JP2006138288A - Heat engine - Google Patents

Heat engine Download PDF

Info

Publication number
JP2006138288A
JP2006138288A JP2004330565A JP2004330565A JP2006138288A JP 2006138288 A JP2006138288 A JP 2006138288A JP 2004330565 A JP2004330565 A JP 2004330565A JP 2004330565 A JP2004330565 A JP 2004330565A JP 2006138288 A JP2006138288 A JP 2006138288A
Authority
JP
Japan
Prior art keywords
refrigerant
expander
stage
heat
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004330565A
Other languages
Japanese (ja)
Inventor
Masami Negishi
正美 根岸
Hideo Kashima
秀雄 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004330565A priority Critical patent/JP2006138288A/en
Publication of JP2006138288A publication Critical patent/JP2006138288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive heat engine having improved Rankine efficiency in a Rankine cycle for outputting efficient power. <P>SOLUTION: The heat engine comprises a refrigerant circuit which consists of a refrigerant pump for pressurizing refrigerant, a first refrigerant heater for heating the pressurized refrigerant, a refrigerant expander for expanding the heated refrigerant, and a refrigerant radiator for radiating heat from the expanded refrigerant. Herein, the refrigerant is circulated in the refrigerant circuit with the Rankine cycle and power is output with the refrigerant expanding work of the refrigerant expander. The refrigerant expander is formed as a two-stage expander with a first-stage refrigerant expander and a second-stage expander. Between the first refrigerant expander and the second expander, a second refrigerant heater is provided for heating the refrigerant expanded by the first-stage refrigerant expander. A heat collector is provided for heat exchange between the refrigerant expanded by the second-stage expander and the refrigerant pressurized by the refrigerant pump. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒がランキンサイクルにて循環され動力を取り出し可能に構成された熱機関に関する。   The present invention relates to a heat engine in which a refrigerant is circulated in a Rankine cycle so that power can be taken out.

従来から、ランキンサイクルを用いて動力を取り出すようにした熱機関はよく知られている(たとえば、特許文献1)。このような熱機関は図3に示すように構成されている。図3において、50は熱機関を示している。熱機関50は、作動媒体を加圧するポンプ51と、ポンプ51により加圧された作動媒体を加熱する加熱器52と、加熱された作動媒体を膨張させる膨張器53と、膨張された作動媒体から放熱させる放熱器としての凝縮器54とを有する循環回路55を有している。なお、56はバルブを示している。   Conventionally, a heat engine that uses a Rankine cycle to extract power is well known (for example, Patent Document 1). Such a heat engine is configured as shown in FIG. In FIG. 3, reference numeral 50 denotes a heat engine. The heat engine 50 includes a pump 51 that pressurizes the working medium, a heater 52 that heats the working medium pressurized by the pump 51, an expander 53 that expands the heated working medium, and an expanded working medium. A circulation circuit 55 having a condenser 54 as a heat radiator for radiating heat is provided. Reference numeral 56 denotes a valve.

膨張器53には、作動媒体の膨張仕事から動力を取り出す発電機57が一体に構成されており、発電機57による発電を介して、動力が電力として取り出されるようになっている。   The expander 53 is integrally configured with a generator 57 that extracts power from the expansion work of the working medium, and the power is extracted as electric power through power generation by the generator 57.

しかし、上記のような熱機関50におけるランキン効率は、たとえばイソブタンを作動媒体に使用した場合、実用的条件下でおよそ17.8%と低く効率的な動力の取り出しがなされていないのが現状である。
特開2002−295205号公報
However, the Rankine efficiency in the heat engine 50 as described above is as low as about 17.8% under practical conditions, for example, when isobutane is used as a working medium. is there.
JP 2002-295205 A

そこで本発明の課題は、ランキンサイクルおけるランキン効率を向上し、効率的な動力の取り出しが可能な熱機関を低コストで提供することにある。   Accordingly, an object of the present invention is to provide a heat engine capable of improving Rankine efficiency in a Rankine cycle and efficiently extracting power at a low cost.

