JP2006136853A - Waste water treatment apparatus and system using it - Google Patents

Waste water treatment apparatus and system using it Download PDF

Info

Publication number
JP2006136853A
JP2006136853A JP2004330519A JP2004330519A JP2006136853A JP 2006136853 A JP2006136853 A JP 2006136853A JP 2004330519 A JP2004330519 A JP 2004330519A JP 2004330519 A JP2004330519 A JP 2004330519A JP 2006136853 A JP2006136853 A JP 2006136853A
Authority
JP
Japan
Prior art keywords
tank
nitrogen
denitrification
treatment
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004330519A
Other languages
Japanese (ja)
Inventor
Shigenori Matsumoto
成紀 松本
Tatsuya Ogurisu
達也 小栗栖
Kazuo Sanka
和夫 参鍋
Takuhiro Maeda
拓洋 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Original Assignee
Nitto Denko Corp
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Mitsubishi Heavy Industries Environmental Engineering Co Ltd filed Critical Nitto Denko Corp
Priority to JP2004330519A priority Critical patent/JP2006136853A/en
Publication of JP2006136853A publication Critical patent/JP2006136853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus for simply treating a material from which an inhibitor or a malodorous substance is produced and also effectively nitrifying and denitrifying the material, and a system using it. <P>SOLUTION: The apparatus comprises, as an initial stage, a conditioning bath 1 having an agitation function, a primary aeration bath 2 immediately after the conditioning bath 1, a denitrification bath 3 for decomposing nitrite nitrogen and nitrate nitrogen, a nitrification bath 4 for decomposing organic nitrogen, a sedimentation bath 5 for separating activated sludge, a secondary aeration bath 6, a coagulating sedimentation bath 7, and a filtration bath 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、窒素含有排水を脱窒処理する排水処理設備またはこれを用いた排水処理システムに関する。   The present invention relates to a wastewater treatment facility for denitrifying nitrogen-containing wastewater or a wastewater treatment system using the same.

窒素成分は湖沼や海域の富栄養化の原因となるため、近年排水中の窒素規制が厳しくなってきている。そのため、排水中に窒素を含む溶剤や薬品が存在する場合硝化脱窒機能を有する排水処理システムが必要である。   Since nitrogen components cause eutrophication of lakes and marine areas, the regulation of nitrogen in wastewater has become stricter in recent years. Therefore, a wastewater treatment system having a nitrification denitrification function is required when a solvent or chemical containing nitrogen is present in the wastewater.

一般に、排水中の窒素は、有機体窒素、アンモニア性窒素、硝酸性窒素あるいは亜硝酸性窒素として存在することが多い。また、窒素の処理は、硝化菌と脱窒菌の存在下で循環脱窒処理を行うことにより効率的に処理できる。従って、生物学的硝化−脱窒法が一般的な処理方法として広く採用されている。   In general, nitrogen in waste water often exists as organic nitrogen, ammonia nitrogen, nitrate nitrogen or nitrite nitrogen. Further, the nitrogen treatment can be efficiently performed by carrying out a circulation denitrification treatment in the presence of nitrifying bacteria and denitrifying bacteria. Therefore, the biological nitrification-denitrification method is widely adopted as a general treatment method.

脱窒処理を目的とする排水処理設備は、一般に,調整槽、脱窒槽、硝化槽、沈殿槽の組合せであり、硝化槽において硝化された液の一部を脱窒槽に戻し循環しながら排水を処理する方法が知られている。具体的には、図2に示すように、排水処理施設から公共水域へ排出される高濃度の窒素やリンなどを減少すること、並びに産業廃棄物として酒類残さを有効活用することを目的として、酒類残さを乾燥し濃縮して凝縮水22を生成し、得られた凝縮水と生物とを用いて高濃度の窒素またはリンを含む排水21から窒素またはリンを減少・除去する方法であって、生物が微生物、好ましくは活性汚泥を馴養したものあるいはリン蓄積菌、硝化菌または脱窒菌の一つ以上を含む方法が提案され、脱窒反応槽25、硝化反応槽28、硝化槽29を用いた循環硝化液34による排水処理設備の例を示している(例えば特許文献1参照)。   A wastewater treatment facility for the purpose of denitrification treatment is generally a combination of a conditioning tank, a denitrification tank, a nitrification tank, and a precipitation tank. A part of the liquid nitrified in the nitrification tank is returned to the denitrification tank for circulation. Methods for processing are known. Specifically, as shown in FIG. 2, for the purpose of reducing high-concentration nitrogen, phosphorus, etc. discharged from wastewater treatment facilities to public water areas, and effectively utilizing liquor residue as industrial waste, A method for reducing and removing nitrogen or phosphorus from waste water 21 containing high-concentration nitrogen or phosphorus using the condensed water and organisms obtained by drying and concentrating a liquor residue to produce condensed water 22. A method is proposed in which the organism contains one or more of microorganisms, preferably acclimatized with activated sludge, or phosphorus accumulating bacteria, nitrifying bacteria or denitrifying bacteria, using denitrification reaction tank 25, nitrification reaction tank 28, and nitrification tank 29. The example of the waste water treatment facility by the circulating nitrification liquid 34 is shown (for example, refer patent document 1).

また、事業所における生産活動で各種溶剤や薬品を使用し排出する場合は水質汚濁法や自治体が定める条例にて排出規制値が定められているため、排水処理施設にて規制値以下に処理後排出しなければならない。
特開2002−233889号公報
In addition, when using various solvents and chemicals in production activities at business sites, emission control values are set by the Water Pollution Law and regulations established by local governments. Must be discharged.
Japanese Patent Laid-Open No. 2002-233889

排水の清浄化は、上記のように、窒素を含む溶剤や薬品を処理する場合であっても、通常は、循環脱窒法により効率的に処理できる。しかし、循環脱窒排水処理設備において用いられる活性汚泥は、主にBOD菌(無機化菌、BOD酸化菌ともいう)、脱窒菌、硝化菌で構成されている。このうち、硝化菌は、設備の洗浄剤や殺菌剤として用いられる、次亜塩素酸ナトリウム、重亜硫酸ナトリウム、ホルマリンなどにより増殖が極端に阻害される。従って、食品産業や各種有機溶剤を使用する産業では定期的に生産工程内設備の殺菌洗浄を行うため、洗浄排水により硝化菌がダメージを受け窒素処理機能が低下する場合がある。さらに、硝化菌の回復には通常2週間程度要する為、その間排出水中の窒素含有溶剤や薬品の量を制限する必要が生じ、事業所での生産量の低下につながる。   As described above, the wastewater can be purified efficiently by a circulating denitrification method even when a solvent or chemical containing nitrogen is treated. However, activated sludge used in a circulating denitrification wastewater treatment facility is mainly composed of BOD bacteria (also referred to as mineralized bacteria or BOD oxidizing bacteria), denitrifying bacteria, and nitrifying bacteria. Among these, the growth of nitrifying bacteria is extremely inhibited by sodium hypochlorite, sodium bisulfite, formalin, and the like, which are used as equipment cleaning agents and disinfectants. Therefore, in the food industry and industries that use various organic solvents, the sterilization cleaning of the equipment in the production process is periodically performed, so that the nitrifying bacteria may be damaged by the cleaning wastewater, and the nitrogen treatment function may be lowered. Furthermore, since it usually takes about two weeks to recover nitrifying bacteria, it becomes necessary to limit the amount of nitrogen-containing solvent and chemicals in the discharged water during that period, leading to a decrease in production at the office.

