JP2006137085A - Tissue paper for thermal stencil paper - Google Patents

Tissue paper for thermal stencil paper Download PDF

Info

Publication number
JP2006137085A
JP2006137085A JP2004328842A JP2004328842A JP2006137085A JP 2006137085 A JP2006137085 A JP 2006137085A JP 2004328842 A JP2004328842 A JP 2004328842A JP 2004328842 A JP2004328842 A JP 2004328842A JP 2006137085 A JP2006137085 A JP 2006137085A
Authority
JP
Japan
Prior art keywords
fiber
polyester
paper
heat
thin paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004328842A
Other languages
Japanese (ja)
Other versions
JP2006137085A5 (en
Inventor
Tamio Yamamoto
民男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004328842A priority Critical patent/JP2006137085A/en
Publication of JP2006137085A publication Critical patent/JP2006137085A/en
Publication of JP2006137085A5 publication Critical patent/JP2006137085A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide tissue paper for thermal stencil paper which has a sufficient strength in lamination with a thermoplastic resin film, excels in image clearness, causes few voids and is constituted of 100% polyester fibers. <P>SOLUTION: The tissue paper for the thermal stencil paper is constituted of polyester fibers A having a single fiber size of 0.01-0.6 dtex and an index of double refraction of 0.01-0.05 and polyester binder fibers B having a single fiber size of 0.2-2.0 dtex. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、キセノンフラッシュランプやサーマルヘッド等の熱によって穿孔製版される感熱孔版原紙用の薄葉紙に関するものである。   The present invention relates to a thin paper for a heat-sensitive stencil sheet which is perforated and made by heat from a xenon flash lamp or a thermal head.

従来、感熱孔版原紙に使用する感熱孔版原紙用の薄葉紙としては、種々の提案がなされており、こうぞ、みつまた、マニラ麻等の天然非木材繊維単独の組成からなる感熱孔版原紙用薄葉紙(例えば特許文献1)、天然繊維に合成繊維または再生繊維を混抄した感熱孔版原紙用薄葉紙(例えば特許文献2)などが知られている。   Conventionally, various proposals have been made as a thin paper for heat-sensitive stencil paper used for heat-sensitive stencil paper, and a thin paper for heat-sensitive stencil paper (for example, patent) consisting of a natural non-wood fiber alone such as Kozo, Mitsu or Manila hemp. Document 1), thin paper for heat-sensitive stencil paper (for example, Patent Document 2) in which natural fibers are mixed with synthetic fibers or recycled fibers are known.

天然非木材繊維単独からなる感熱孔版原紙用薄葉紙は、抄造の際の繊維の断面や繊維長の不均一に起因する地合い不良や結束繊維のため、感熱孔版印刷時のインキの通過性を阻害し、ベタ印刷で白抜けが発生する欠点がある。また、湿潤寸法安定性に欠けるため、熱可塑性樹脂フィルムとラミネートして得られる感熱孔版原紙を用いて印刷する場合、水を含有するインキを用いると、インキに含まれる水分によって寸法に変化が生じ、印刷される文字等の画像に歪みを生じる欠点もある。   Thin paper for heat-sensitive stencil paper consisting of natural non-wood fibers alone has poor texture due to uneven fiber cross-section and fiber length during paper making, and binding fibers, which impedes ink permeability during heat-sensitive stencil printing. , There is a defect that white spots occur in solid printing. In addition, due to lack of wet dimensional stability, when printing is performed using a heat-sensitive stencil sheet obtained by laminating with a thermoplastic resin film, when water-containing ink is used, the dimensions change due to moisture contained in the ink. In addition, there is a drawback in that an image such as a printed character is distorted.

これらの欠点を解消するため、天然繊維に合成繊維または再生繊維を混抄した感熱孔版原紙用薄葉紙が提案されている。合成繊維または再生繊維の配合により、白抜けや湿潤寸法安定性は改善されるが、合成繊維または再生繊維の配合量が多くなると感熱孔版原紙用薄葉紙の剛性や強度が低下し、大量枚数を印刷する場合、印刷途中で印刷画像に歪みが生じたり、原紙が破れたりするなど耐印刷性に課題がある。この対策のため、天然繊維または再生繊維を混抄した感熱孔版原紙用薄葉紙に樹脂を含浸する提案(例えば特許文献3、4など)がなされているが、含浸される樹脂によっては、繊維交絡点の接着が十分でなかったり、樹脂被膜の形成によりインキの通過性を阻害するなどの欠点がある。さらに、最近、市場ニーズがより高度化し、より鮮明な印刷性が要求されるようになってきている。このため、感熱孔版印刷の高解像度化を図るため、サーマルヘッドの熱素子密度が従来の300〜400dpiから600dpiへと高度化する傾向にある。そのため、インキが通過する穿孔を塞ぐ可能性の大きい天然繊維を配合した感熱孔版原紙用薄葉紙から、合成繊維100%よりなる感熱孔版原紙用薄葉紙が提案されている。   In order to eliminate these drawbacks, a thin paper for heat-sensitive stencil paper in which natural fibers are mixed with synthetic fibers or recycled fibers has been proposed. By blending synthetic fibers or recycled fibers, white spots and wet dimensional stability are improved. However, as the amount of synthetic fibers or recycled fibers increases, the stiffness and strength of the heat-sensitive stencil thin paper decreases and large numbers of sheets are printed. In such a case, there is a problem in printing resistance such as a distortion in a printed image or tearing of a base paper during printing. For this measure, proposals have been made to impregnate resin into thin paper for heat-sensitive stencil paper mixed with natural fiber or recycled fiber (for example, Patent Documents 3 and 4), but depending on the resin to be impregnated, the fiber entanglement point There are drawbacks such as insufficient adhesion and obstruction of ink passage by forming a resin film. Furthermore, recently, market needs have become more sophisticated and clearer printability has been demanded. For this reason, in order to increase the resolution of thermal stencil printing, the thermal element density of the thermal head tends to increase from 300 to 400 dpi to 600 dpi. For this reason, a heat sensitive stencil sheet paper composed of 100% synthetic fiber has been proposed from a heat sensitive stencil sheet thin paper blended with natural fibers that are highly likely to block perforations through which ink passes.

しかしながら、合成繊維100%からなる感熱孔版原紙用薄葉紙は、画像鮮明性は優れているものの、薄葉紙の剛性や強度が低下するため、フィルムとのラミネート時や孔版印刷時に原紙が破れ易くなったり、搬送不良が起こり易いという課題がある。   However, although the thin paper for heat-sensitive stencil paper composed of 100% synthetic fiber has excellent image clarity, the rigidity and strength of the thin paper is reduced, so the base paper is easily torn during lamination with a film or stencil printing, There is a problem that conveyance failure is likely to occur.