上記課題を解決するために、本発明に係る熱機関は、冷媒を加圧する冷媒ポンプと、加圧された冷媒を加熱する第1冷媒加熱器と、加熱された冷媒を膨張させる冷媒膨張器と、膨張された冷媒から放熱させる冷媒放熱器とを備えた冷媒回路を有し、冷媒回路中に冷媒をランキンサイクルにて循環させるとともに前記冷媒膨張器における冷媒の膨張仕事から動力を取り出し可能な熱機関において、前記冷媒膨張器を第1段目冷媒膨張器と第2段目膨張器との2段階膨張器に構成し、前記第1段目冷媒膨張器と第2段目膨張器との間に第1段目冷媒膨張器により膨張された冷媒を加熱する第2冷媒加熱器を設けるとともに、前記2段階膨張器により膨張された冷媒と前記冷媒ポンプにより加圧された冷媒との間で熱交換させる熱回収器を設けたことを特徴とするものからなる。このような構成においては、冷媒膨張器を第1段目冷媒膨張器と第2段目膨張器から構成されているので、従来の1段階膨張器に比べ、より大きな動力の取り出しが可能となるので、熱機関の効率を向上できる。また、第2段目膨張器により膨張され膨張仕事をした冷媒の熱は、加圧ポンプから第1冷媒加熱器に送られる冷媒の加熱に有効利用されるので、第1冷媒加熱器における所定の冷媒加熱を効率的に行なうことができ、一層効果的に熱機関の効率を向上できる。   In order to solve the above problems, a heat engine according to the present invention includes a refrigerant pump that pressurizes a refrigerant, a first refrigerant heater that heats the pressurized refrigerant, and a refrigerant expander that expands the heated refrigerant. A refrigerant circuit having a refrigerant radiator for radiating heat from the expanded refrigerant, circulating the refrigerant in the refrigerant circuit in a Rankine cycle, and extracting heat from the expansion work of the refrigerant in the refrigerant expander In the engine, the refrigerant expander is configured as a two-stage expander including a first-stage refrigerant expander and a second-stage expander, and between the first-stage refrigerant expander and the second-stage expander. A second refrigerant heater for heating the refrigerant expanded by the first-stage refrigerant expander, and heat between the refrigerant expanded by the two-stage expander and the refrigerant pressurized by the refrigerant pump. A heat recovery device to be replaced Consisting of those characterized by. In such a configuration, since the refrigerant expander is composed of the first-stage refrigerant expander and the second-stage expander, it is possible to extract a larger power than the conventional one-stage expander. Therefore, the efficiency of the heat engine can be improved. In addition, since the heat of the refrigerant expanded and worked by the second stage expander is effectively used for heating the refrigerant sent from the pressure pump to the first refrigerant heater, the predetermined heat in the first refrigerant heater is used. The refrigerant can be efficiently heated, and the efficiency of the heat engine can be improved more effectively.

上記第1段目冷媒膨張器、第2段目膨張器は、とくに限定されるものではないが、スクロール型膨張器に構成されることが好ましい。スクロール型膨張器によれば、内部漏れによる損失がすくないため、断熱膨張の効率が高く、効率よく動力の取り出しが可能になる。また、スクロール型膨張器によれば、タービンを用いる場合に比べ騒音の少ない熱機関の構築が可能になる。   The first stage refrigerant expander and the second stage expander are not particularly limited, but are preferably configured as a scroll expander. According to the scroll type inflator, since loss due to internal leakage is small, the efficiency of adiabatic expansion is high, and power can be extracted efficiently. In addition, according to the scroll type expander, it is possible to construct a heat engine with less noise than when a turbine is used.

上記冷媒はとくに限定されるものではないが、好ましくはブタン、イソブタン、プロパン、R−245ca、R−245fa、R−236eaを挙げることができる。前記列挙された冷媒は樹脂との相溶性が小さいので、上記1段目冷媒膨張器、第2段目膨張器等の各機器および回路のシール材には、たとえば樹脂からなるOリングを用いることも可能となり、膨張器ひいては熱機関全体のコストダウンを達成できる。   The refrigerant is not particularly limited, but preferably includes butane, isobutane, propane, R-245ca, R-245fa, and R-236ea. Since the listed refrigerants have low compatibility with the resin, for example, an O-ring made of resin is used as a sealing material for each device and circuit such as the first-stage refrigerant expander and the second-stage expander. The cost of the expander and thus the entire heat engine can be reduced.