また、排水中に重亜硫酸ナトリウムが含まれる場合、窒素処理が阻害されるため、分別回収する必要がある。回収した排水は、産業廃棄物として処理する必要があることから、処理の煩雑さを招き、別途産業廃棄物としての処理費用が発生する。   Further, when sodium bisulphite is contained in the waste water, the nitrogen treatment is hindered, and therefore it is necessary to collect it separately. Since the collected waste water needs to be treated as industrial waste, it causes inconvenience of processing, and a separate processing cost as industrial waste occurs.

さらに、ジメチルスルフォキシドは嫌気処理すると悪臭物質の硫化メチルやメチルメルカプタンに分解されるが、従来の排水処理設備においては、こうした悪臭物質に対して十分な処理をおこなうことが困難であった。   Furthermore, dimethyl sulfoxide is decomposed into malodorous methyl sulfide and methyl mercaptan when anaerobically treated, but it has been difficult to sufficiently treat such malodorous substances with conventional wastewater treatment facilities.

そこで、本発明の目的は、上記阻害物質や悪臭物質の基となる物質を簡便に処理するとともに、効率良く硝化脱窒処理を行う排水処理設備およびこれを用いた排水処理システムを提供することにある。   Accordingly, an object of the present invention is to provide a wastewater treatment facility for efficiently treating a substance that is a basis for the above-mentioned inhibitory substances and malodorous substances and efficiently performing nitrification denitrification treatment, and a wastewater treatment system using the same is there.

本発明者らは、鋭意研究を重ねた結果、以下に示す排水処理設備およびこれを用いた排水処理システムにより上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies, the present inventors have found that the above object can be achieved by a wastewater treatment facility and a wastewater treatment system using the same, and have completed the present invention.

すなわち、本発明は排水処理設備であって、攪拌機能を有する調整槽を初段槽として、前記調整槽の直後に一次曝気槽を設けとともに、亜硝酸性窒素および硝酸性窒素を分解する脱窒槽、有機体窒素を分解する硝化槽、活性汚泥を分離する沈殿槽、二次曝気槽、凝集沈殿槽、および、ろ過槽から構成されることを特徴とする。   That is, the present invention is a wastewater treatment facility, and a denitrification tank that decomposes nitrite nitrogen and nitrate nitrogen while providing a primary aeration tank immediately after the adjustment tank, with the adjustment tank having a stirring function as the first stage tank, It is characterized by comprising a nitrification tank for decomposing organic nitrogen, a sedimentation tank for separating activated sludge, a secondary aeration tank, a coagulation sedimentation tank, and a filtration tank.

事業所の排水には各種の薬剤が含まれ、こうした薬剤によって汚泥の活性度が低下することがあることは、上記の通りである。本発明は、窒素含有排水に対して脱窒処理および硝化処理を行い清浄化するに際し、その反応の中心となる活性汚泥が最適条件で機能できるように、排水成分中に含まれる各種薬剤の影響を排除する手段を見出したものである。つまり、前処理として曝気槽を脱窒槽の前に設け、上記阻害物質を揮発または薬剤に耐性のあるBOD菌による好気処理にて分解処理することによって、後段の硝化脱窒を効率良く処理する方法である。従って、阻害物質や悪臭物質の基となる物質を簡便に処理するとともに、効率良く硝化脱窒処理を行う排水処理設備を提供することができる。   As mentioned above, the wastewater of business establishments contains various chemicals, and such chemicals may reduce the activity of sludge. In the present invention, when nitrogen-containing wastewater is purified by denitrification treatment and nitrification treatment, the effect of various chemicals contained in the wastewater components is such that the activated sludge that is the center of the reaction can function under optimum conditions. It has been found a means to eliminate. In other words, as a pretreatment, an aeration tank is provided in front of the denitrification tank, and the above-mentioned inhibitor is decomposed by aerobic treatment with BOD bacteria that are volatile or resistant to chemicals, thereby efficiently treating the subsequent nitrification denitrification. Is the method. Accordingly, it is possible to provide a wastewater treatment facility that easily treats substances that serve as a basis for inhibitors and malodorous substances, and efficiently performs nitrification and denitrification.

本発明は、上記排水処理設備であって、前記一次曝気槽において、硝化反応を阻害する薬剤成分を曝気処理することを特徴とする。   The present invention is the wastewater treatment facility described above, characterized in that a chemical component that inhibits a nitrification reaction is aerated in the primary aeration tank.

脱窒処理の1つである硝化処理は、主として活性汚泥に含まれるBOD菌が有機物を分解し、硝化菌が有機性窒素を分解する。一次曝気槽においては、この硝化菌の機能を阻害する薬剤、例えば、次亜塩素酸ナトリウムを蒸散させる曝気処理を事前に行うことによって、硝化槽での硝化反応への影響を排除することができる。従って、窒素含有排水に対して、効果的な硝化処理を行うことができる。   In nitrification treatment, which is one of the denitrification treatments, BOD bacteria contained mainly in activated sludge decompose organic substances, and nitrifying bacteria decompose organic nitrogen. In the primary aeration tank, it is possible to eliminate the influence on the nitrification reaction in the nitrification tank by performing in advance the aeration treatment that evaporates the function of the nitrifying bacteria, such as sodium hypochlorite. . Therefore, an effective nitrification treatment can be performed on the nitrogen-containing waste water.

本発明は、上記排水処理設備であって、前記一次曝気槽において、悪臭物質を発生要因となる薬剤成分を好気処理することを特徴とする。   The present invention is the above-described wastewater treatment facility, characterized in that in the primary aeration tank, a chemical component that causes malodorous substances to be generated is aerobically treated.

上記の通り、事前の曝気処理は、脱窒処理に直接的に大きな効果を及ぼしている。本発明者は、さらに、この事前曝気が、排水処理過程において発生する悪臭物質の排除に対しても有効であることを見出した。つまり、曝気による好気処理を行い、悪臭物質発生の原因である洗浄剤や殺菌剤、例えば、ジメチルスルフォキシドをジメチルスルホンに酸化分解することによって、排水処理過程における悪臭物質の発生を排除することができる。   As described above, the prior aeration treatment has a great effect directly on the denitrification treatment. The present inventor further found that this pre-aeration is effective for eliminating malodorous substances generated in the wastewater treatment process. In other words, aerobic treatment by aeration is performed, and the generation of malodorous substances in the wastewater treatment process is eliminated by oxidizing and decomposing cleaning agents and disinfectants that cause malodorous substances such as dimethylsulfoxide to dimethylsulfone. be able to.