特許文献5は0.1デニール以下のポリエステル繊維および/またはアクリル繊維が5〜70%含まれ、他に0.5デニールのポリエステル繊維が10〜30%とポリエステルバインダー繊維20〜70%を混抄した秤量9〜11g/mの合成繊維100%よりなる感熱孔版原紙用薄葉紙である。しかしながら、一般に感熱孔版原紙用薄葉紙に用いられているポリエステル繊維は高倍率で延伸された後、熱処理されており、これをポリエステルバインダー繊維のみで接着させようとすると、抄紙機のドライヤー温度を高温にする必要があり、そのためドライヤーへ粘着し易い課題がある。 Patent Document 5 contains 5 to 70% of polyester fiber and / or acrylic fiber of 0.1 denier or less, and 10 to 30% of polyester fiber of 0.5 denier and 20 to 70% of polyester binder fiber are mixed. It is a thin paper for heat-sensitive stencil paper consisting of 100% synthetic fiber weighing 9 to 11 g / m 2 . However, polyester fibers generally used for heat-sensitive stencil sheet paper have been heat-treated after being stretched at a high magnification, and when trying to bond them only with polyester binder fibers, the dryer temperature of the paper machine is increased. Therefore, there is a problem that it is easy to stick to the dryer.

また、特許文献6は、単糸繊度が0.1デニールを越え0.3デニール未満のポリエステル繊維40〜60重量%と、単糸繊度0.3デニール以上、0.5デニール未満のポリエステル繊維30〜50重量%、単糸繊度1〜2デニールのポリエステルバインダー繊維5〜15重量%を混抄した秤量7〜10g/mのポリエステル繊維100%よりなる感熱孔版原紙用薄葉紙である。しかしながら、該薄葉紙はバインダー繊維(熱溶融温度が110℃)の混抄割合が少なすぎて十分な強度が得られず、加工時に断紙する問題がある。 Patent Document 6 discloses that 40 to 60% by weight of a polyester fiber having a single yarn fineness exceeding 0.1 denier and less than 0.3 denier, and a polyester fiber 30 having a single yarn fineness of 0.3 denier or more and less than 0.5 denier. It is a thin paper for heat-sensitive stencil paper comprising 100% polyester fiber having a basis weight of 7 to 10 g / m 2 mixed with 5 to 15% by weight of polyester binder fiber having a fine yarn fineness of 1 to 2 denier. However, the thin paper has a problem in that the mixing ratio of the binder fiber (heat melting temperature is 110 ° C.) is too small to obtain sufficient strength, and the paper is cut during processing.

特公昭41−7623号公報Japanese Patent Publication No.41-7623 特公昭55−47997号公報Japanese Patent Publication No. 55-47997 特開昭61−254396号公報JP 61-254396 A 特開平1−271293号公報JP-A-1-271293 特許第2726105号公報Japanese Patent No. 2726105 特開2000−141936号公報JP 2000-141936 A

本発明の目的は、熱可塑性樹脂フィルムとのラミネート加工時の強度も十分あり、画像鮮明性に優れ、且つ白抜けの少ないポリエステル繊維100%よりなる感熱孔版原紙用薄葉紙を提供することにある。   An object of the present invention is to provide a thin paper for heat-sensitive stencil paper having 100% polyester fiber which has sufficient strength at the time of lamination with a thermoplastic resin film, is excellent in image sharpness and has few white spots.

本発明者は、上記目的を達成するため検討を重ねた結果、構成繊維として配向が高くならないように製造した細繊度のポリエステル繊維を用い、これと特定の繊度を有するバインダー繊維を組合せたとき、強度が十分あり、画像鮮明性に優れ、且つ白抜けの少ない、バランスの取れた性能を有する感熱孔版原紙用薄葉紙が得られることを見出した。   As a result of repeated studies to achieve the above object, the present inventor used a fine fiber polyester fiber produced so that the orientation does not become high as a constituent fiber, and when this is combined with a binder fiber having a specific fineness, It has been found that a thin paper for heat-sensitive stencil paper having sufficient strength, excellent image sharpness, little whiteout, and balanced performance can be obtained.

すなわち、本発明によれば、単繊維繊度が0.01〜0.6デシテックス(以後、dtexと略す)、複屈折率(以後、Δnと略す)が0.01〜0.05のポリエステル繊維Aと単繊維繊度が0.2〜2.0dtexのポリエステル系バインダー繊維Bからなる感熱孔版原紙用薄葉紙が提供される。   That is, according to the present invention, polyester fiber A having a single fiber fineness of 0.01 to 0.6 dtex (hereinafter abbreviated as dtex) and a birefringence (hereinafter abbreviated as Δn) of 0.01 to 0.05. And a thin paper for heat-sensitive stencil paper comprising a polyester-based binder fiber B having a single fiber fineness of 0.2 to 2.0 dtex.

本発明によれば、ポリエステル繊維の水中分散性が優れており得られた薄葉紙の強度も十分あるため、フィルムとのラミネート加工時の断紙が起こらず、且つ感熱孔版印刷時の画像鮮明性に優れ、白抜けの少ない薄葉紙を提供することができる。   According to the present invention, the dispersibility of polyester fibers in water is excellent and the strength of the resulting thin paper is sufficient, so that no paper breakage occurs when laminating with a film, and image sharpness during thermal stencil printing is improved. It is possible to provide thin paper with excellent whiteness.

本発明においては、感熱孔版原紙用薄葉紙が、それぞれ以下に述べる特定の要件を満足するポリエステル繊維Aおよびポリエステル系バインダー繊維Bからなることが肝要である。これにより、ラミネート加工時の強度も十分あり、画像鮮明性に優れ、且つ白抜けの少ない薄葉紙を提供することができる。   In the present invention, it is important that the thin sheet for heat-sensitive stencil sheet is composed of polyester fiber A and polyester-based binder fiber B that satisfy specific requirements described below. Thereby, it is possible to provide a thin paper having sufficient strength at the time of laminating, excellent image sharpness, and few white spots.

上記ポリエステル繊維Aの単繊維繊度を0.01〜0.6dtex、好ましくは0.05〜0.4dtex、より好ましくは0.1〜0.3dtexとする必要がある。上記単繊維繊度が、0.6dtexより大きくなると薄葉紙の強度が低くなり、画像鮮明性が低下し、白抜けも目立つようになる。一方、上記単繊維繊度が、0.01未満では、同じ目付けの薄葉紙を作る上において、繊度の大きいものと比べそれだけ繊維本数が多くなるため、水中分散時の繊維同士の絡み合いが起こりやすくなり、白抜けも起こり易くなる。   The single fiber fineness of the polyester fiber A needs to be 0.01 to 0.6 dtex, preferably 0.05 to 0.4 dtex, more preferably 0.1 to 0.3 dtex. When the single fiber fineness is larger than 0.6 dtex, the strength of the thin paper is lowered, the image sharpness is lowered, and the white spots become conspicuous. On the other hand, if the single fiber fineness is less than 0.01, the number of fibers is increased as compared with the one with a large fineness in making thin paper with the same basis weight, and therefore, entanglement of fibers during dispersion in water is likely to occur. White spots are also likely to occur.