上記第1冷媒加熱器および/または第2冷媒加熱器の熱源は、とくに限定されるものではないが、たとえば太陽光、地熱等の自然エネルギー、または各種システム、機器からの放熱(廃熱)を熱源とすることができる。なお、自然エネルギーを熱源とする場合においては、季節、天候等により入熱量が変動するおそれもあるが、本発明によれば第2段目膨張器により膨張され膨張仕事をした冷媒の熱は、加圧ポンプから第1冷媒加熱器に送られる冷媒の加熱に有効利用されるので、少ない入熱量であっても効率よく動力を取り出すことができる。   The heat source of the first refrigerant heater and / or the second refrigerant heater is not particularly limited. For example, natural energy such as sunlight, geothermal heat, or heat radiation (waste heat) from various systems and devices. It can be a heat source. In the case of using natural energy as a heat source, the amount of heat input may vary depending on the season, weather, etc., but according to the present invention, the heat of the refrigerant expanded and expanded by the second stage expander is Since it is effectively used for heating the refrigerant sent from the pressure pump to the first refrigerant heater, power can be efficiently taken out even with a small amount of heat input.

本発明に係る熱機関によれば、従来の1段階膨張器に比べ、より大きな動力の取り出しが可能となるので、熱機関の効率を向上できる。また、第2段目膨張器により膨張され膨張仕事をした冷媒の熱は、加圧ポンプから第1冷媒加熱器に送られる冷媒の加熱に有効利用されるので、第1冷媒加熱器における所定の冷媒加熱を効率的に行なうことができ、一層効果的に熱機関の効率を向上できる。   According to the heat engine according to the present invention, it is possible to extract a larger amount of power as compared with the conventional one-stage expander, so that the efficiency of the heat engine can be improved. In addition, since the heat of the refrigerant expanded and worked by the second stage expander is effectively used for heating the refrigerant sent from the pressure pump to the first refrigerant heater, the predetermined heat in the first refrigerant heater is used. The refrigerant can be efficiently heated, and the efficiency of the heat engine can be improved more effectively.

以下に、本発明における熱機関の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係るランキンサイクルを用いた熱機関の概略機器系統を示している。図1において、1は熱機関を示している。熱機関1は、冷媒を加圧する冷媒ポンプ2と、加圧された冷媒を加熱する、第1蒸発器からなる第1冷媒加熱器3と、加熱された冷媒を膨張させる冷媒膨張器4と、膨張された冷媒から放熱させる凝縮器からなる冷媒放熱器5とを備えた冷媒回路6を有している。なお、図1において10はバルブを示している。前述の冷媒膨張器4は、第1段目冷媒膨張器4aと第2段目冷媒膨張器4bとの2段階膨張器に構成されている。また、第1段目冷媒膨張器4aと第2段目冷媒膨張器4bとの間には、第1段目冷媒膨張器4aにより膨張された冷媒を加熱する、第2蒸発器からなる第2冷媒加熱器7が設けられている。さらに冷媒回路6には、第2段目冷媒膨張器4bにより膨張された冷媒と上記冷媒ポンプ2により加圧された冷媒との間で熱交換させる熱交換器からなる熱回収器8が設けられている。本実施態様では、第1冷媒加熱器3と第2冷媒加熱器7の熱源には太陽熱が用いられている。この冷媒回路6中に、冷媒(たとえば、ブタン、イソブタン、プロパン、R−245ca、R−245fa、R−236ea)がランキンサイクルにて循環され、冷媒膨張器4における冷媒の膨張仕事から動力が取り出し可能となっている。本実施態様では、第1段目冷媒膨張器4aと第2段目冷媒膨張器4bはスクロール型膨張器から構成されている。
Hereinafter, preferred embodiments of a heat engine according to the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic equipment system of a heat engine using a Rankine cycle according to an embodiment of the present invention. In FIG. 1, 1 indicates a heat engine. The heat engine 1 includes a refrigerant pump 2 that pressurizes the refrigerant, a first refrigerant heater 3 that includes a first evaporator that heats the pressurized refrigerant, a refrigerant expander 4 that expands the heated refrigerant, The refrigerant circuit 6 includes a refrigerant radiator 5 including a condenser that radiates heat from the expanded refrigerant. In FIG. 1, reference numeral 10 denotes a valve. The refrigerant expander 4 is configured as a two-stage expander including a first-stage refrigerant expander 4a and a second-stage refrigerant expander 4b. A second evaporator comprising a second evaporator is provided between the first stage refrigerant expander 4a and the second stage refrigerant expander 4b to heat the refrigerant expanded by the first stage refrigerant expander 4a. A refrigerant heater 7 is provided. Further, the refrigerant circuit 6 is provided with a heat recovery unit 8 including a heat exchanger for exchanging heat between the refrigerant expanded by the second stage refrigerant expander 4b and the refrigerant pressurized by the refrigerant pump 2. ing. In this embodiment, solar heat is used as a heat source for the first refrigerant heater 3 and the second refrigerant heater 7. In this refrigerant circuit 6, refrigerant (for example, butane, isobutane, propane, R-245ca, R-245fa, R-236ea) is circulated in the Rankine cycle, and power is extracted from the expansion work of the refrigerant in the refrigerant expander 4. It is possible. In the present embodiment, the first-stage refrigerant expander 4a and the second-stage refrigerant expander 4b are constituted by scroll type expanders.