本発明は、窒素含有排水を、活性汚泥による処理を含む脱窒処理を行う排水処理システムであって、脱窒処理の前段に一次的に曝気処理を行う手段を有することを特徴とする。   The present invention is a wastewater treatment system for performing a denitrification treatment including a treatment with activated sludge on a nitrogen-containing wastewater, characterized in that it has means for performing an aeration treatment first before the denitrification treatment.

上記のように、本発明は、窒素含有排水の清浄化に際し、曝気処理が活性汚泥の機能に対する各種薬剤の影響を排除することを見出したもので、特に、排水処理システムの一環として、脱窒処理の前段に一次的に曝気処理を行うことが非常に高い効果を生じるものである。こうした処理を行うことによって、活性汚泥に含まれるBOD菌、脱窒菌、硝化菌が、個々の妨害条件を相互に排除し合いながら、個々の機能を最大発揮することができるようになる。従って、簡便な手段を用いることによって、効率良く硝化脱窒処理を行う排水処理システムを提供することが可能となる。   As described above, the present invention has been found that aeration treatment eliminates the influence of various chemicals on the function of activated sludge when purifying nitrogen-containing wastewater. It is very effective to perform the aeration process first before the process. By performing such treatment, the BOD bacteria, denitrifying bacteria, and nitrifying bacteria contained in the activated sludge can exert their individual functions to the maximum while mutually eliminating each interference condition. Therefore, it is possible to provide a wastewater treatment system that efficiently performs nitrification denitrification by using simple means.

本発明は、上記排水処理システムにおいて、上記いずれかの排水設備を用いるとともに、高分子膜の製造工程における排水を処理することを特徴とする。   The present invention is characterized in that, in the wastewater treatment system, any one of the above drainage facilities is used, and wastewater in the polymer membrane production process is treated.

本発明に係る排水処理設備あるいは排水処理システムは、一次曝気処理の導入によって、洗浄剤や殺菌剤などの薬剤の影響を排除して排水の清浄化を図ることを可能にしたものである。一方、高分子膜の製造工程においては、分離膜の洗浄や殺菌などを目的として次亜塩素酸ナトリウムなどの薬剤を使用する。従って、本発明に係る排水処理設備あるいは排水処理システムは、高分子膜の製造工程における排水処理に特に有用であり、簡便かつ効率よく硝化脱窒処理を行うことができる。   The waste water treatment facility or waste water treatment system according to the present invention can purify waste water by eliminating the influence of chemicals such as cleaning agents and disinfectants by introducing primary aeration treatment. On the other hand, in the production process of the polymer membrane, a chemical such as sodium hypochlorite is used for the purpose of cleaning or sterilizing the separation membrane. Therefore, the wastewater treatment facility or wastewater treatment system according to the present invention is particularly useful for wastewater treatment in the polymer membrane production process, and can perform nitrification and denitrification treatment simply and efficiently.

上記のように、本発明に係る排水処理設備あるいは排水処理システムによって、脱窒処理において阻害物質や悪臭物質の基となる物質を予め簡便に処理するとともに、効率良く硝化脱窒処理を行う排水処理設備およびこれを用いた排水処理システムを提供することができる。   As described above, the wastewater treatment facility or wastewater treatment system according to the present invention is a wastewater treatment for efficiently treating nitrification denitrification treatment in advance while easily treating in advance the substances that are the basis of inhibitors and malodorous substances in the denitrification treatment. A facility and a wastewater treatment system using the facility can be provided.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

<排水処理機能の概要>
窒素を含有する排水を処理する場合、脱窒処理と硝化処理を組わせた処理が行われる。具体的には、脱窒処理は、亜硝酸性窒素や硝酸性窒素を嫌気性条件下において、下式1および2のように窒素ガスに分解処理する。
<Outline of wastewater treatment function>
When treating the waste water containing nitrogen, the processing which combined denitrification processing and nitrification processing is performed. Specifically, in the denitrification treatment, nitrite nitrogen or nitrate nitrogen is decomposed into nitrogen gas as shown in the following formulas 1 and 2 under anaerobic conditions.

2NO + 3H → N + 2HO +2OH ・・(式1)
2NO + 5H → N + 4HO +2OH ・・(式2)
2NO 2 + 3H 2 → N 2 + 2H 2 O + 2OH (Equation 1)
2NO 3 + 5H 2 → N 2 + 4H 2 O + 2OH (Equation 2)

一方、硝化処理は、有機体窒素を好気性条件下において、下式3および4のような2段階の反応によって、亜硝酸性窒素や硝酸性窒素などに変換処理する。   On the other hand, in nitrification treatment, organic nitrogen is converted into nitrite nitrogen, nitrate nitrogen, or the like under aerobic conditions by a two-stage reaction as shown in the following formulas 3 and 4.

2NH + 3O → 2NO + 2HO +4H ・・(式3)
2NO + O → 2NO ・・(式4)
2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H + .. (Formula 3)
2NO 2 + O 2 → 2NO 3 (4)

<本発明に係る排水処理設備の概要>
窒素を含有する排水を処理する場合、脱窒処理に必要なBOD源、硝化反応で消費されるアルカリ源の補給が必要となる、循環脱窒法はこのBOD源として排水中のBODが利用でき、アルカリ源は脱窒反応時に生成されるアルカリが利用できるため効率的な処理方法として広く利用されている。循環脱窒排水処理設備では、脱窒槽、硝化槽に、BOD菌、脱窒菌、硝化菌などで構成される活性汚泥が設けられている。
<Outline of wastewater treatment facility according to the present invention>
When treating wastewater containing nitrogen, it is necessary to replenish the BOD source necessary for the denitrification treatment and the alkali source consumed in the nitrification reaction. The circulating denitrification method can use the BOD in the wastewater as this BOD source, The alkali source is widely used as an efficient treatment method because the alkali generated during the denitrification reaction can be used. In the circulating denitrification wastewater treatment facility, activated sludge composed of BOD bacteria, denitrification bacteria, nitrification bacteria, and the like is provided in the denitrification tank and nitrification tank.