また本発明においては、ポリエステル繊維AのΔnを0.01〜0.05、好ましくは0.01〜0.04とすることが大切である。本発明者は、かかる細繊度繊維の上記Δnを低く抑えることによって、後述するバインダー繊維だけでなく、細繊度繊維にもバインダー機能を持たせ、それらの相乗効果によって薄葉紙の高強力化を達成できることを見出した。したがって、Δnが0.05より高くなるとバインダー機能が低下し、薄葉紙の強度が低くなる。一方、Δnが0.01より小さくなると繊維の強度が低下し、同様に薄葉紙も強度が低くなる。
なお、従来の薄葉紙に用いられているポリエステル繊維は、通常の紡糸・延伸・熱処理工程を経て製造されるため、Δnは0.10以上のものがごく一般的である。
In the present invention, it is important that the Δn of the polyester fiber A is 0.01 to 0.05, preferably 0.01 to 0.04. By suppressing the above Δn of such fine fibers, the present inventor can achieve not only the binder fibers described later but also the fine fibers with a binder function, and achieve high strength of the thin paper by their synergistic effect. I found. Therefore, when Δn is higher than 0.05, the binder function is lowered and the strength of the thin paper is lowered. On the other hand, when Δn is smaller than 0.01, the strength of the fiber is lowered, and the strength of the thin paper is also lowered.
In addition, since the polyester fiber used for the conventional thin paper is manufactured through normal spinning, drawing, and heat treatment processes, those having Δn of 0.10 or more are very common.

本発明のポリエステル繊維を構成するポリエステルとしては、ポリエチレンテレフタレート(以後、PETと略す)系ポリエステル、ポリトリメチレンテレフタレート系ポリエステル、ポリブチレンテレフタレート系ポリエステル、ポリエチレンナフタレート系ポリエステルなどが挙げられるが、特にPET系ポリエステル、さらには5−ナトリウムスルホイソフタル酸(以後、SIPと略す)を2〜6モル%共重合したPET系ポリエステルが薄葉紙の強度の面から特に好ましい。これは、SIPを共重合したポリエステル繊維の抄紙時の水中分散性がより優れているためである。SIPの共重合割合が2モル%より少なくなると水中分散性が悪くなる傾向にあり、一方、6モル%を超えると紡糸時の溶融粘度が高くなって紡糸が難しくなる傾向にある。   Examples of the polyester constituting the polyester fiber of the present invention include polyethylene terephthalate (hereinafter abbreviated as PET) polyester, polytrimethylene terephthalate polyester, polybutylene terephthalate polyester, polyethylene naphthalate polyester, and the like. From the viewpoint of the strength of the thin paper, a polyester-based polyester and further a PET-based polyester copolymerized with 2 to 6 mol% of 5-sodium sulfoisophthalic acid (hereinafter abbreviated as SIP) are particularly preferable. This is because the dispersibility in water during papermaking of the polyester fiber copolymerized with SIP is more excellent. When the copolymerization ratio of SIP is less than 2 mol%, the dispersibility in water tends to be poor. On the other hand, when it exceeds 6 mol%, the melt viscosity at the time of spinning tends to be high and spinning tends to be difficult.

また、上記のSIPを共重合したPET系ポリエステル繊維Aの固有粘度は好ましくは0.30〜0.45、より好ましくは0.33〜0.40である。固有粘度が0.30より低くなると強度が低下し、0.45を越えると溶融粘度が高くなって紡糸が難しくなり、繊度の小さい繊維を作ることも難しくなる。   The intrinsic viscosity of the PET polyester fiber A copolymerized with the above SIP is preferably 0.30 to 0.45, more preferably 0.33 to 0.40. When the intrinsic viscosity is lower than 0.30, the strength is lowered, and when it exceeds 0.45, the melt viscosity becomes high and spinning becomes difficult, and it becomes difficult to produce a fiber having a small fineness.

このポリエステル繊維Aの配合比率は好ましくは30〜90重量%、より好ましくは40〜80重量%である。配合比率が30重量%より少なくなると、バインダー繊維Bの配合比率が多くなり、ドライヤー粘着性が強くなり白抜けが目立ちやすくなり、90重量%を越えるとバインダー繊維Bの配合比率が少なくなるため薄葉紙の強度が低くなる傾向にある。   The blending ratio of the polyester fiber A is preferably 30 to 90% by weight, more preferably 40 to 80% by weight. When the blending ratio is less than 30% by weight, the blending ratio of the binder fiber B is increased, the dryer adhesion becomes strong and white spots are easily noticeable, and when the blending ratio exceeds 90% by weight, the blending ratio of the binder fiber B is decreased. The strength of the steel tends to be low.

本発明のポリエステル繊維Aは以下の方法により製造することができる。すなわち、溶融紡糸された未延伸糸を引き揃えてトウとなし、ガラス転移点(以後、Tgと略す)より高い温度で第1段延伸を行い、引き続いて、Tgより低い温度で第2段延伸を行い、水中分散性を向上させるため、ポリエーテル・ポリエステル共重合体を主成分とするエマルジョンで処理後、ドラム式カッターで所定の長さに切断される。これにより細繊度化と低複屈折率を同時に達成できる。またこの際、例えばポリエチレンテレフタレートの場合、第2段延伸を2.0倍以下、好ましくは1.5倍以下で実施することが、複屈折率を低く抑える点では望ましい。これに対して、薄葉紙に用いられている細い繊度のポリエステル繊維を製造する方法としては、一般的には、紡糸で直接細い繊度の繊維を製造する方法や、紡糸では繊度の大きい未延伸糸を紡糸しこれに延伸を施して細い繊度の繊維とする方法が挙げられるが、これらの方法では配向が進み過ぎてΔnが0.06を越える繊維となっているのが現状である。   The polyester fiber A of the present invention can be produced by the following method. That is, the melt-spun unstretched yarns are aligned to form a tow, and the first stage stretching is performed at a temperature higher than the glass transition point (hereinafter abbreviated as Tg), followed by the second stage stretching at a temperature lower than Tg. In order to improve the dispersibility in water, the film is treated with an emulsion containing a polyether / polyester copolymer as a main component and then cut into a predetermined length with a drum cutter. As a result, a finer fineness and a low birefringence can be achieved simultaneously. In this case, for example, in the case of polyethylene terephthalate, it is desirable that the second-stage stretching is performed at a ratio of 2.0 times or less, preferably 1.5 times or less from the viewpoint of keeping the birefringence low. On the other hand, as a method for producing a polyester fiber having a fine fineness used for thin paper, generally, a method for producing a fine fineness fiber directly by spinning, or an undrawn yarn having a high fineness by spinning is used. There is a method of spinning and drawing this into a fine fiber, but in these methods, the orientation is so advanced that Δn exceeds 0.06.