動力の取り出しは、本実施態様では、たとえば次のように行われる。第1段目冷媒膨張器4aは冷媒の膨張仕事から動力を取り出す手段としての発電機9aと一体的に構成されており、発電機9aによる発電を介して、動力が電力として取り出されるようになっている。一方、第1段目冷媒膨張器4bは冷媒の膨張仕事から動力を取り出す手段としての発電機9bと一体的に構成されており、発電機9bによる発電を介して、動力が電力として取り出されるようになっている。本実施態様では、冷媒として、たとえばブタン、イソブタン、プロパン、R−245ca、R−245fa、R−236eaが使用されるが、これら列記された冷媒は樹脂との相溶性が小さいため、冷媒膨張器4等のシール材には樹脂からなるOリングを使用することが可能である。   In this embodiment, the power is taken out as follows, for example. The first stage refrigerant expander 4a is configured integrally with a generator 9a as a means for extracting power from the expansion work of the refrigerant, and power is extracted as electric power through power generation by the generator 9a. ing. On the other hand, the first stage refrigerant expander 4b is configured integrally with a generator 9b as a means for extracting power from the expansion work of the refrigerant, so that the power is extracted as electric power through the power generation by the generator 9b. It has become. In this embodiment, for example, butane, isobutane, propane, R-245ca, R-245fa, and R-236ea are used as the refrigerant. However, since the listed refrigerants have low compatibility with the resin, the refrigerant expander It is possible to use an O-ring made of resin for the sealing material such as 4.

上記のように構成された冷媒回路6を備えた熱機関1が、図2に示すようなランキンサイクルにて運転される。ここでまず、図4を参照して、従来例、つまり、従来の蒸気圧縮型冷凍機を、蒸発器、凝縮器とも2相域で利用して運転する場合のランキンサイクルについて説明する。図4は、冷媒としてプロパンやイソブタン等のハイドロカーボン系冷媒を使用した場合のランキンサイクルにおける圧力−エンタルピー線図を示している。この場合、加圧、加熱された冷媒の、等エントロピー線に沿う膨張仕事(図におけるD1点からD2点への移行)により、理論的に動力が取り出し可能となるが、このときの熱機関としてのランキン効率は、
ランキン効率=((h2−h1)/(h2−h3))×100
で求められ、実用的条件下でランキン効率は約17.8%となり、前述したように、低い。また、この場合、膨張器の膨張倍率は8.6倍と高い。
The heat engine 1 including the refrigerant circuit 6 configured as described above is operated in a Rankine cycle as shown in FIG. Here, first, with reference to FIG. 4, a Rankine cycle in the case where a conventional example, that is, a conventional vapor compression refrigerator is operated using both an evaporator and a condenser in a two-phase region will be described. FIG. 4 shows a pressure-enthalpy diagram in the Rankine cycle when a hydrocarbon refrigerant such as propane or isobutane is used as the refrigerant. In this case, the power can be taken out theoretically by the expansion work (transition from point D 1 to point D 2 in the figure) of the pressurized and heated refrigerant along the isentropic line. Rankine efficiency as an institution
Rankine efficiency = ((h 2 −h 1 ) / (h 2 −h 3 )) × 100
The Rankine efficiency is about 17.8% under practical conditions, and is low as described above. In this case, the expansion ratio of the expander is as high as 8.6 times.

