、62、72 研磨面
33、53、63、73 溝
35、54、56、74、75 接着層
34、55、64、76 定盤
77 両面テープ
101 第一押出機
102 原料ホッパ
103 圧力調整弁
104 発泡剤の注入用部品
105 ガスブースターポンプ
106 ボンベ
107 中空単管
108 第二押出機
109 金型
110 水槽
111 ピンチロール
112 吸水ロール
113 研磨用成形体
201 単軸押出機
202 金型
203 ローラーコンベア−
204 ピンチロール
205 支持板
206 研磨用積層体
207 支持層
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2 Surface plate 3 Dresser 4 Polishing slurry 5 Sample holder 6 Polishing molded object 7 Rotating shaft 8 Wafer fixing jig 9 Backing material 10 Slurry supply piping 11 Support layer 12 Polishing pads 30, 50, 60, 70 Polishing Molded body 31, 51 Support layer 61 Adhesive layer 71 Double-sided tape base material 32, 52, 62, 72 Polished surface 33, 53, 63, 73 Groove 35, 54, 56, 74, 75 Adhesive layer 34, 55, 64, 76 Surface plate 77 Double-sided tape 101 First extruder 102 Raw material hopper 103 Pressure regulating valve 104 Foaming agent injection part 105 Gas booster pump 106 Cylinder 107 Hollow single pipe 108 Second extruder 109 Mold 110 Water tank 111 Pinch roll 112 Water absorption Roll 113 Molded body for polishing 201 Single screw extruder 202 Mold 203 Roller conveyor
204 Pinch roll 205 Support plate 206 Laminated laminate 207 Support layer

Claims (4)

研磨用成形体を構成要素とする研磨パッドであって、研磨用成形体の30℃における引張貯蔵弾性率E’30が3×109dyn/cm2以上であり、且つ研磨用成形体の30℃のE’30と60℃のE’60の比(E’30/E’60)が2〜7であることを特徴とする研磨パッド。 A polishing pad having a polishing compact as a constituent element, wherein the polishing compact has a tensile storage elastic modulus E ′ 30 at 30 ° C. of 3 × 10 9 dyn / cm 2 or more, and 30 of the polishing compact. A polishing pad, wherein the ratio of E ′ 30 at 60 ° C. to E ′ 60 at 60 ° C. (E ′ 30 / E ′ 60 ) is 2 to 7. 前記研磨パッドがさらに熱可塑性エラストマーからなる支持層を構成要素とする請求項1記載の研磨パッド。 The polishing pad according to claim 1, wherein the polishing pad further comprises a support layer made of a thermoplastic elastomer. 溝を有するものである請求項1又は2記載の研磨パッド。 The polishing pad according to claim 1, wherein the polishing pad has a groove. 請求項1〜3何れか1項記載の研磨パッドを研磨機に装着して、被加工物表面を平坦化する研磨方法。

A polishing method for mounting a polishing pad according to any one of claims 1 to 3 on a polishing machine to flatten the surface of a workpiece.

JP2004336972A 2004-11-22 2004-11-22 Polishing pad and polishing method using the same Pending JP2006142438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336972A JP2006142438A (en) 2004-11-22 2004-11-22 Polishing pad and polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336972A JP2006142438A (en) 2004-11-22 2004-11-22 Polishing pad and polishing method using the same

Publications (1)

Publication Number Publication Date
JP2006142438A true JP2006142438A (en) 2006-06-08

Family

ID=36622691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336972A Pending JP2006142438A (en) 2004-11-22 2004-11-22 Polishing pad and polishing method using the same

Country Status (1)

Country Link
JP (1) JP2006142438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033840A (en) * 2014-04-28 2015-11-11 株式会社理光 Lapping tool and grinding device
JP2019160996A (en) * 2018-03-13 2019-09-19 東芝メモリ株式会社 Polishing pad, semiconductor manufacturing device, and method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033840A (en) * 2014-04-28 2015-11-11 株式会社理光 Lapping tool and grinding device
CN105033840B (en) * 2014-04-28 2017-10-31 株式会社理光 Lap and lapping device
JP2019160996A (en) * 2018-03-13 2019-09-19 東芝メモリ株式会社 Polishing pad, semiconductor manufacturing device, and method for manufacturing semiconductor device
US11883926B2 (en) 2018-03-13 2024-01-30 Kioxia Corporation Polishing pad, semiconductor fabricating device and fabricating method of semiconductor device

Similar Documents

Publication Publication Date Title
US6007407A (en) Abrasive construction for semiconductor wafer modification
JP6290004B2 (en) Soft and conditionable chemical mechanical window polishing pad
US6561891B2 (en) Eliminating air pockets under a polished pad
EP1800800A1 (en) Abrasive pad
US20030060140A1 (en) Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
CN1738698A (en) Pad constructions for chemical mechanical planarization applications
JP4931133B2 (en) Polishing pad
KR20070067641A (en) Multilayered polishing pads having improved defectivity and methods of manufacture
JP2014233835A (en) Multi-layer chemical mechanical polishing pad stack which is soft and capable of being conditioned and has polishing layer
JP6671908B2 (en) Polishing pad
JP2005001083A (en) Polishing laminate and polishing method
JP2005066749A (en) Laminated element for polishing, and polishing method
JP2007260827A (en) Method of manufacturing polishing pad
WO2016103862A1 (en) Circular polishing pad, and semiconductor device manufacturing method
JP2006142440A (en) Polishing pad and polishing method using the same
US20100146863A1 (en) Polishing pad having insulation layer and method for making the same
JP2005294412A (en) Polishing pad
JP2006142439A (en) Polishing pad and polishing method using the same
JP2005001059A (en) Polishing laminate
JP2005251851A (en) Polishing pad and polishing method
JP2005231014A (en) Polishing pad, and polishing method using the same
JP2004202668A (en) Polishing cloth
JP2006142438A (en) Polishing pad and polishing method using the same
JP4869017B2 (en) Manufacturing method of long polishing pad
JP2010247330A (en) Polishing pad