ここで、嫌気性の脱窒槽では、脱窒菌が排水中のBOD源又はメタノール等の水素供与体の存在下で、硝酸性窒素、亜硝酸性窒素を窒素ガスに分解処理する。
また、好気性の硝化槽では、BOD菌と硝化菌が排水中の有機溶剤や薬品を分解処理する。有機溶剤はBOD菌により炭酸ガスと水に分解処理される。また、窒素含有溶剤は硝化菌によりアンモニア性窒素に分解され、さらに亜硝酸性窒素、硝酸性窒素に分解処理される。これら亜硝酸性窒素、硝酸性窒素は脱窒槽に戻され窒素ガスに分解される。
Here, in an anaerobic denitrification tank, denitrifying bacteria decompose nitrate nitrogen and nitrite nitrogen into nitrogen gas in the presence of a BOD source in the waste water or a hydrogen donor such as methanol.
In an aerobic nitrification tank, BOD bacteria and nitrification bacteria decompose organic solvents and chemicals in the waste water. The organic solvent is decomposed into carbon dioxide and water by BOD bacteria. The nitrogen-containing solvent is decomposed into ammoniacal nitrogen by nitrifying bacteria, and further decomposed into nitrite nitrogen and nitrate nitrogen. These nitrite nitrogen and nitrate nitrogen are returned to the denitrification tank and decomposed into nitrogen gas.

本発明に係る排水処理設備を、図1に例示する概略構成によって説明する。
図1(A)に示すように、本発明の事前曝気循環式脱窒排水処理設備は、調整槽1、事前(一次)曝気槽2、脱窒槽3、硝化槽4、沈殿槽5、二次曝気槽6、凝集沈殿槽7、砂ろ過脱窒槽(ろ過槽)8、から構成される。以下、上記の処理機能を含め各槽の機能を詳述する。
A wastewater treatment facility according to the present invention will be described with reference to a schematic configuration illustrated in FIG.
As shown in FIG. 1 (A), the pre-aeration circulation type denitrification wastewater treatment facility of the present invention includes a conditioning tank 1, a pre-primary aeration tank 2, a denitrification tank 3, a nitrification tank 4, a precipitation tank 5, and a secondary. It comprises an aeration tank 6, a coagulation sedimentation tank 7, and a sand filtration denitrification tank (filter tank) 8. Hereinafter, the function of each tank including the above processing function will be described in detail.

(1)調整槽1
脱窒処理の前段階として排水の調整を行う。具体的には、排水を所定期間貯蔵するとともに、攪拌手段(図示せず)によって、連続あるいは完結的に攪拌し排水濃度の均一化を図る。なお、一般に、調整槽1には、予め排水中の固相と分離された上澄み成分が導入される。
(1) Adjustment tank 1
The drainage is adjusted as a pre-stage of denitrification treatment. Specifically, the wastewater is stored for a predetermined period, and stirred or continuously stirred by a stirring means (not shown) to make the drainage concentration uniform. In general, a supernatant component previously separated from the solid phase in the wastewater is introduced into the adjustment tank 1.

(2)事前曝気槽2
好気性活性汚泥槽であって、活性汚泥を導入し、排水および活性汚泥を好気性条件下において曝気することによって、後段の脱窒処理において阻害物質や悪臭物質の基となる物質を蒸散あるいは異なる物質に変換し、予めその影響を排除することができる。詳細は、後述する。
(2) Advance aeration tank 2
It is an aerobic activated sludge tank, in which activated sludge is introduced and the waste water and activated sludge are aerated under aerobic conditions, thereby evaporating or different substances that become the basis of inhibitors and malodorous substances in the subsequent denitrification treatment It can be converted into a substance and its influence can be eliminated in advance. Details will be described later.

(3)脱窒槽3
嫌気性汚泥槽であって、主として亜硝酸性窒素や硝酸性窒素などの窒素含有成分を、脱窒菌が嫌気性条件下において、窒素ガスに分解処理する。排水中に有機物などBOD源がない場合には、BOD源又はメタノール等を添加し、水素供与体の存在下で窒素ガスに分解処理する。
(3) Denitrification tank 3
An anaerobic sludge tank, which mainly decomposes nitrogen-containing components such as nitrite nitrogen and nitrate nitrogen into nitrogen gas under anaerobic conditions by denitrifying bacteria. When there is no BOD source such as organic matter in the waste water, a BOD source or methanol is added and decomposed into nitrogen gas in the presence of a hydrogen donor.

(4)硝化槽4
好気性活性汚泥槽であって、主として有機体窒素を、硝化菌が好気性条件下において、アンモニア性窒素に分解し、さらに亜硝酸性窒素や硝酸性窒素などに変換処理する。窒素を含まない有機成分はBOD菌により炭酸ガスと水に分解処理される。一般に、各々の反応に関与する硝化菌の種類は異なるといわれる。処理された排水の一部およびここで用いられる活性汚泥は、循環ポンプにて脱窒槽に戻し循環させる。これによって、排水はさらに脱窒処理され、活性汚泥は再活性化され循環使用される。
(4) Nitrification tank 4
In an aerobic activated sludge tank, organic nitrogen is mainly decomposed by nitrifying bacteria into ammonia nitrogen under aerobic conditions, and further converted into nitrite nitrogen, nitrate nitrogen, and the like. Organic components not containing nitrogen are decomposed into carbon dioxide and water by BOD bacteria. In general, the types of nitrifying bacteria involved in each reaction are said to be different. Part of the treated waste water and the activated sludge used here are circulated back to the denitrification tank with a circulation pump. As a result, the wastewater is further denitrified, and the activated sludge is reactivated and recycled.

(5)沈殿槽5
脱窒処理および硝化処理した排水とこれに混在する活性汚泥を分離する。上澄みは、下流の曝気槽に導入し次の処理が行われる。下層に濃縮された活性汚泥を含む排水は、返送ポンプにて脱窒槽に戻す。
(5) Settling tank 5
Separates the denitrified and nitrified waste water and the activated sludge mixed therewith. The supernatant is introduced into the downstream aeration tank and the next treatment is performed. Waste water containing activated sludge concentrated in the lower layer is returned to the denitrification tank by a return pump.

(6)二次曝気槽6
好気性処理槽であって、脱窒処理および硝化処理された排水を、さらに好気性条件下でBOD菌、硝化菌によって処理し、清浄化する。通常、BOD菌、硝化菌が少ないためプラスチック製接触材や担体等に菌を付着させ処理する。
(6) Secondary aeration tank 6
In the aerobic treatment tank, the denitrified and nitrified waste water is further treated with BOD bacteria and nitrifying bacteria under aerobic conditions to be cleaned. Usually, since there are few BOD bacteria and nitrifying bacteria, the bacteria are attached to a plastic contact material or carrier and processed.

(7)凝集沈殿槽7
残存する活性汚泥を排水と分離する機能を有し、高分子凝集剤やポリ塩化アルミニウムなどの凝集剤を投入し汚泥を沈降分離させる。凝集分離された汚泥は、再生あるいは廃棄処理される。
(7) Coagulation sedimentation tank 7
It has the function of separating the remaining activated sludge from the waste water, and a sludge is settled and separated by adding a flocculant such as a polymer flocculant or polyaluminum chloride. The coagulated and separated sludge is recycled or discarded.