しかしながら、本発明の一実施態様に係る熱機関1の場合には、図2に示すようなランキンサイクルにおける圧力−エンタルピー線図となる。図2においては、各点は大略次のような点を示している。すなわち、A点は、凝縮器からなる冷媒放熱器5の出口でかつ冷媒ポンプ2の入口の状態を示しており、B点は、冷媒ポンプ2の出口でかつ熱回収器8の入口の状態を示している。C点は、熱回収器8の出口でかつ第1蒸発器からなる第1冷媒加熱器3の入口の状態を示しており、D3点は、第1冷媒加熱器3の出口でかつ第1段目冷媒膨張器4aの入口の状態を示している。D4点は、第1段目冷媒膨張器4aの出口でかつ第2蒸発器からなる第2冷媒加熱器7の入口の状態を示しており、D5点は、第2冷媒加熱器7の出口でかつ第2段目冷媒膨張器4bの入口の状態を示している。D6点は、第2段目冷媒膨張器4bの出口でかつ熱回収器8の入口の状態を示している。h2点は、熱回収器8の出口でかつ冷媒放熱器5の入口の状態を示している。また、H1、H2(熱損失無しとした理想状態の場合、H1=H2)は、熱回収器8で授受される熱量に対応している。 However, in the case of the heat engine 1 according to an embodiment of the present invention, the pressure-enthalpy diagram in the Rankine cycle is as shown in FIG. In FIG. 2, each point generally indicates the following point. That is, point A shows the state of the outlet of the refrigerant radiator 5 made of a condenser and the inlet of the refrigerant pump 2, and point B shows the state of the outlet of the refrigerant pump 2 and the inlet of the heat recovery unit 8. Show. Point C shows the state of the outlet of the heat recovery device 8 and the inlet of the first refrigerant heater 3 comprising the first evaporator, and point D 3 shows the outlet of the first refrigerant heater 3 and the first. The state of the inlet of the stage refrigerant expander 4a is shown. D 4 point shows the state of the outlet of the first refrigerant expander 4 a and the inlet of the second refrigerant heater 7 composed of the second evaporator, and D 5 point shows the state of the second refrigerant heater 7. The state of the outlet and the inlet of the second stage refrigerant expander 4b is shown. Point D 6 indicates the state of the outlet of the second stage refrigerant expander 4 b and the inlet of the heat recovery unit 8. The point h 2 indicates the state of the outlet of the heat recovery device 8 and the inlet of the refrigerant radiator 5. H1 and H2 (H1 = H2 in the ideal state where there is no heat loss) correspond to the amount of heat transferred by the heat recovery unit 8.

図2に示すランキンサイクルでは、第1蒸発器からなる第1冷媒加熱器3内にて加熱された冷媒が、D3点から、D4点に至る過程で第1段目冷媒膨張器4aを通して膨張仕事をし、第2冷媒加熱器7で加熱された後、D5点からD6点に至る過程で第2段目冷媒膨張器4bを通して膨張仕事をし、これら両膨張仕事が各発電機9a、9bを介して、動力が電力として取り出される。 In the Rankine cycle shown in FIG. 2, the refrigerant heated by the first refrigerant heater 3 consisting of the first evaporator, the three points D, through the first-stage refrigerant expander 4a in the process leading to the four points D the expansion work and, after being heated by the second refrigerant heater 7, the expansion work through the second-stage refrigerant expander 4b in the process leading to 6-point D from 5 points D, both of these expansion work each generator The power is taken out as electric power through 9a and 9b.