一方、本発明においては、ポリエステル系バインダー繊維Bの単繊維繊度を0.2〜2dtex、好ましくは0.3〜1.8dtexとする必要がある。上記単繊維繊度が2dtexより太くなると白抜けが起こり易くなる。一方、上記単繊維繊度が0.2未満では、バインダー成分の表面積が大きくなり過ぎて、抄紙時のドライヤー粘着が起こり易くなる。   On the other hand, in the present invention, the single fiber fineness of the polyester-based binder fiber B needs to be 0.2 to 2 dtex, preferably 0.3 to 1.8 dtex. When the single fiber fineness is larger than 2 dtex, white spots are likely to occur. On the other hand, if the single fiber fineness is less than 0.2, the surface area of the binder component becomes too large, and dryer adhesion during papermaking tends to occur.

上記バインダー繊維Bとしては、芯鞘型複合繊維を用いることが好ましい。この際、芯成分としては、主たる繰り返し単位の85モル%以上がエチレンテレフタレートからなるポリエステルを好ましく用いることができる。エチレンテレフタレート単位が85モル%より少なくなると、融点等の熱的特性が低下するため好ましくない。該ポリエステルは艶消し剤、顔料、蛍光増白剤、紫外線吸収剤等の公知の添加剤を含んでいてもよい。一方、鞘のバインダー成分としては、PET系の非晶性共重合ポリエステルを好ましく用いることができる。該共重合ポリエステルは、テレフタル酸、イソフタル酸、5−ナトリウムスルホイソフタル酸、アジピン酸、セバシン酸等の酸成分と、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ジエチレングリコール等のジオール成分との共重合によって得られるが、特にテレフタル酸、イソフタル酸、エチレングリコールおよびジエチレングリコールから得られる共重合ポリエステルがコスト面から特に好ましい。   As the binder fiber B, a core-sheath type composite fiber is preferably used. In this case, as the core component, a polyester in which 85 mol% or more of the main repeating unit is composed of ethylene terephthalate can be preferably used. When the ethylene terephthalate unit is less than 85 mol%, the thermal characteristics such as the melting point are deteriorated, which is not preferable. The polyester may contain known additives such as matting agents, pigments, fluorescent whitening agents, and ultraviolet absorbers. On the other hand, as the binder component of the sheath, a PET-based amorphous copolymer polyester can be preferably used. The copolymer polyester is composed of acid components such as terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, and sebacic acid, and ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, and the like. A copolymerized polyester obtained from terephthalic acid, isophthalic acid, ethylene glycol and diethylene glycol is particularly preferred from the viewpoint of cost.

また、上記バインダー繊維Bは公知の方法で製造できるが、水中分散性を向上させるため、延伸後、ポリエーテル・ポリエステル共重合体を主成分とするエマルジョンで処理後、ドラム式カッターで所定の長さに切断するのが望ましい。   The binder fiber B can be produced by a known method. In order to improve the dispersibility in water, the binder fiber B is stretched, treated with an emulsion containing a polyether / polyester copolymer as a main component, and then stretched to a predetermined length with a drum cutter. It is desirable to cut it quickly.

さらに、バインダー繊維Bの配合比率は好ましくは10〜70重量%、より好ましくは20〜50重量%である。配合比率が10重量%より少なくなると、薄葉紙の強度が低くなる傾向にあり、70重量%より多くなると、抄紙時のドライヤー粘着および感熱孔版印刷時の白抜けが起こり易くなる。   Furthermore, the blending ratio of the binder fiber B is preferably 10 to 70% by weight, more preferably 20 to 50% by weight. When the blending ratio is less than 10% by weight, the strength of the thin paper tends to be low. When the blending ratio is more than 70% by weight, dryer adhesion at the time of papermaking and white spots at the time of thermal stencil printing are likely to occur.

本発明においては、ポリエステル繊維Aおよびバインダー繊維Bの繊維長は2〜15mm、好ましくは3〜10mmである。繊維長が2mmより短くなると、ドラム式カッターでの安定した繊維の切断し難くなり、また、薄葉紙の強力も低くなる傾向にある。逆に繊維長が15mmより長くなると、抄紙時の繊維の水中分散が難しくなり、地合斑の大きい薄葉紙となる。   In the present invention, the fiber length of the polyester fiber A and the binder fiber B is 2 to 15 mm, preferably 3 to 10 mm. When the fiber length is shorter than 2 mm, stable fiber cutting with a drum cutter becomes difficult, and the strength of the thin paper tends to be low. On the other hand, when the fiber length is longer than 15 mm, it is difficult to disperse the fibers in the paper during paper making, and a thin paper with large formation spots is obtained.

本発明の薄葉紙の抄造は公知の方法で実施される。すなわち、上記のポリエステル繊維をパルパーに投入して撹拌・分散し、抄き網に供給して湿紙を形成させ、乾燥工程を経てロール状に巻取る。抄き網は円網、短網、傾斜短網が一般的であるが、長網などでも構わない。乾燥方式は、複数の回転する加熱ローラーで乾燥する方式でも良いが、ヤンキー式ドライヤーで乾燥する方式が好ましい。   Papermaking of the thin paper of the present invention is carried out by a known method. That is, the above polyester fiber is put into a pulper, stirred and dispersed, supplied to a paper net to form a wet paper, and wound into a roll after a drying process. The netting network is generally a circular network, a short network, or a slanted short network, but it may be a long network. The drying method may be a method of drying with a plurality of rotating heating rollers, but a method of drying with a Yankee dryer is preferred.

薄葉紙の秤量は4〜15g/m、好ましくは5〜10g/mである。秤量が15g/mを越えると、感熱孔版印刷時のインキの透過性が低下して画像濃度・鮮明性が低下する。4g/m未満の場合、熱可塑性フィルムとラミネートする際の強度が不足し、安定したラミネートが難しくなる。 The weight of the thin paper is 4 to 15 g / m 2 , preferably 5 to 10 g / m 2 . When the weighing amount exceeds 15 g / m 2 , the ink permeability at the time of thermal stencil printing decreases, and the image density and sharpness decrease. When it is less than 4 g / m 2, the strength at the time of laminating with a thermoplastic film is insufficient, and stable lamination becomes difficult.