(8)砂ろ過脱窒槽8
排水清浄化の最終段階で、ろ過材に脱窒菌を付着させBOD源となるメタノールなどの水素供与体を注入し、余剰の亜硝酸性窒素、硝酸性窒素を窒素ガスに分解する。ろ過材としては、脱窒菌の付着が可能でろ過機能を有するものであれば特に制限はないが、一般に砂やセラミックスなどを用いることができる。
(8) Sand filtration denitrification tank 8
At the final stage of wastewater purification, denitrifying bacteria are attached to the filter medium, and a hydrogen donor such as methanol serving as a BOD source is injected to decompose surplus nitrite nitrogen and nitrate nitrogen into nitrogen gas. The filter medium is not particularly limited as long as it can attach denitrifying bacteria and has a filtration function, but sand, ceramics and the like can be generally used.

以上の各槽を介することによって、窒素含有排水を清浄化し、所定項目の排水検査を経て下水道あるいは所定の排水路に供出される。なお、上記各槽の位置順は、調整槽1、事前曝気槽2および砂ろ過脱窒槽8については、規制されるが、他の槽は特に制限されるものではない。例えば、有機体窒素の多い肥料工場排水などでは事前曝気槽2の後に硝化槽4を設けることが有用であり、排水の性状あるいは設備の規模などによって、任意に変更し効率よく配列し使用することが可能である。   By passing through the tanks described above, the nitrogen-containing wastewater is purified, and is supplied to a sewer or a predetermined drainage channel through a drainage inspection of a predetermined item. In addition, although the position order of each said tank is controlled about the adjustment tank 1, the preliminary aeration tank 2, and the sand filtration denitrification tank 8, another tank is not restrict | limited in particular. For example, it is useful to provide a nitrification tank 4 after the pre-aeration tank 2 in the fertilizer factory drainage with a lot of organic nitrogen, etc., which can be arbitrarily changed according to drainage properties or equipment scale, etc. Is possible.

<事前曝気槽の機能の詳細>
一般産業での工程で使用される有機溶剤や薬品は排水処理設備で処理するが、設備の洗浄や殺菌のために使用する次亜塩素酸ナトリウム、重亜硫酸ナトリウム、ホルマリンが含まれることが多く、また、高分子を溶解するために有効な溶剤としてジメチルスルフォキシドを使用する場合もある。
<Details of pre-aeration tank functions>
Organic solvents and chemicals used in general industrial processes are processed in wastewater treatment equipment, but often contain sodium hypochlorite, sodium bisulfite, and formalin used for equipment cleaning and sterilization. In some cases, dimethyl sulfoxide is used as an effective solvent for dissolving the polymer.

上記のように、循環脱窒排水処理設備において用いられる活性汚泥は、主にBOD菌、脱窒菌、硝化菌で構成されている。このうち、硝化反応をつかさどる硝化菌は、BOD菌や脱窒菌に比べ、殺菌剤として使用される次亜塩素酸ナトリウムやホルマリンなどに対する耐性が著しく低い。このため、排水中にこうした阻害物質が10mg/L以上含まれる場合、硝化菌の死滅や活動停止などにより硝化反応が極端に低下するため窒素処理ができなくなる。   As described above, the activated sludge used in the circulating denitrification wastewater treatment facility is mainly composed of BOD bacteria, denitrification bacteria, and nitrifying bacteria. Among these, the nitrifying bacteria that control the nitrifying reaction are significantly less resistant to sodium hypochlorite and formalin used as a bactericide than BOD bacteria and denitrifying bacteria. For this reason, when such an inhibitory substance is contained in the waste water at 10 mg / L or more, the nitrification reaction is extremely reduced due to the death of the nitrifying bacteria or the stoppage of the activity, so that the nitrogen treatment cannot be performed.

本発明のポイントの1つは、脱窒処理において阻害物質や悪臭物質の基となる物質を、事前曝気によって、蒸散あるいは異なる物質に変換し、予めその影響を排除することにある。より具体的には、窒素含有溶剤および窒素含有薬品を処理する循環脱窒活性汚泥排水処理設備において、排水中に含まれる硝化菌の阻害薬品の次亜塩素酸ナトリウム、重亜硫酸ナトリウム、ホルマリン、ジメチルスルフォキシドなどを含んだ排水を効率よく処理することにある。   One of the points of the present invention is to eliminate a substance that becomes a base of an inhibitory substance and a malodorous substance in the denitrification treatment by transpiration or a different substance in advance by aeration. More specifically, in a circulating denitrification activated sludge wastewater treatment facility that treats nitrogen-containing solvents and nitrogen-containing chemicals, sodium hypochlorite, sodium bisulfite, formalin, and dimethyl are inhibitors of nitrifying bacteria contained in the wastewater. It is to efficiently treat wastewater containing sulfoxide.

(1)活性汚泥中のBOD菌、脱窒菌、硝化菌の殺菌剤(次亜塩素酸ナトリウム、ホルマリン)に対する耐性は、表1のように、硝化菌は少量でダメージを受けやすく、硝化機能が著しく阻害を受ける。一方、BOD菌は硝化菌に比べ次亜塩素酸ナトリウムやホルマリンの耐性は約10倍の濃度まで許容される。   (1) Resistance to BOD bacteria, denitrifying bacteria, and nitrifying bactericides (sodium hypochlorite, formalin) in activated sludge is as shown in Table 1. Remarkably disturbed. On the other hand, BOD bacteria can tolerate sodium hypochlorite and formalin up to a concentration of about 10 times that of nitrifying bacteria.

Figure 2006136853
表1の数値は、殺菌剤の耐性濃度(mg/L)を示す。
Figure 2006136853
The numerical values in Table 1 indicate the resistance concentration (mg / L) of the bactericide.

従って、事前曝気により次亜塩素酸ナトリウムを揮発させたりホルマリンを分解処理することにより、これらの殺菌剤を含んだ排水でも安定して窒素処理が可能となる。また、耐性の高いBOD菌にて前処理することにより、安定して硝化脱窒処理を行うことができる。   Therefore, nitrogen treatment can be stably performed even in wastewater containing these disinfectants by volatilizing sodium hypochlorite or decomposing formalin by prior aeration. Moreover, the nitrification denitrification process can be stably performed by pretreatment with highly resistant BOD bacteria.

(2)重亜硫酸ナトリウムはカビの発生防止剤として広く使用されている。発明者の硝化反応テストの結果、重亜硫酸ナトリウムは5mg/Lの微量が排水中に存在すると硝化菌の活動が停止することが分かった。このように、重亜硫酸ナトリウムは、硝化反応を停止させる作用があるため従来の循環脱窒法では窒素処理ができない。本発明に係る事前曝気を行い、重亜硫酸ナトリウムを分解処理することによって、後段の硝化槽での硝化菌への影響がなくなり、重亜硫酸ナトリウムを含んだ排水であっても安定して処理することができる。   (2) Sodium bisulfite is widely used as an antifungal agent. As a result of the inventor's nitrification reaction test, it was found that the activity of nitrifying bacteria was stopped when a trace amount of 5 mg / L of sodium bisulfite was present in the waste water. Thus, since sodium bisulfite has the effect | action which stops a nitrification reaction, nitrogen treatment cannot be performed by the conventional circulation denitrification method. By performing pre-aeration according to the present invention and decomposing sodium bisulfite, there is no influence on nitrifying bacteria in the latter nitrification tank, and even wastewater containing sodium bisulfite can be treated stably. Can do.

