JP2006135621A - Camera calibrating device - Google Patents

Camera calibrating device Download PDF

Info

Publication number
JP2006135621A
JP2006135621A JP2004321939A JP2004321939A JP2006135621A JP 2006135621 A JP2006135621 A JP 2006135621A JP 2004321939 A JP2004321939 A JP 2004321939A JP 2004321939 A JP2004321939 A JP 2004321939A JP 2006135621 A JP2006135621 A JP 2006135621A
Authority
JP
Japan
Prior art keywords
camera
marker
image
linear
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004321939A
Other languages
Japanese (ja)
Inventor
Ryuichi Mato
隆一 間藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004321939A priority Critical patent/JP2006135621A/en
Publication of JP2006135621A publication Critical patent/JP2006135621A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a camera calibrating device that can estimate an object parameter without a large error with a marker whose position relative to an object to be imaged, e.g. a vehicle is not known, in other words, without knowing world coordinates, and then can calibrate a camera nearly accurately when monitoring, object detection, etc., by the camera is carried out. <P>SOLUTION: The camera calibrating device has a linear marker 1 where a figure including a linear part is drawn, the camera 2 imaging the linear marker 1, and a linear marker camera calibrating means 3 of finding a camera internal parameter of the camera 2 from an image of the linear marker 1 that the camera 2 images. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カメラ校正装置に関する。   The present invention relates to a camera calibration apparatus.

近年、各種の工業分野などにおいて、カメラによる監視や物体検出を行うため、カメラから撮像対象物までの距離や方向を求めるカメラ校正装置が開発されている。例えば、カメラを車両後方に搭載して、車両走行のハンドル蛇角に応じた予想軌跡であるガイドラインを画像上に描画するとき、路面とカメラの位置関係を正確に求めるカメラ校正作業が必要となる。   2. Description of the Related Art In recent years, in various industrial fields, camera calibration devices that determine the distance and direction from a camera to an object to be imaged have been developed in order to perform monitoring and object detection using a camera. For example, when a camera is mounted on the rear side of a vehicle and a guideline that is an expected trajectory corresponding to the steering angle of the steering wheel of the vehicle is drawn on the image, a camera calibration operation is required to accurately determine the positional relationship between the road surface and the camera. .

ここで、カメラ校正で求めるカメラパラメータについて説明する。
図4は、カメラ校正で使用する座標系の説明図である。αは、カメラが撮像する3次元空間の直交座標系であって、原点をOWとする世界座標系(xw,yw,zw)である。一方、βは、ピンホールカメラモデル(歪曲収差などのない理想的なカメラモデル)で表現するカメラ座標系(x,y,z)である。世界座標系(xw,yw,zw)とカメラ座標系(x,y,z)の関係は、座標回転変換行列と座標移動変換行列との組み合わせにより、次式で表すことができる。
Here, camera parameters obtained by camera calibration will be described.
FIG. 4 is an explanatory diagram of a coordinate system used in camera calibration. α, the camera an orthogonal coordinate system of the three-dimensional space for capturing a world coordinate system to the origin and O W (x w, y w , z w). On the other hand, β is a camera coordinate system (x, y, z) expressed by a pinhole camera model (ideal camera model without distortion aberration). The relationship between the world coordinate system (x w , y w , z w ) and the camera coordinate system (x, y, z) can be expressed by the following equation by combining the coordinate rotation transformation matrix and the coordinate movement transformation matrix.

Figure 2006135621
なお、Rは回転を表す3行3列の行列、Tは移動を表す3行1列の行列である。
Figure 2006135621
Note that R is a 3 × 3 matrix representing rotation, and T is a 3 × 1 matrix representing movement.