薄葉紙と熱可塑性フィルムとの貼り合わせには、得られる感熱孔版原紙のインキ通過性を妨げない範囲で接着剤を用いることができる。接着剤としては、公知のエマルジョンラテックス型接着剤、溶剤型接着剤(アクリル系、ポリエステル系、酢酸ビニル系、ゴム系など)、反応硬化型接着剤等を用いることができる。これらの接着剤を乾燥塗布量で0.5〜2.5g/m薄葉紙または熱可塑性フィルムに塗布し、次いでラミネートすることにより感熱孔版原紙を得ることができる。 An adhesive can be used for laminating the thin paper and the thermoplastic film as long as the ink-passability of the obtained heat-sensitive stencil sheet is not hindered. As the adhesive, known emulsion latex type adhesives, solvent type adhesives (acrylic type, polyester type, vinyl acetate type, rubber type, etc.), reaction curing type adhesives, and the like can be used. A heat-sensitive stencil sheet can be obtained by applying these adhesives in a dry coating amount to 0.5 to 2.5 g / m 2 thin paper or a thermoplastic film and then laminating.

以下、実施例により、本発明をさらに具体的に説明する。なお、実施例における各項目は次の方法で測定した。
(1)固有粘度
オルソクロロフェノールを溶媒として使用し、35℃で測定した。
(2)ガラス転移点(Tg)
TAインスツルメント・ジャパン(株)社製のサーマル・アナリスト2200を使用し、昇温速度20℃/分で測定した。
(3)複屈折率(Δn)
市販の偏光顕微鏡を使って、光源にナトリウムランプを用い、試料をα−ブロムナフタリンに浸漬した状態でBerekコンペンセーター法からレタデーションを求めて算出した。
(4)紙強力(引張り強さ)
JIS P 8113に示される方法で測定し、2N/15mm以上を合格とした。
(5)秤量
JIS P 8124に示される方法で測定した。
(6)ドライヤー粘着性
熊谷理機工業株式会社製の角型シートマシンを使って、各ポリエステル繊維原料を水中でよく撹拌・混合して分散させ、ワイヤー上に形成させた約25cm×約25cmの湿紙を濾紙を用いてピックアップする。次いで濾紙に密着した湿紙を室温中で乾燥後、ドラムの表面温度が140℃に調節された熊谷理機工業株式会社製の高温用回転型乾燥機を使い、ポリエステル繊維紙がドラム表面と接するようにして接着処理を行う。この接着処理されたポリエステル繊維紙をドラムから剥ぎ取るときの剥ぎ取り易さをドライヤー粘着性の代用特性とし、判定は下記に従った。
○ 簡単に剥ぎ取ることができる。
△ やや剥ぎ取りにくいが、断紙は起こらない。
× 非常に剥ぎ取りにくく、断紙が起こる。
(7)画像の鮮明性および白抜け
ポリエステル繊維紙と厚さ2μmの二軸延伸ポリエステルフィルムを溶剤可溶共重合ポリエステル系接着剤1.2g(dry)/mによって貼り合わせ、感熱孔版印刷用原紙とした。得られた感熱孔版印刷用原紙に原稿を重ね合わせ、市販の400dpi感熱製版・印刷機を用いて穿孔製版・印刷を行い、印刷10枚目のサンプルの文字の鮮明性・解像性とベタ部のインキ濃度の均一性・白抜けを目視で評価した。
(a)鮮明性
文字のドットのつながりおよび太りを、下記の基準で目視評価した。
◎ 非常に良好
○ 良好
△ 若干、文字のドットのつながりが悪く、太りぎみ
× 文字のドットのつながりが悪く、また太って判読しにくい。
(b)白抜け
ベタ部の均一性も含めて、下記の基準で目視判定した。
○ 白抜けがなく、良好。
△ 白抜けが若干ある。
× 白抜けが目立ち、悪い。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.
(1) Intrinsic viscosity Measured at 35 ° C. using orthochlorophenol as a solvent.
(2) Glass transition point (Tg)
A thermal analyst 2200 manufactured by TA Instrument Japan Co., Ltd. was used, and the temperature was measured at a temperature rising rate of 20 ° C./min.
(3) Birefringence (Δn)
Using a commercially available polarizing microscope, a sodium lamp was used as the light source, and the retardation was calculated from the Berek compensator method with the sample immersed in α-bromonaphthalene.
(4) Paper strength (tensile strength)
It was measured by the method shown in JIS P 8113, and 2N / 15 mm or more was regarded as acceptable.
(5) Weighing It measured by the method shown by JISP8124.
(6) Dryer adhesiveness Using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd., each polyester fiber raw material is thoroughly stirred and mixed in water to disperse, and is formed on a wire of about 25 cm x about 25 cm. Pick up wet paper with filter paper. Next, the wet paper adhering to the filter paper is dried at room temperature, and then the polyester fiber paper is in contact with the drum surface using a high-temperature rotary dryer manufactured by Kumagai Riki Kogyo Co., Ltd. whose drum surface temperature is adjusted to 140 ° C. In this way, the bonding process is performed. The ease of peeling when the polyester fiber paper subjected to the adhesion treatment was peeled off from the drum was used as a substitute characteristic of the dryer tackiness, and the determination was performed as follows.
○ Easy to peel off.
△ Slightly difficult to remove, but no paper break occurs.
× It is very difficult to peel off and paper breaks occur.
(7) Image sharpness and white spots Polyester fiber paper and a biaxially stretched polyester film having a thickness of 2 μm are bonded to each other with a solvent-soluble copolymerized polyester-based adhesive 1.2 g (dry) / m 2 for heat-sensitive stencil printing A base paper was used. The resulting heat-sensitive stencil sheet is overlaid with a manuscript and punched and printed using a commercially available 400 dpi heat-sensitive plate and printing machine. The ink density uniformity and white spots were visually evaluated.
(A) Sharpness The connection of dots of characters and the fatness were visually evaluated according to the following criteria.
◎ Very good ○ Good △ Slightly poor character dot connection, poor weight × character dot connection poorly, thick and difficult to read.
(B) White spot The visual judgment was made based on the following criteria including the uniformity of the solid portion.
○ Good without white spots.
△ There are some white spots.
× White spots are conspicuous and bad.