(3)ジメチルスルフォキシドは高分子材料を溶解する溶剤として利用される。従来の窒素含有排水を処理する循環脱窒処理設備では、最初に嫌気性脱窒槽にて分解されるためジメチルスルフォキシドは悪臭物質の硫化メチルやメチルメルカプタンに分解され、後段の硝化槽の曝気エアーにて悪臭を放出することになる。本発明に係る事前曝気処理を行い、ジメチルスルフォキシドを酸化分解しジメチルスルホンにすることによって、後段の脱窒槽、硝化槽で悪臭の発生を防止することができる。   (3) Dimethyl sulfoxide is used as a solvent for dissolving the polymer material. In a conventional denitrification treatment facility that treats nitrogen-containing wastewater, dimethyl sulfoxide is first decomposed in an anaerobic denitrification tank, so that dimethyl sulfoxide is decomposed into malodorous methyl sulfide and methyl mercaptan, and aeration in the nitrification tank in the subsequent stage. A bad odor will be emitted by air. By performing the pre-aeration treatment according to the present invention and oxidizing and decomposing dimethyl sulfoxide into dimethyl sulfone, generation of malodor can be prevented in the denitrification tank and nitrification tank in the subsequent stage.

本発明の排水処理設備は、例えば、高分子膜製造工程において発生する排水の処理に用いることが有用である。以下、高分子膜製造工程との関係で、上記の処理内容の具体的な実施形態を詳述する。   The wastewater treatment facility of the present invention is useful, for example, for treating wastewater generated in a polymer membrane production process. Hereinafter, specific embodiments of the above processing contents will be described in detail in relation to the polymer film manufacturing process.

<実施例1>
図1に示すような本発明に係る排水処理設備(以下「設備A」)を用いて、高分子膜製造工程において発生する排水の脱窒処理を行った。
<Example 1>
Using the wastewater treatment facility according to the present invention as shown in FIG. 1 (hereinafter “equipment A”), denitrification treatment of wastewater generated in the polymer membrane production process was performed.

<比較例1>
事前曝気槽のない点を除き、設備Aと同様の排水処理設備(以下「設備B」)を用いて、高分子膜製造工程において発生する排水の脱窒処理を行った。
<Comparative Example 1>
Except for the point where there was no pre-aeration tank, denitrification treatment of waste water generated in the polymer membrane production process was performed using the same waste water treatment equipment as the equipment A (hereinafter, "equipment B").

<結果>
(1)高分子膜製造工程では、各種薬品を使用する。例えば、ジメチルホルムアマイド、n−メツルピロリドン、ジメチルアセトアミドなどの溶剤(以下「溶剤A」という)は窒素を含んでおり、排水する場合は硝化脱窒処理を行い排出する必要がある。工程から排出される溶剤Aはその他の排水と混合希釈され、排水濃度は、BOD濃度:500〜3000mg/L、トータル窒素濃度:100〜400mg/Lとなる。この排水は、設備Aおよび設備Bともに効率よく排水規制値以下に処理することができた。排水規制値は各自治体の条例により異なるが、滋賀県ではBOD:30mg/L以下、トータル窒素:8mg/L以下に規制されている。
<Result>
(1) Various chemicals are used in the polymer film manufacturing process. For example, a solvent such as dimethylformamide, n-methylpyrrolidone, dimethylacetamide (hereinafter referred to as “solvent A”) contains nitrogen, and in the case of draining, it needs to be discharged by nitrification denitrification treatment. The solvent A discharged from the process is mixed and diluted with other waste water, and the waste water concentration becomes BOD concentration: 500 to 3000 mg / L and total nitrogen concentration: 100 to 400 mg / L. This waste water was able to be efficiently treated to the drainage regulation value or less for both equipment A and equipment B. The drainage regulation value differs depending on the regulations of each local government, but in Shiga Prefecture, it is regulated to BOD: 30 mg / L or less and total nitrogen: 8 mg / L or less.

(2)高分子膜製造工程では、殺菌剤として次亜塩素酸ナトリウムやホルマリンなどを使用している。これらは、少量であるため他の工程排水と混合されそれぞれ15mg/Lの濃度になる。
設備Bにおいて、排水を調整槽から脱窒槽に流入する。脱窒槽内にはBOD菌、脱窒菌、硝化菌が存在するが、嫌気状態であるため好気性のBOD菌と硝化菌は活動停止状態にある。表1の殺菌剤の耐性濃度に示すように、硝化菌は次亜塩素酸ナトリウムやホルマリンの耐性が小さく、脱窒槽内でダメージを受けて次工程の硝化槽での硝化反応が低下することになる。これを防止するためには、次亜塩素酸ナトリウムやホルマリンの希釈による濃度低減や処理水量低減により硝化菌の活性を回復させるなど手間をかけた運転管理が必要となる。
設備Aにおいて、次亜塩素酸ナトリウムやホルマリンを含んだ排水は調整槽から曝気槽に流入する、この曝気槽の活性汚泥はBOD菌である。表1に示すようにBOD菌は次亜塩素酸ナトリウムとホルマリンに対する耐性が脱窒菌や硝化菌よりも強く、濃度15mg/Lの次亜塩素酸ナトリウムやホルマリンは曝気槽内で1mg/L以下の濃度に分解できた。曝気槽で殺菌剤の前処理をすることにより、後段の硝化菌への影響がなくなり、循環脱窒処理が効率よくできるようになった。
(2) In the polymer film manufacturing process, sodium hypochlorite, formalin, or the like is used as a bactericidal agent. Since these are small amounts, they are mixed with wastewater from other processes to a concentration of 15 mg / L.
In the facility B, wastewater flows from the adjustment tank into the denitrification tank. Although BOD bacteria, denitrification bacteria, and nitrifying bacteria exist in the denitrification tank, the aerobic BOD bacteria and nitrifying bacteria are in an inactive state because they are anaerobic. As shown in the resistance concentration of the bactericide in Table 1, nitrifying bacteria have low resistance to sodium hypochlorite and formalin, and the nitrification reaction in the nitrification tank in the next process is reduced due to damage in the denitrification tank. Become. In order to prevent this, troublesome operation management is required, such as reducing the concentration by diluting sodium hypochlorite and formalin and restoring the activity of nitrifying bacteria by reducing the amount of treated water.
In the facility A, waste water containing sodium hypochlorite and formalin flows from the adjustment tank into the aeration tank. The activated sludge in this aeration tank is BOD bacteria. As shown in Table 1, BOD bacteria are more resistant to sodium hypochlorite and formalin than denitrifying bacteria and nitrifying bacteria, and sodium hypochlorite and formalin with a concentration of 15 mg / L are less than 1 mg / L in the aeration tank. It could be decomposed into a concentration. By pre-treating the bactericide in the aeration tank, there was no effect on the nitrifying bacteria in the subsequent stage, and the circulation denitrification treatment could be performed efficiently.