前述のピンホールカメラモデルで表現するカメラ座標系(x,y,z)での任意の点Pは、カメラ原点Oから焦点距離fにある投影面Sに投影される。この投影面Sを歪みのない第1のイメージ座標系(xu,yu)と呼び、カメラ座標系(x,y,z)と次式の関係がある。 An arbitrary point P in the camera coordinate system (x, y, z) expressed by the above-described pinhole camera model is projected from the camera origin O onto the projection plane S at the focal length f. This projection plane S is referred to as a first image coordinate system (x u , y u ) without distortion, and has the following relationship with the camera coordinate system (x, y, z).

Figure 2006135621
Figure 2006135621

実際に使用するカメラでは、レンズは歪みをもっているので、このレンズ歪みを考慮した歪みのある投影面である第2のイメージ座標系(xd,yd)と歪みのない投影面であるイメージ座標系(xu,yu)には、次式(3)、(4)の関係がある。 In the camera actually used, since the lens has distortion, the second image coordinate system (x d , y d ) that is a distorted projection plane in consideration of this lens distortion and image coordinates that are a distortion-free projection plane. The system (x u , y u ) has the following relationships (3) and (4).

Figure 2006135621
Figure 2006135621

また、   Also,

Figure 2006135621
Figure 2006135621

ここで、モニター上の画像に対応する2次元座標系で、画像の左隅を原点とする実イメージ座標系(xf、yf)を導入する。この実イメージ座標系(xf、yf)と前述の歪みのある第2のイメージ座標系(xd,yd)には、次の関係がある。 Here, an actual image coordinate system (x f , y f ) with the origin at the left corner of the image is introduced in a two-dimensional coordinate system corresponding to the image on the monitor. The actual image coordinate system (x f , y f ) and the second image coordinate system (x d , y d ) having the aforementioned distortion have the following relationship.

Figure 2006135621
Figure 2006135621

なお、カメラ校正で求めるパラメータは、R、T、f、κ、Sx、Cx、Cyである。このうち、R、T(共に、(1)式参照)は、カメラ姿勢に関するパラメータであって、外部パラメータであり、残りは、カメラに関するパラメータで内部パラメータと呼ばれる。
本発明のカメラ校正装置が求める対象とするパラメータは、Sx、Cx、Cyである。パラメータfとκは、カメラ仕様により判明しているものとする。このうち、パラメータκは定数としてだけでなく、画像中心からの距離に対応する歪み比率として与えられる。
The parameters obtained by camera calibration are R, T, f, κ, Sx, Cx, and Cy. Among these, R and T (both refer to equation (1)) are parameters relating to the camera posture and are external parameters, and the rest are parameters relating to the camera and are called internal parameters.
Parameters to be obtained by the camera calibration device of the present invention are Sx, Cx, and Cy. The parameters f and κ are assumed to be known from the camera specifications. Of these, the parameter κ is given not only as a constant but also as a distortion ratio corresponding to the distance from the image center.

図5は、従来のカメラ校正装置の構成図である。このカメラ校正装置は、図5において、世界座標が既知である特徴点を含む世界座標既知マーカー10と、この世界座標既知マーカー10を撮像する校正対象であるカメラ20と、このカメラ20が撮像する世界座標既知マーカー10の画像からカメラパラメータを算出する世界座標既知マーカー校正手段30とを備えている。図6は従来のカメラ校正装置における、世界座標既知マーカー10とカメラ20の位置関係を示す立体図である。   FIG. 5 is a configuration diagram of a conventional camera calibration apparatus. In FIG. 5, the camera calibration apparatus includes a world coordinate known marker 10 including a feature point whose world coordinates are known, a camera 20 that is a calibration target for imaging the world coordinate known marker 10, and the camera 20 images. World coordinate known marker calibration means 30 for calculating camera parameters from an image of the world coordinate known marker 10 is provided. FIG. 6 is a three-dimensional view showing the positional relationship between the world coordinate known marker 10 and the camera 20 in the conventional camera calibration apparatus.