図2に示した例では、熱機関1のランキン効率は、次式によって求められる。
ランキン効率=((h4−h3)+(h6−h5))/((h4−h1)+(h6−h3)−(h5−h2))×100
その結果、実用的条件下でランキン効率は約20.8%となり、図4に示した従来例に比べ、効率が大幅に向上される。このように熱機関1の効率が大幅に向上されると、従来と同等の入熱量の場合より大きな動力を取り出すことが可能になり、また、従来よりも少ない入熱量で所望の動力を取り出すことが可能になる。したがって、入熱量の低下による効果、たとえば、太陽熱を利用する場合には、集熱器の面積の低減、それによる装置全体の小型化を期待できることになる。また、動力取り出し側においても、動力取り出し装置の小型化をはかることが期待できる。また、この場合、第1段目冷媒膨張器4aの膨張倍率は3.1倍、第2段目冷媒膨張器4bの膨張倍率は2.7倍である。
In the example shown in FIG. 2, the Rankine efficiency of the heat engine 1 is obtained by the following equation.
Rankine efficiency = ((h 4 −h 3 ) + (h 6 −h 5 )) / ((h 4 −h 1 ) + (h 6 −h 3 ) − (h 5 −h 2 )) × 100
As a result, Rankine efficiency is about 20.8% under practical conditions, and the efficiency is greatly improved as compared with the conventional example shown in FIG. When the efficiency of the heat engine 1 is greatly improved in this way, it becomes possible to take out a larger power than in the case of the heat input equivalent to the conventional one, and to take out the desired power with a smaller heat input than the conventional one. Is possible. Therefore, when the heat input is reduced, for example, when solar heat is used, it is possible to expect a reduction in the area of the heat collector and thereby downsizing of the entire apparatus. In addition, it is expected that the power take-off device can be downsized on the power take-out side. In this case, the expansion ratio of the first stage refrigerant expander 4a is 3.1 times, and the expansion ratio of the second stage refrigerant expander 4b is 2.7 times.

また、上記第1冷媒加熱器および第2冷媒加熱器の熱源を太陽熱とする場合においては、季節、天候等により入熱量が変動するおそれもあるが、本発明によれば第2段目膨張器により膨張され膨張仕事をした冷媒の熱は、加圧ポンプから第1冷媒加熱器に送られる冷媒の加熱に有効利用されるので、少ない入熱量であっても効率よく動力を取り出すことができる。   Further, when the heat source of the first refrigerant heater and the second refrigerant heater is solar heat, the amount of heat input may vary depending on the season, weather, etc., but according to the present invention, the second stage expander is used. Since the heat of the refrigerant expanded and worked by expansion is effectively used for heating the refrigerant sent from the pressure pump to the first refrigerant heater, power can be efficiently extracted even with a small amount of heat input.

さらに、膨張器の製作上、高膨張率のものほど製作が困難になるが、従来の1段階膨張器(図3の膨張器53)の膨張倍率は8.6倍と高い。これに対し、本実施態様における、第1段目冷媒膨張器4aの膨張倍率は3.1倍、第2段目冷媒膨張器4bの膨張倍率は2.7倍と低い。したがって、本発明は膨張器の製作の観点からも極めて有利である。   Furthermore, in terms of the manufacture of the expander, the higher the expansion coefficient, the more difficult the manufacture. However, the expansion ratio of the conventional one-stage expander (the expander 53 in FIG. 3) is as high as 8.6 times. On the other hand, in this embodiment, the first stage refrigerant expander 4a has a low expansion ratio of 3.1 times, and the second stage refrigerant expander 4b has a low expansion ratio of 2.7 times. Therefore, the present invention is extremely advantageous from the viewpoint of manufacturing the inflator.

本発明は、冷媒がランキンサイクルにて循環され動力を取り出し可能に構成された熱機関に広く適用できる。   The present invention can be widely applied to a heat engine in which a refrigerant is circulated in a Rankine cycle so that power can be taken out.

本発明の一実施態様に係る熱機関の概略機器系統図である。It is a schematic equipment system diagram of a heat engine concerning one embodiment of the present invention. 図1の熱機関におけるランキンサイクルを表す、圧力−エンタルピー線図である。It is a pressure-enthalpy diagram showing the Rankine cycle in the heat engine of FIG. 従来の熱機関の概略機器系統図である。It is a schematic equipment system diagram of the conventional heat engine. 比較のための、従来の蒸気圧縮型冷凍機で使われている冷媒の、蒸発器、凝縮器とも2相域で利用するランキンサイクルの場合の圧力−エンタルピー線図である。It is a pressure-enthalpy diagram in the case of the Rankine cycle used for the refrigerant | coolant used with the conventional vapor compression type refrigerator for a comparison, and an evaporator and a condenser in a two-phase region.