(3)重亜硫酸ナトリウムは、カビ発生防止目的で各工程に使用される。重亜硫酸ナトリウムにはイオウが含まれているがこのイオウは5mg/L以上含まれると硝化菌の活動を停止させる作用があることが分かった。
設備Bにおいて、脱窒槽では重亜硫酸ナトリウムは分解できず、硝化槽に流入し硝化機能を低下させることになる。この場合、溶剤Aの窒素を含んだ排水の処理効率を低下させることになった。
設備Aにおいて、最初に曝気処理することにより重亜硫酸ナトリウムはO.5mg/L以下のとなった。この濃度の場合後段の硝化菌の活性低下は発生せず効率よく溶剤Aの窒素を含んだ排水の処理ができた。
(3) Sodium bisulfite is used in each step for the purpose of preventing mold generation. Sodium bisulfite contains sulfur, but it has been found that when this sulfur is contained in an amount of 5 mg / L or more, the activity of nitrifying bacteria is stopped.
In the facility B, sodium bisulfite cannot be decomposed in the denitrification tank, and it flows into the nitrification tank and lowers the nitrification function. In this case, the treatment efficiency of the waste water containing nitrogen of the solvent A was reduced.
In facility A, the sodium abisulfite was converted to O.D. It became 5 mg / L or less. In the case of this concentration, the activity of the nitrifying bacteria in the latter stage did not decrease and wastewater containing solvent A nitrogen could be treated efficiently.

(4)高分子膜の製造では、品種により工程中でジメチルスルフォキシドを使用することがある。この溶剤は活性汚泥により効率良く分解処理できる。
しかし、設備Bにおいては、脱窒槽で嫌気処理されると悪臭物質のメチルメルカプタンや硫化メチルが発生した。排水中に70mg/L以上のジメチルスルフォキシドが含まれていると、脱窒槽で発生したメチルメルカプタンや硫化メチルは後段の硝化槽の曝気エアーで空中に飛散する。この時の硫化メチルの空気中濃度は0.04V/Vppmで人が覚知できる濃度となった。
設備Aにおいて、曝気処理することにより、ジメチルスルフォキシドはジメチルスルホンに分解でき、後段の硝化槽での悪臭の発生はなくなった。
(4) In the production of a polymer film, dimethyl sulfoxide may be used in the process depending on the type. This solvent can be efficiently decomposed by activated sludge.
However, in facility B, malodorous methyl mercaptan and methyl sulfide were generated when anaerobic treatment was performed in a denitrification tank. If dimethyl sulfoxide of 70 mg / L or more is contained in the waste water, methyl mercaptan and methyl sulfide generated in the denitrification tank are scattered in the air by aeration air in the subsequent nitrification tank. At this time, the concentration of methyl sulfide in the air was 0.04 V / Vppm, which was a human-conscious concentration.
In the facility A, dimethyl sulfoxide was decomposed into dimethyl sulfone by aeration treatment, and the generation of malodor in the nitrification tank at the subsequent stage was eliminated.

以上は、主として事業所からの排水、特に高分子膜の製造工程からの排水のような洗浄剤や殺菌剤を含む排水を中心に述べたが、本発明の技術は、上記に限定されるものでなく、種々の窒素含有排水に対しても適用可能である。例えば、都市下水、屎尿、製鉄所コークス工場排水、肥料工場排水、半導体工場排水、皮革工場排水、ステンレス鋼板洗浄排水や農薬で汚染された地下水などを挙げることができる。   The above has mainly described wastewater from business establishments, particularly wastewater containing cleaning agents and disinfectants such as wastewater from the production process of polymer membranes, but the technology of the present invention is limited to the above. In addition, it is applicable to various nitrogen-containing wastewater. Examples include municipal sewage, human waste, ironworks coke factory effluent, fertilizer factory effluent, semiconductor factory effluent, leather factory effluent, stainless steel sheet washing effluent, and groundwater contaminated with agricultural chemicals.

本発明に係る排水処理設備を例示する概略構成図。The schematic block diagram which illustrates the waste water treatment facility which concerns on this invention. 従来技術に係る排水処理設備を例示する説明図。Explanatory drawing which illustrates the waste water treatment facility which concerns on a prior art.

符号の説明Explanation of symbols

1 調整槽
2 事前(一次)曝気槽
3 脱窒槽
4 硝化槽
5 沈殿槽
6 二次曝気槽
7 凝集沈殿槽
8 砂ろ過脱窒槽(ろ過槽)
DESCRIPTION OF SYMBOLS 1 Adjustment tank 2 Prior (primary) aeration tank 3 Denitrification tank 4 Nitrification tank 5 Precipitation tank 6 Secondary aeration tank 7 Coagulation sedimentation tank 8 Sand filtration denitrification tank (filtration tank)

Claims (5)

攪拌機能を有する調整槽を初段槽として、前記調整槽の直後に一次曝気槽を設けるともに、亜硝酸性窒素および硝酸性窒素を分解する脱窒槽、有機体窒素を分解する硝化槽、活性汚泥を分離する沈殿槽、二次曝気槽、凝集沈殿槽、および、ろ過槽から構成されることを特徴とする排水処理設備。   An adjustment tank having a stirring function is used as the first stage tank, and a primary aeration tank is provided immediately after the adjustment tank, and a denitrification tank that decomposes nitrite nitrogen and nitrate nitrogen, a nitrification tank that decomposes organic nitrogen, and activated sludge. A wastewater treatment facility comprising a separation tank, a secondary aeration tank, a coagulation sedimentation tank, and a filtration tank. 前記一次曝気槽において、硝化反応を阻害する薬剤成分を曝気処理することを特徴とする請求項1記載の排水処理設備。   The waste water treatment facility according to claim 1, wherein in the primary aeration tank, a chemical component that inhibits the nitrification reaction is aerated. 前記一次曝気槽において、悪臭物質を発生要因となる薬剤成分を好気処理することを特徴とする請求項1または2記載の排水処理設備。   The waste water treatment facility according to claim 1 or 2, wherein in the primary aeration tank, a chemical component that causes malodorous substances to be generated is aerobically treated. 窒素含有排水を、活性汚泥による処理を含む脱窒処理を行う排水処理システムであって、脱窒処理の前段に一次的に曝気処理を行う手段を有することを特徴とする排水処理システム。   A wastewater treatment system for performing denitrification treatment of nitrogen-containing wastewater including treatment with activated sludge, wherein the wastewater treatment system has means for performing aeration treatment in the first stage of denitrification treatment. 請求項1〜3にいずれかの排水設備を用いる排水処理システムであって、高分子膜の製造工程における排水を処理することを特徴とする請求項4記載の排水処理システム。
5. A wastewater treatment system using the drainage system according to any one of claims 1 to 3, wherein wastewater in a polymer membrane manufacturing process is treated.
JP2004330519A 2004-11-15 2004-11-15 Waste water treatment apparatus and system using it Pending JP2006136853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330519A JP2006136853A (en) 2004-11-15 2004-11-15 Waste water treatment apparatus and system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330519A JP2006136853A (en) 2004-11-15 2004-11-15 Waste water treatment apparatus and system using it