ここで、図5と図6を利用して、従来のカメラ校正装置を説明する。
初めに、図6に示すように、カメラ20で世界座標既知マーカー10を撮像する。例えば、世界座標既知マーカー10の黒い正方形の各頂点を特徴点とし、この特徴点の世界座標を計測しておく。次に、世界座標既知マーカー校正手段30は、複数の特徴点の世界座標と撮像した画像上の特徴点の実イメージ座標からカメラパラメータを算出し、目的とするパラメータSx,Cx、Cyを得る。この算出方法の詳細については、例えば、非特許文献1に記載されている。
"A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", Roger Y. Tsai, IEEE Journal of Robotics and automation Vol. RA-3. No.4 August 1987, pp323-344(ロジャー・Y・ツァイ著、「一般のTVカメラとレンズを使用した高精度3次元測定法による多用途カメラ校正技術」ロボット工学及び自動化に関するIEEEジャーナル、第RA−3巻、第4号、1987年8月、第323〜344ページ)
Here, a conventional camera calibration apparatus will be described with reference to FIGS. 5 and 6.
First, as shown in FIG. 6, the world coordinate known marker 10 is imaged by the camera 20. For example, each black square vertex of the world coordinate known marker 10 is used as a feature point, and the world coordinates of the feature point are measured. Next, the world coordinate known marker calibration means 30 calculates camera parameters from the world coordinates of a plurality of feature points and the actual image coordinates of the feature points on the captured image, and obtains target parameters Sx, Cx, and Cy. Details of this calculation method are described in Non-Patent Document 1, for example.
"A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", Roger Y. Tsai, IEEE Journal of Robotics and automation Vol. RA-3. No.4 August 1987, pp323 -344 (Roger Y. Tsai, "Multi-purpose camera calibration technology using high-precision three-dimensional measurement method using general TV camera and lens" IEEE Journal on Robotics and Automation, Volume RA-3, No. 4 August 1987, pp. 323-344)

しかしながら、上記のカメラ校正装置では、世界座標既知マーカーの特徴点の世界座標が既知である必要があり、また、対象とするカメラパラメータ(Sx、Cx、Cy)以外のカメラパラメータ、即ちR、T、f、κも求めるため、推定誤差が大きくなるという問題があった。   However, in the above camera calibration device, the world coordinates of the feature point of the world coordinate known marker must be known, and camera parameters other than the target camera parameters (Sx, Cx, Cy), that is, R, T , F, and κ are also obtained, and there is a problem that an estimation error becomes large.

本発明は、上記事情に鑑みてなされたもので、被撮像対象物、例えば車両との相対位置が未知であるマーカーにより、換言すれば世界座標が既知でなくても、対象とするパラメータのみを大きな誤差を伴うことなく推定でき、その結果、カメラによる監視や物体検出などを行う際に、カメラ校正をほぼ正確に行うことができるカメラ校正装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by using a marker whose relative position to an object to be imaged, for example, a vehicle, is unknown, in other words, even if the world coordinates are not known, only the target parameter is obtained. It is an object of the present invention to provide a camera calibration apparatus that can perform estimation without a large error, and as a result, can perform camera calibration almost accurately when performing monitoring or object detection using a camera.

本発明のカメラ校正装置は、直線部分を含む図形が描画されている直線マーカーと、前記直線マーカーを撮像するカメラと、前記カメラが撮像する前記直線マーカーの画像から前記カメラのカメラ内部パラメータを求める直線マーカーカメラ校正手段とを有する構成のものである。
この構成によれば、車両との相対位置が未知であるマーカーでカメラ校正でき、対象とするパラメータのみを推定できる。
The camera calibration device of the present invention obtains camera internal parameters of the camera from a linear marker on which a graphic including a straight line portion is drawn, a camera that captures the linear marker, and an image of the linear marker that is captured by the camera. And a linear marker camera calibration means.
According to this configuration, the camera can be calibrated with a marker whose relative position to the vehicle is unknown, and only the target parameter can be estimated.