符号の説明Explanation of symbols

1 熱機関
2 冷媒ポンプ
3 第1蒸発器からなる第1冷媒加熱器
4 冷媒膨張器
4a 第1段目冷媒膨張器
4b 第2段目冷媒膨張器
5 凝縮器からなる冷媒放熱器
6 冷媒回路
7 第2蒸発器からなる第2冷媒加熱器
8 熱回収器
9a、9b 発電機
10 バルブ
DESCRIPTION OF SYMBOLS 1 Heat engine 2 Refrigerant pump 3 1st refrigerant heater consisting of 1st evaporator 4 Refrigerant expander 4a 1st stage refrigerant expander 4b 2nd stage refrigerant expander 5 Refrigerant radiator consisting of condenser 6 Refrigerant circuit 7 Second refrigerant heater composed of the second evaporator 8 Heat recovery unit 9a, 9b Generator 10 Valve

Claims (5)

冷媒を加圧する冷媒ポンプと、加圧された冷媒を加熱する第1冷媒加熱器と、加熱された冷媒を膨張させる冷媒膨張器と、膨張された冷媒から放熱させる冷媒放熱器とを備えた冷媒回路を有し、冷媒回路中に冷媒をランキンサイクルにて循環させるとともに前記冷媒膨張器における冷媒の膨張仕事から動力を取り出し可能な熱機関において、前記冷媒膨張器を第1段目冷媒膨張器と第2段目膨張器との2段階膨張器に構成し、前記第1段目冷媒膨張器と第2段目膨張器との間に第1段目冷媒膨張器により膨張された冷媒を加熱する第2冷媒加熱器を設けるとともに、前記2段階膨張器により膨張された冷媒と前記冷媒ポンプにより加圧された冷媒との間で熱交換させる熱回収器を設けたことを特徴とする熱機関。   A refrigerant comprising a refrigerant pump that pressurizes the refrigerant, a first refrigerant heater that heats the pressurized refrigerant, a refrigerant expander that expands the heated refrigerant, and a refrigerant radiator that dissipates heat from the expanded refrigerant. A heat engine that has a circuit and circulates the refrigerant in the refrigerant circuit in a Rankine cycle and can extract power from the expansion work of the refrigerant in the refrigerant expander, wherein the refrigerant expander is a first-stage refrigerant expander The second stage expander is configured as a two-stage expander, and the refrigerant expanded by the first-stage refrigerant expander is heated between the first-stage refrigerant expander and the second-stage expander. A heat engine comprising a second refrigerant heater and a heat recovery unit for exchanging heat between the refrigerant expanded by the two-stage expander and the refrigerant pressurized by the refrigerant pump. 前記2段階膨張器の少なくとも一方が、スクロール型膨張器である請求項1の熱機関。   The heat engine according to claim 1, wherein at least one of the two-stage expanders is a scroll expander. 前記冷媒がブタン、イソブタン、プロパン、R−245ca、R−245fa、R−236eaのいずれか一つまたはこれらの組み合わせからなる請求項1または2の熱機関。   The heat engine according to claim 1 or 2, wherein the refrigerant is one of butane, isobutane, propane, R-245ca, R-245fa, R-236ea, or a combination thereof. 前記ランキンサイクルを構成する各機器および回路のシール材が樹脂からなる、請求項3熱機関。   The heat engine according to claim 3, wherein a sealing material for each device and circuit constituting the Rankine cycle is made of a resin. 前記第1冷媒加熱器および/または第2冷媒加熱器の熱源が、自然エネルギーおよび/または廃熱である、請求項1ないし4のいずれかに記載の熱機関。
The heat engine according to any one of claims 1 to 4, wherein a heat source of the first refrigerant heater and / or the second refrigerant heater is natural energy and / or waste heat.
JP2004330565A 2004-11-15 2004-11-15 Heat engine Pending JP2006138288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330565A JP2006138288A (en) 2004-11-15 2004-11-15 Heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330565A JP2006138288A (en) 2004-11-15 2004-11-15 Heat engine

Publications (1)

Publication Number Publication Date
JP2006138288A true JP2006138288A (en) 2006-06-01

Family

ID=36619269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330565A Pending JP2006138288A (en) 2004-11-15 2004-11-15 Heat engine