[実施例1]
(1)ポリエステル繊維Aの製造
固有粘度が0.47、Tgが77℃のPETペレットを170℃で乾燥後、290℃で溶融し、孔数が1192個の口金を通して285℃のポリマー温度で吐出し、冷却後、500m/分の速度で引取り、固有粘度が0.45、単繊維繊度が3.4dtexの未延伸糸を得た。得られた未延伸糸を引き揃えて、約200万dtexのトウとなし、90℃の温水中で14.7倍の第1段延伸を行い、引き続いて70℃の温水中で1.1倍の第2段延伸を行った後(全延伸倍率16.2倍)、ポリエーテル・ポリエステル共重合体を主成分とするエマルジョンで処理し、水分率が約20%となるように絞った。該トウをドラム式カッターで3mmの長さに切断し、繊度が0.21dtex、Δnが0.019の延伸されたポリエステル繊維Aを得た。
[Example 1]
(1) Production of polyester fiber A PET pellets having an intrinsic viscosity of 0.47 and Tg of 77 ° C. are dried at 170 ° C., melted at 290 ° C., and discharged at a polymer temperature of 285 ° C. through a die having 1192 holes. After cooling, it was taken up at a speed of 500 m / min to obtain an undrawn yarn having an intrinsic viscosity of 0.45 and a single fiber fineness of 3.4 dtex. The obtained undrawn yarns are aligned to form a toe of about 2 million dtex, and the first stage drawing is performed 14.7 times in warm water at 90 ° C., and then 1.1 times in warm water at 70 ° C. After performing the second stage stretching (total stretching ratio: 16.2 times), it was treated with an emulsion containing a polyether / polyester copolymer as a main component, and squeezed so that the water content was about 20%. The tow was cut to a length of 3 mm with a drum cutter to obtain a stretched polyester fiber A having a fineness of 0.21 dtex and Δn of 0.019.

(2)バインダー繊維Bの製造
固有粘度が0.63のPETペレットを芯成分、テレフタル酸が60モル%、イソフタル酸が40モル%、エチレングリコールが96モル%、ジエチレングリコールが4モル%の割合で共重合された、固有粘度が0.55、Tgが65℃の非晶性共重合ポリエステルを鞘成分として、孔数が1032個の複合紡糸口金を用い、重量比50(芯成分)/50(鞘成分)の複合比率、紡糸温度275℃で吐出し、冷却後、1200m/分の速度で引取り、単繊維繊度が4.5dtexの芯鞘型複合繊維の未延伸糸を得た。尚、引取り前にポリエーテル・ポリエステル共重合体の付着量が0.15重量%となるようにエマルジョンを付与した。得られた未延伸を引き揃えて約45万dtexのトウとなし、85℃の温水中で3倍の延伸を行い、ポリエーテル・ポリエステル共重合体を主成分とするエマルジョンで処理し、水分率が約15%となるように絞った後、ドラム式カッターで5mmの長さに切断し、繊度が1.5dtexのバインダー繊維Bを得た。
(2) Manufacture of binder fiber B PET pellet with intrinsic viscosity of 0.63 is the core component, terephthalic acid is 60 mol%, isophthalic acid is 40 mol%, ethylene glycol is 96 mol%, diethylene glycol is 4 mol% Copolymerized amorphous copolyester having an intrinsic viscosity of 0.55 and Tg of 65 ° C. was used as a sheath component, and a composite spinneret having 1032 pores was used, and a weight ratio of 50 (core component) / 50 ( The composite ratio of the sheath component) was discharged at a spinning temperature of 275 ° C., and after cooling, it was taken up at a speed of 1200 m / min to obtain an undrawn yarn of a core-sheath type composite fiber having a single fiber fineness of 4.5 dtex. In addition, the emulsion was given so that the adhesion amount of the polyether / polyester copolymer would be 0.15% by weight before the take-up. The obtained unstretched lines are aligned to form a tow of about 450,000 dtex, stretched 3 times in hot water at 85 ° C., treated with an emulsion mainly composed of a polyether / polyester copolymer, and moisture content After being squeezed so as to be about 15%, it was cut into a length of 5 mm with a drum cutter to obtain a binder fiber B having a fineness of 1.5 dtex.

得られたポリエステル繊維Aおよびバインダー繊維Bを使って、ドライヤー粘着性の評価方法に従って、A/Bの配合比率を、重量を基準として40/60とし、秤量が8.0g/mの薄葉紙を得た。その結果を表1に示す。 Using the obtained polyester fiber A and binder fiber B, a thin paper having a weight ratio of 8.0 g / m 2 with a blending ratio of A / B of 40/60 based on weight according to a dryer adhesive evaluation method. Obtained. The results are shown in Table 1.

[実施例2〜3]
A/Bの配合比率を、重量を基準としてそれぞれ35/65、85/15に変更した以外は、実施例1と同様にして薄葉紙を得た。それぞれの結果を実施例2、3として表1に示す。
[Examples 2-3]
Thin paper was obtained in the same manner as in Example 1 except that the blending ratio of A / B was changed to 35/65 and 85/15, respectively, based on weight. The respective results are shown in Table 1 as Examples 2 and 3.

[実施例4〜5、比較例1]
実施例1のポリエステル繊維Aの製造方法において、繊度がそれぞれ0.35dtex、0.55dtex、0.65dtexとなるように第1延伸倍率を変更した以外は、実施例1と同様にしてポリエステル繊維Aを得、さらに薄葉紙を製造した。それぞれの結果を、実施例4、5、比較例1として表1に示す。
[Examples 4 to 5, Comparative Example 1]
In the production method of the polyester fiber A of Example 1, the polyester fiber A was prepared in the same manner as in Example 1 except that the first draw ratio was changed so that the fineness was 0.35 dtex, 0.55 dtex, and 0.65 dtex, respectively. Further, a thin paper was produced. The results are shown in Table 1 as Examples 4 and 5 and Comparative Example 1.

[実施例6〜7、比較例2]
実施例1のポリエステル繊維Aの製造において、全延伸倍率は実施例1と同じ16.2倍のままで、第2段延伸倍率を1.2倍、1.3倍、1.4倍に変更して、それぞれΔnが0.033、0.045、0.060のポリエステル繊維Aを得、さらに薄葉紙を製造した。結果をそれぞれ、実施例6、7、比較例2として表1に示す。
[Examples 6 to 7, Comparative Example 2]
In the production of the polyester fiber A of Example 1, the total draw ratio remains the same 16.2 times as in Example 1, and the second stage draw ratio is changed to 1.2 times, 1.3 times, and 1.4 times. Thus, polyester fibers A having Δn of 0.033, 0.045, and 0.060 were obtained, and thin paper was produced. The results are shown in Table 1 as Examples 6 and 7 and Comparative Example 2, respectively.