また、本発明のカメラ校正装置は、前記カメラ内部パラメータが、下記の演算式、

Figure 2006135621
から算出するカメラパラメータ(Sx,Cx,Cy)である構成のものである。 Further, in the camera calibration apparatus of the present invention, the camera internal parameter is represented by the following arithmetic expression:
Figure 2006135621
The camera parameters (Sx, Cx, Cy) calculated from

本発明によれば、被撮像対象物、例えば車両との相対位置が未知であるマーカーによりカメラ校正でき、換言すれば世界座標が既知でなくても、対象とするパラメータのみを大きな誤差を伴うことなく推定できるカメラ校正装置を提供できる。   According to the present invention, the camera can be calibrated by a marker whose relative position to the object to be imaged, for example, the vehicle is unknown, in other words, even if the world coordinates are not known, only the target parameter has a large error. It is possible to provide a camera calibration device that can be estimated without any problem.

以下、本発明の実施形態について、添付図面を参照にして詳細に説明する。
図1は、本発明の実施形態に係るカメラ校正装置の構成を示すブロック図である。本実施形態のカメラ校正装置は、直線マーカー1と、カメラ2と、直線マーカー校正手段3とを備えている。このうち、直線マーカー1には、図2に示すように、直線を含む図形が描画されている。一方、直線マーカー校正手段3は、直線マーカー1を撮像するカメラ2の画像に基づき、そのカメラ2のカメラパラメータ(Sx,Cx,Cy)を算出する。なお、これらのカメラパラメータ(Sx,Cx,Cy)については、[背景技術]の欄の(5)式などを参照されたい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a configuration of a camera calibration apparatus according to an embodiment of the present invention. The camera calibration apparatus of this embodiment includes a linear marker 1, a camera 2, and a linear marker calibration unit 3. Among these, the straight line marker 1 is drawn with a graphic including a straight line as shown in FIG. On the other hand, the linear marker calibration means 3 calculates camera parameters (Sx, Cx, Cy) of the camera 2 based on the image of the camera 2 that captures the linear marker 1. For these camera parameters (Sx, Cx, Cy), refer to equation (5) in the [Background Art] column.

図2は、本発明の実施形態に係るカメラ校正装置における、直線マーカー1とカメラ2の位置関係を示す斜視図である。
最初に、図2に示すように、直線マーカー1とカメラ2を配置する。次に、カメラ2により直線を含む図形が描画されている直線マーカー1を撮像する。その後、直線マーカー1を撮像するカメラ2の画像から、直線マーカー校正手段3が、カメラ2のカメラパラメータ(Sx,Cx,Cy)を数学的に算出する。
FIG. 2 is a perspective view showing a positional relationship between the linear marker 1 and the camera 2 in the camera calibration apparatus according to the embodiment of the present invention.
First, as shown in FIG. 2, the linear marker 1 and the camera 2 are arranged. Next, the straight line marker 1 on which a graphic including a straight line is drawn by the camera 2 is imaged. Thereafter, the linear marker calibration means 3 mathematically calculates the camera parameters (Sx, Cx, Cy) of the camera 2 from the image of the camera 2 that captures the linear marker 1.