Country Status (1)

Country Link
JP (1) JP2006138288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009681A1 (en) * 2006-07-21 2008-01-24 Mdi - Motor Development International S.A. Ambient temperature thermal energy and constant pressure cryogenic engine
CN102102550A (en) * 2010-02-09 2011-06-22 淄博绿能化工有限公司 Novel temperature difference engine device
JP2013024046A (en) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd Method and system for manufacturing gasoline from methanol and generating power
CN103477071A (en) * 2011-04-01 2013-12-25 诺沃皮尼奥内有限公司 Organic rankine cycle for concentrated solar power system
US8726677B2 (en) 2009-04-01 2014-05-20 Linum Systems Ltd. Waste heat air conditioning system
KR101501852B1 (en) * 2012-12-04 2015-03-12 가부시키가이샤 고베 세이코쇼 Rotary machine drive system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009681A1 (en) * 2006-07-21 2008-01-24 Mdi - Motor Development International S.A. Ambient temperature thermal energy and constant pressure cryogenic engine
EA014489B1 (en) * 2006-07-21 2010-12-30 Мди - Мотор Девелопман Энтернасьональ С.А. Ambient temperature thermal energy and constant pressure cryogenic engine
US8276384B2 (en) 2006-07-21 2012-10-02 Mdi-Motor Development International S.A. Ambient temperature thermal energy and constant pressure cryogenic engine
US8726677B2 (en) 2009-04-01 2014-05-20 Linum Systems Ltd. Waste heat air conditioning system
CN102102550A (en) * 2010-02-09 2011-06-22 淄博绿能化工有限公司 Novel temperature difference engine device
JP2013519024A (en) * 2010-02-09 2013-05-23 ジボ ナタージー ケミカル インダストリー カンパニー リミテッド Temperature difference engine device
US9140242B2 (en) 2010-02-09 2015-09-22 Zibo Natergy Chemical Industry Co., Ltd. Temperature differential engine device
CN103477071A (en) * 2011-04-01 2013-12-25 诺沃皮尼奥内有限公司 Organic rankine cycle for concentrated solar power system
JP2013024046A (en) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd Method and system for manufacturing gasoline from methanol and generating power
US9193918B2 (en) 2011-07-15 2015-11-24 Mitsubishi Heavy Industries, Ltd. Method for generating electricity and for producing gasoline from methanol and system therefor
KR101501852B1 (en) * 2012-12-04 2015-03-12 가부시키가이샤 고베 세이코쇼 Rotary machine drive system

Similar Documents

Publication Publication Date Title
EP2021587B1 (en) A method and system for generating power from a heat source
EP2157317B1 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
JP5599776B2 (en) Cooling, heat generation and / or work generation plant
EP2345793B1 (en) Dual reheat rankine cycle system and method thereof
EP3284920A1 (en) Hybrid generation system using supercritical carbon dioxide cycle
Datla et al. Comparing R1233zd and R245fa for low temperature ORC applications
US20100307169A1 (en) Trigeneration system and method
WO2008069771A3 (en) Power recovery and energy conversion systems and methods of using same
JP2014502329A (en) Parallel circulation heat engine
WO2013070249A1 (en) Hot day cycle
US9038391B2 (en) System and method for recovery of waste heat from dual heat sources
US20150075210A1 (en) Method for charging and discharging a heat accumulator and plant for storing and releasing thermal energy, suitable for this method
Jeong et al. Analysis of a refrigeration cycle driven by refrigerant steam turbine
KR101752230B1 (en) Generation system using supercritical carbon dioxide and method of driving the same by heat sink temperature
JP6444424B2 (en) Method of converting thermal energy into mechanical energy using a Rankine cycle with a heat pump
JP2006138288A (en) Heat engine
WO2017144422A1 (en) Waste heat recovery cascade cycle and method
EP3146276B1 (en) Multi-stage heat engine
JP2016151191A (en) Power generation system
Kondou et al. Thermodynamic assessment of high-temperature heat pumps for heat recovery
JP2004346759A (en) Heat engine
JP2005083343A (en) Power-generating apparatus
WO2024075336A1 (en) Compressed air energy storage device and heat pump device
JP2006292273A (en) Cogeneration system
JP2009185787A (en) Waste heat recovery system