[実施例8]
SIPが4.5モル%共重合された固有粘度が0.37、Tgが76℃のPET系ポリエステルペレットを150℃で乾燥後、300℃で溶融し、孔数が1192個の口金を通して、290℃のポリマー温度で吐出し、冷却後、500m/分の速度で引取り、固有粘度が0.36、単繊維繊度が3.1dtexの未延伸糸を得た。得られた未延伸糸を引き揃えて、約150万dtexのトウとなし、85℃の温水中で8.8倍の第1段延伸を行い、引き続いて70℃の温水中で1.7倍の第2段延伸を行い、ポリエーテル・ポリエステル共重合体を主成分とするエマルジョンで処理し、水分率が約30%となるように絞った。該トウをドラム式カッターで3mmの長さに切断し、繊度が0.23dtex、Δnが0.033の延伸されたポリエステル繊維を得た。
実施例1において、ポリエステル繊維Aを、上記ポリエステル繊維に変更した以外は実施例1と同様にして薄葉紙を得た。結果を表1に示す。
[Example 8]
A PET-based polyester pellet having an inherent viscosity of 0.37 and a Tg of 76 ° C. copolymerized with 4.5 mol% of SIP is dried at 150 ° C., melted at 300 ° C., and passed through a die having 1192 pores. The polymer was discharged at a polymer temperature of 0 ° C., and after cooling, it was taken up at a speed of 500 m / min to obtain an undrawn yarn having an intrinsic viscosity of 0.36 and a single fiber fineness of 3.1 dtex. The obtained undrawn yarns are drawn together to form a tow of about 1.5 million dtex, and the first stage drawing is performed 8.8 times in warm water at 85 ° C., followed by 1.7 times in warm water at 70 ° C. The second-stage stretching was performed, and the mixture was treated with an emulsion containing a polyether / polyester copolymer as a main component, and squeezed so that the water content was about 30%. The tow was cut to a length of 3 mm with a drum cutter to obtain a stretched polyester fiber having a fineness of 0.23 dtex and Δn of 0.033.
In Example 1, a thin paper was obtained in the same manner as Example 1 except that the polyester fiber A was changed to the polyester fiber. The results are shown in Table 1.

[実施例9〜11]
SIPの共重合比率がそれぞれ2.3、3.5、5.5モル%であり、固有粘度がいずれも0.37、Tgが74〜77℃のPET系ポリエステルペレットを使用した以外は、実施例8と同様にして、ポリエステル繊維を得、薄葉紙を製造した。それぞれの結果を、実施例9、10、11として表1に示す。
[Examples 9 to 11]
Implementation was carried out except that PET copolymer pellets having a SIP copolymerization ratio of 2.3, 3.5, and 5.5 mol%, an intrinsic viscosity of 0.37, and a Tg of 74 to 77 ° C., respectively. In the same manner as in Example 8, polyester fibers were obtained and thin paper was produced. The respective results are shown in Table 1 as Examples 9, 10, and 11.

[実施例12〜13]
いずれもSIPが4.5モル%共重合されTgが76℃である、固有粘度がそれぞれ0.33、0.42のPET系ポリエステルペレットを使用した以外は、実施例8と同様にして、ポリエステル繊維を得、薄葉紙を製造した。それぞれの結果を、実施例12、13として表1に示す。
[Examples 12 to 13]
In both cases, polyesters were copolymerized in the same manner as in Example 8 except that PET was copolymerized with 4.5 mol% of SIP and Tg was 76 ° C., and PET-based polyester pellets having intrinsic viscosities of 0.33 and 0.42, respectively. Fiber was obtained and thin paper was produced. The respective results are shown in Table 1 as Examples 12 and 13.

[実施例14、比較例3]
実施例1のバインダー繊維Bの製造において、吐出量のみを変更して単繊維繊度が1.8dtex、2.3dtexのバインダー繊維Bを得、実施例1と同様にして薄葉紙を製造した。結果をそれぞれ実施例14、比較例3として表1に示す。
[Example 14, comparative example 3]
In the production of the binder fiber B of Example 1, only the discharge amount was changed to obtain the binder fiber B having a single fiber fineness of 1.8 dtex and 2.3 dtex, and a thin paper was produced in the same manner as in Example 1. The results are shown in Table 1 as Example 14 and Comparative Example 3, respectively.

[実施例15]
固有粘度が0.63のPETペレットを芯成分、テレフタル酸が60モル%、イソフタル酸が40モル%、エチレングリコールが96モル%、ジエチレングリコールが4モル%の割合で共重合された、固有粘度が0.55の非晶性共重合ポリエステルを鞘成分として、孔数が900個の複合紡糸口金を用い、重量比50(鞘成分)/50(芯成分)の複合比率、紡糸温度275℃で吐出し、冷却後、500m/分の速度で引取り、単繊維繊度が6.5dtexの芯鞘型複合繊維の未延伸糸を得た。尚、引取り前にポリエーテル・ポリエステル共重合体の付着量が0.20重量%となるようにエマルジョンを付与した。得られた未延伸を引き揃えて約100万dtexのトウとなし、90℃の温水中で10倍の第1段延伸を行い、引き続いて63℃の温水中で1.8倍の第2段延伸を行い、ポリエーテル・ポリエステル共重合体を主成分とするエマルジョンで処理し、水分率が約20%となるように絞った後、ドラム式カッターで5mmの長さに切断し、繊度が0.36dtexのバインダー繊維を得た。
実施例1において、バインダー繊維Bを、上記バインダー繊維に変更した以外は実施例1と同様にして薄葉紙を得た。結果を表1に示す。
[Example 15]
PET pellets with an intrinsic viscosity of 0.63 are core components, terephthalic acid is copolymerized in a proportion of 60 mol%, isophthalic acid is 40 mol%, ethylene glycol is 96 mol%, and diethylene glycol is 4 mol%. Using a composite spinneret with 900 pores and an amorphous copolyester of 0.55 as a sheath component, discharge at a composite ratio of 50 (sheath component) / 50 (core component) at a spinning temperature of 275 ° C. Then, after cooling, it was taken up at a speed of 500 m / min to obtain an undrawn yarn of a core-sheath type composite fiber having a single fiber fineness of 6.5 dtex. In addition, an emulsion was applied so that the attached amount of the polyether / polyester copolymer was 0.20% by weight before the take-up. The obtained unstretched lines are aligned to form a tow of about 1 million dtex, followed by 10-fold first-stage stretching in 90 ° C warm water, followed by 1.8-fold second-stage in 63 ° C warm water. Stretching, treating with an emulsion containing a polyether / polyester copolymer as the main component, squeezing so that the moisture content is about 20%, and then cutting to a length of 5 mm with a drum cutter, the fineness is 0 A binder fiber of .36 dtex was obtained.
In Example 1, a thin paper was obtained in the same manner as in Example 1 except that the binder fiber B was changed to the binder fiber. The results are shown in Table 1.

[比較例4]
第1段延伸倍率を17倍、第2段延伸倍率を2.2倍に変更した以外は実施例15と同様にして繊度が0.17dtexのバインダー繊維Bを得、薄葉紙を製造した。結果を表1に示す。
[Comparative Example 4]
A binder fiber B having a fineness of 0.17 dtex was obtained in the same manner as in Example 15 except that the first stage draw ratio was changed to 17 times and the second stage draw ratio was changed to 2.2 times, and thin paper was produced. The results are shown in Table 1.