図3は、本発明の実施形態に係るカメラ校正装置における直線マーカー校正手段3の説明図である。
世界座標系(xw,yw,zw)における直線は、カメラ座標系(x,y,z)においても直線となるので、歪みのない座標系でも直線となる。しかし、実際は、直線マーカー1の画像は、図3(A)の座標系1Aのように歪みのある画像のようになる。これは、レンズ歪みのため、(3)式及び(4)式による歪みをうけて直線にはならないからである。
もし、カメラパラメータ(Sx、Cx、Cy)が正しい値ならば、(3)式〜(5)式を利用すると、歪みのない座標系では、図3(B)の座標系1Bのように、直線に戻るはずである。一方、カメラパラメータ(Sx、Cx、Cy)が正しい値でないならば、歪みのない座標系に変換すると、図3(C)の座標系1Cのように、直線には戻らない。
この性質を利用して、歪みのない座標系で直線となるようにカメラパラメータ(Sx、Cx、Cy)を最適化する。
FIG. 3 is an explanatory diagram of the linear marker calibration means 3 in the camera calibration apparatus according to the embodiment of the present invention.
Since the straight line in the world coordinate system (x w , y w , z w ) is also a straight line in the camera coordinate system (x, y, z), it is a straight line even in a coordinate system without distortion. However, in actuality, the image of the linear marker 1 looks like a distorted image like the coordinate system 1A of FIG. This is because the lens is distorted and does not become a straight line due to distortion caused by the equations (3) and (4).
If the camera parameters (Sx, Cx, Cy) are correct values, using the equations (3) to (5), in the coordinate system without distortion, as in the coordinate system 1B in FIG. Should return to a straight line. On the other hand, if the camera parameters (Sx, Cx, Cy) are not correct values, the camera parameters (Sx, Cx, Cy) do not return to a straight line as in the coordinate system 1C of FIG.
Using this property, the camera parameters (Sx, Cx, Cy) are optimized so as to be a straight line in a coordinate system without distortion.

初めに、画像上の直線を校正する画素の実イメージ座標を点列(Xfi,Yfi)i=1,nとする。そして、(Sx=1、Cx=画像幅/2、Cy=画像高/2)を初期値として用い、(3)式〜(5)式を使用して直線を構成する点列の歪みのないイメージ座標(Xui,Yui)を求める。
次に、点列の歪みのないイメージ座標から、最小二乗法により直線式を求め、その直線から各点列までの距離の総和を評価値とする。そして、評価値が低くなるようにカメラパラメータ(Sx、Cx、Cy)を最適化し、カメラパラメータを算出する。
このように、本実施の形態のカメラ校正装置によれば、車両との相対位置が未知であるマーカーでカメラ校正することができる。
First, the actual image coordinates of a pixel for calibrating a straight line on the image are set as a point sequence (X fi , Y fi ) i = 1, n. Then, (Sx = 1, Cx = image width / 2, Cy = image height / 2) is used as an initial value, and there is no distortion of the point sequence constituting the straight line using the equations (3) to (5). Image coordinates (X ui , Y ui ) are obtained.
Next, a straight line expression is obtained from the image coordinates without distortion of the point sequence by the least square method, and the sum of the distances from the straight line to each point sequence is used as the evaluation value. Then, the camera parameters (Sx, Cx, Cy) are optimized so that the evaluation value becomes low, and the camera parameters are calculated.
Thus, according to the camera calibration device of the present embodiment, the camera can be calibrated with a marker whose relative position to the vehicle is unknown.

なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。   The present invention is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the invention.

本発明のカメラ校正装置は、被撮像対象物、例えば車両との相対位置が未知であるマーカーにより、換言すれば世界座標が既知でなくても、対象とするパラメータのみを大きな誤差を伴うことなく推定できる効果を有し、カメラから撮像対象物までの距離や方向などを求めるカメラ校正をほぼ正確に行うことができ、カメラによる監視や物体検出などを行う際に有用である。   The camera calibration apparatus according to the present invention can detect only the target parameter without a large error even if the world coordinate is not known by a marker whose relative position to the object to be imaged, for example, the vehicle is unknown. It has an effect that can be estimated, and camera calibration for obtaining the distance and direction from the camera to the object to be imaged can be performed almost accurately, which is useful when performing monitoring or object detection by the camera.

本発明の実施形態に係るカメラ校正装置の構成を示す概略ブロック図1 is a schematic block diagram showing the configuration of a camera calibration device according to an embodiment of the present invention. 本発明の実施形態に係る直線マーカーとカメラの配置関係を示す斜視図The perspective view which shows the arrangement | positioning relationship of the linear marker and camera which concern on embodiment of this invention (A)〜(C)は本発明の実施形態に係る直線マーカー校正手段の作用を示す説明図(A)-(C) is explanatory drawing which shows the effect | action of the linear marker calibration means which concerns on embodiment of this invention. 世界座標系とカメラ座標系の関係を示す説明図Explanatory diagram showing the relationship between the world coordinate system and the camera coordinate system 従来のカメラ校正装置の構成を示す概略ブロック図Schematic block diagram showing the configuration of a conventional camera calibration device 従来のカメラ校正装置で用いられる世界座標既知マーカーとカメラの配置関係を示す斜視図The perspective view which shows the arrangement | positioning relationship of the world coordinate known marker and camera used with the conventional camera calibration apparatus.