Publications (1)

Publication Number Publication Date
JP2006136853A true JP2006136853A (en) 2006-06-01

Family

ID=36618001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330519A Pending JP2006136853A (en) 2004-11-15 2004-11-15 Waste water treatment apparatus and system using it

Country Status (1)

Country Link
JP (1) JP2006136853A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099207A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating nitrate waste liquid
WO2009099208A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating radioactive nitrate waste liquid
CN101597125B (en) * 2009-07-09 2011-06-22 北京科技大学 Technology of treating coking wastewater by biomembrance process
CN102139991A (en) * 2011-01-28 2011-08-03 山东国信环境系统有限公司 Method for treating and recycling coal-derived natural gas waste water and device thereof
CN102503039A (en) * 2011-11-14 2012-06-20 安徽银河皮革有限公司 Nuisanceless leather wastewater treatment method
JP2014061477A (en) * 2012-09-21 2014-04-10 Japan Organo Co Ltd Treatment method of formaldehyde containing drainage water and treatment apparatus of formaldehyde containing drainage water
CN105502804A (en) * 2015-11-30 2016-04-20 湖北宜化集团有限责任公司 Biochemical treatment method for mixed type chemical fertilizer production wastewater
CN103910460B (en) * 2012-12-31 2016-08-17 北京清大国华环境股份有限公司 A kind of method and apparatus of Coal Chemical Industry high concentration wastewater treatment
CN106927618A (en) * 2015-12-29 2017-07-07 杭州信嘉合金有限公司 A kind of Waste Water Treatment and its method of wastewater treatment
CN109455876A (en) * 2018-11-07 2019-03-12 何福奇 Total nitrogen system and method drop in a kind of synthetic leather, artificial leather chemical sewage treatment
CN111253011A (en) * 2020-02-28 2020-06-09 浙江中纺控股集团有限公司 System and method for recycling and treating dyeing reclaimed water
CN111995041A (en) * 2020-08-25 2020-11-27 中国水利水电科学研究院 Device and method for removing nitrate in drinking water

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409438B2 (en) 2008-02-08 2013-04-02 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating radioactive nitrate waste liquid
WO2009099208A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating radioactive nitrate waste liquid
JP2009186438A (en) * 2008-02-08 2009-08-20 Mitsubishi Heavy Ind Ltd Method and apparatus for treating nitrate waste liquid
EP2239742A1 (en) * 2008-02-08 2010-10-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating nitrate waste liquid
JP4625508B2 (en) * 2008-02-08 2011-02-02 三菱重工業株式会社 Nitrate waste liquid treatment method and apparatus
WO2009099207A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating nitrate waste liquid
EP2239742A4 (en) * 2008-02-08 2015-04-29 Mitsubishi Heavy Ind Ltd Method and apparatus for treating nitrate waste liquid
JP4774120B2 (en) * 2008-02-08 2011-09-14 三菱重工業株式会社 Apparatus and method for treating radioactive nitrate waste liquid
US8465646B2 (en) 2008-02-08 2013-06-18 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating nitrate waste liquid
CN101597125B (en) * 2009-07-09 2011-06-22 北京科技大学 Technology of treating coking wastewater by biomembrance process
CN102139991B (en) * 2011-01-28 2012-07-04 山东国信环境系统有限公司 Method for treating and recycling coal-derived natural gas waste water and device thereof
CN102139991A (en) * 2011-01-28 2011-08-03 山东国信环境系统有限公司 Method for treating and recycling coal-derived natural gas waste water and device thereof
CN102503039A (en) * 2011-11-14 2012-06-20 安徽银河皮革有限公司 Nuisanceless leather wastewater treatment method
JP2014061477A (en) * 2012-09-21 2014-04-10 Japan Organo Co Ltd Treatment method of formaldehyde containing drainage water and treatment apparatus of formaldehyde containing drainage water
CN103910460B (en) * 2012-12-31 2016-08-17 北京清大国华环境股份有限公司 A kind of method and apparatus of Coal Chemical Industry high concentration wastewater treatment
CN105502804A (en) * 2015-11-30 2016-04-20 湖北宜化集团有限责任公司 Biochemical treatment method for mixed type chemical fertilizer production wastewater
CN106927618A (en) * 2015-12-29 2017-07-07 杭州信嘉合金有限公司 A kind of Waste Water Treatment and its method of wastewater treatment
CN109455876A (en) * 2018-11-07 2019-03-12 何福奇 Total nitrogen system and method drop in a kind of synthetic leather, artificial leather chemical sewage treatment
CN111253011A (en) * 2020-02-28 2020-06-09 浙江中纺控股集团有限公司 System and method for recycling and treating dyeing reclaimed water
CN111253011B (en) * 2020-02-28 2022-02-11 浙江中纺控股集团有限公司 System and method for recycling and treating dyeing reclaimed water
CN111995041A (en) * 2020-08-25 2020-11-27 中国水利水电科学研究院 Device and method for removing nitrate in drinking water

Similar Documents

Publication Publication Date Title
JP4632356B2 (en) Biological nitrogen removal method and system
JP2009522101A (en) Method and system for nitrifying and denitrifying sewage
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
HK1076618A1 (en) Process and assembly for the treatment of waste water on ships
KR20090051450A (en) The treatment method of high concentrated organic waste water,like with leachate of food waste water and animal waste water
JP2006136853A (en) Waste water treatment apparatus and system using it
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP5259311B2 (en) Water treatment method and water treatment system used therefor
KR101360015B1 (en) Method of reusing treated wastewater and system using the same
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP3958900B2 (en) How to remove nitrogen from wastewater
JPH0687942B2 (en) Biological deodorization method for odorous components
JP3600220B2 (en) Wastewater treatment method
KR20010027643A (en) Method for removing nitrogen in waste water
KR101129292B1 (en) Apparatus and method for recycling of processed waste water
JPH10128393A (en) Method and apparatus for waste water treatment
JPS6222678B2 (en)
JP3916697B2 (en) Wastewater treatment method
US20230183117A1 (en) Wastewater treatment system and methodology
JP2006187703A (en) Formaldehyde decomposition method
KR100542676B1 (en) Apparatus and method for treating wastewater using membrane
KR20000074335A (en) Method for highly biologically the tannery waste-water
JP2006231206A (en) Waste water treatment method and equipment
JPH09290290A (en) Treatment of coke-oven gas liquor
JPH06190396A (en) Purifying treatment of nitrogen-containing sewage