Figure 2006137085
Figure 2006137085

本発明によれば、熱可塑性樹脂フィルムとのラミネート加工時の強度も十分であり、画像の鮮明性に優れ、且つ白抜けの少ないポリエステル繊維100%よりなる感熱孔版原紙用薄葉紙を提供することができる。このため、上記の感熱孔版原紙用薄葉紙は、最近強く要求されている感熱孔版印刷の高解像度化にも十分対応できるものであり、その産業的利用価値が極めて高いのもである。   According to the present invention, it is possible to provide a thin paper for heat-sensitive stencil paper comprising 100% polyester fiber having sufficient strength at the time of laminating with a thermoplastic resin film, excellent image sharpness, and few white spots. it can. For this reason, the above-mentioned thin paper for heat-sensitive stencil paper can sufficiently cope with the high resolution of heat-sensitive stencil printing which has been strongly demanded recently, and its industrial utility value is extremely high.

Claims (5)

単繊維繊度が0.01〜0.6デシテックス、複屈折率が0.01〜0.05のポリエステル繊維Aと単繊維繊度が0.2〜2.0デシテックスのポリエステル系バインダー繊維Bからなる感熱孔版原紙用薄葉紙。   Heat sensitivity comprising polyester fiber A having a single fiber fineness of 0.01 to 0.6 dtex and birefringence of 0.01 to 0.05 and polyester binder fiber B having a single fiber fineness of 0.2 to 2.0 dtex. Thin paper for stencil paper. ポリエステル繊維Aが5−ナトリウムスルホイソフタル酸を2〜6モル%共重合したポリエチレンテレフタレート系ポリエステルからなる請求項1に記載の感熱孔版原紙用薄葉紙。   The thin paper for heat-sensitive stencil paper according to claim 1, wherein the polyester fiber A comprises a polyethylene terephthalate polyester copolymerized with 2 to 6 mol% of 5-sodium sulfoisophthalic acid. ポリエステル繊維Aの固有粘度が0.30〜0.45である請求項2に記載の感熱孔版原紙用薄葉紙。   The thin paper for heat-sensitive stencil paper according to claim 2, wherein the polyester fiber A has an intrinsic viscosity of 0.30 to 0.45. バインダー繊維Bが、ポリエチレンテレフタレート系ポリエステルを芯成分とし、テレフタル酸、イソフタル酸、エチレングリコールおよびジエチレングリコールから構成される非晶性共重合ポリエステルを鞘成分とするポリエステル系複合繊維である請求項1〜3のいずれかに記載の感熱孔版原紙用薄葉紙。   The binder fiber B is a polyester composite fiber having a polyethylene terephthalate polyester as a core component and an amorphous copolymer polyester composed of terephthalic acid, isophthalic acid, ethylene glycol and diethylene glycol as a sheath component. The thin paper for heat-sensitive stencil paper as described in any of the above. ポリエステル繊維Aの30〜90重量%と、バインダー繊維Bの10〜70重量%からなり、坪量が4〜15g/mである請求項1〜4のいずれかに記載の感熱孔版原紙用薄葉紙。 The thin paper for heat-sensitive stencil paper according to any one of claims 1 to 4, comprising 30 to 90% by weight of polyester fiber A and 10 to 70% by weight of binder fiber B, and having a basis weight of 4 to 15 g / m 2. .
JP2004328842A 2004-11-12 2004-11-12 Tissue paper for thermal stencil paper Pending JP2006137085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328842A JP2006137085A (en) 2004-11-12 2004-11-12 Tissue paper for thermal stencil paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328842A JP2006137085A (en) 2004-11-12 2004-11-12 Tissue paper for thermal stencil paper

Publications (2)

Publication Number Publication Date
JP2006137085A true JP2006137085A (en) 2006-06-01
JP2006137085A5 JP2006137085A5 (en) 2007-08-23

Family

ID=36618199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328842A Pending JP2006137085A (en) 2004-11-12 2004-11-12 Tissue paper for thermal stencil paper

Country Status (1)

Country Link
JP (1) JP2006137085A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267197A (en) * 1988-09-01 1990-03-07 Teijin Ltd Base paper for thermal screen printing
JP2002227089A (en) * 2001-02-01 2002-08-14 Teijin Ltd Polyester-based binder fiber for wet papermaking and method for producing the same
JP2003138424A (en) * 2001-10-30 2003-05-14 Teijin Ltd Polyester fiber for binder
JP2004066737A (en) * 2002-08-08 2004-03-04 Ricoh Co Ltd Stencil paper for thermal stencil printing and method for manufacturing it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267197A (en) * 1988-09-01 1990-03-07 Teijin Ltd Base paper for thermal screen printing
JP2002227089A (en) * 2001-02-01 2002-08-14 Teijin Ltd Polyester-based binder fiber for wet papermaking and method for producing the same
JP2003138424A (en) * 2001-10-30 2003-05-14 Teijin Ltd Polyester fiber for binder
JP2004066737A (en) * 2002-08-08 2004-03-04 Ricoh Co Ltd Stencil paper for thermal stencil printing and method for manufacturing it

Similar Documents

Publication Publication Date Title
JP4384383B2 (en) Composite staple fiber and method for producing the same
JP4647341B2 (en) Polyester fiber paper for heat sensitive stencil paper
JP2004181341A (en) Wet nonwoven fabric for filter and polyester binder fiber for use therein
JP4303163B2 (en) Polyester fiber thin paper for heat sensitive stencil paper
JP4616619B2 (en) Polyester fiber thin paper for heat-sensitive stencil printing base paper
JP2006142550A (en) Polyester fiber paper for thermosensitive stencil printing base paper
JP2000118163A (en) Unwoven fabric for heat sensitive stencil printing original paper
JP2006137085A (en) Tissue paper for thermal stencil paper
JP7148280B2 (en) wet nonwoven fabric
JP2005335213A (en) Polyester fiber paper for thermal stencil paper
JP3654963B2 (en) Thin paper for high-image heat-sensitive stencil printing base paper
JPH0267197A (en) Base paper for thermal screen printing
JP4046901B2 (en) Multicomponent fiber and leather-like sheet using the same
JP4031435B2 (en) Polyester binder fiber for papermaking
JP4336551B2 (en) Shoji paper
JP4845436B2 (en) Thin paper for heat-sensitive stencil and base paper for heat-sensitive stencil
JP2003020524A (en) Joining-type conjugated staple fiber
JP3043507B2 (en) Laminated sheet and method for producing the same
JP3590489B2 (en) Thin paper for hot stencil printing and method for producing the same
JP7292151B2 (en) Support for thermal stencil sheet and thermal stencil sheet
JP2004162231A (en) Polyester-based binder fiber for japanese shoji paper
JP2003155697A (en) Polyester-based synthetic paper
JP3583256B2 (en) Thin paper for hot stencil printing and method for producing the same
JP2011208336A (en) Dope-dyed black composite staple fiber, and method of producing the same
JP2000118162A (en) Unwoven fabric for heat sensitive stencil printing original paper

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Effective date: 20100312

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907