符号の説明Explanation of symbols

1 直線マーカー
2 カメラ
3 直線マーカー校正手段
10 世界座標既知マーカー
30 世界座標既知マーカー校正手段
1 linear marker 2 camera 3 linear marker calibration means 10 world coordinate known marker 30 world coordinate known marker calibration means

Claims (2)

直線部分を含む図形が描画されている直線マーカーと、
前記直線マーカーを撮像するカメラと、
前記カメラが撮像する前記直線マーカーの画像から前記カメラのカメラ内部パラメータを求め最適化する直線マーカーカメラ校正手段と
を有することを特徴とするカメラ校正装置。
A straight line marker on which a figure including a straight line part is drawn, and
A camera for imaging the linear marker;
And a linear marker camera calibration unit that obtains and optimizes camera internal parameters of the camera from an image of the linear marker captured by the camera.
前記カメラ内部パラメータは、下記の演算式、
Figure 2006135621
から算出するカメラパラメータ(Sx,Cx,Cy)である請求項1に記載のカメラ校正装置。
The camera internal parameters are the following arithmetic expressions:
Figure 2006135621
The camera calibration device according to claim 1, wherein the camera parameters are calculated from (Sx, Cx, Cy).
JP2004321939A 2004-11-05 2004-11-05 Camera calibrating device Withdrawn JP2006135621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321939A JP2006135621A (en) 2004-11-05 2004-11-05 Camera calibrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321939A JP2006135621A (en) 2004-11-05 2004-11-05 Camera calibrating device

Publications (1)

Publication Number Publication Date
JP2006135621A true JP2006135621A (en) 2006-05-25

Family

ID=36728760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321939A Withdrawn JP2006135621A (en) 2004-11-05 2004-11-05 Camera calibrating device

Country Status (1)

Country Link
JP (1) JP2006135621A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085489A1 (en) * 2010-01-13 2011-07-21 Magna Electronics Inc. Vehicular camera and method for periodic calibration of vehicular camera
JP2013115540A (en) * 2011-11-28 2013-06-10 Clarion Co Ltd On-vehicle camera system, and calibration method and program for same
US10769813B2 (en) 2018-08-28 2020-09-08 Bendix Commercial Vehicle Systems, Llc Apparatus and method for calibrating surround-view camera systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085489A1 (en) * 2010-01-13 2011-07-21 Magna Electronics Inc. Vehicular camera and method for periodic calibration of vehicular camera
US9150155B2 (en) 2010-01-13 2015-10-06 Magna Electronics Inc. Vehicular camera and method for periodic calibration of vehicular camera
US9296337B2 (en) 2010-01-13 2016-03-29 Magna Electronics Inc. Method of calibrating a vehicular camera
JP2013115540A (en) * 2011-11-28 2013-06-10 Clarion Co Ltd On-vehicle camera system, and calibration method and program for same
US10769813B2 (en) 2018-08-28 2020-09-08 Bendix Commercial Vehicle Systems, Llc Apparatus and method for calibrating surround-view camera systems

Similar Documents

Publication Publication Date Title
KR101930796B1 (en) 3 Dimensional Coordinates Calculating Apparatus, 3 Dimensional Coordinates Calculating Method, 3 Dimensional Distance Measuring Apparatus and 3 Dimensional Distance Measuring Method Using Images
CN106595528B (en) A kind of micro- binocular stereo vision measurement method of telecentricity based on digital speckle
JP5029618B2 (en) Three-dimensional shape measuring apparatus, method and program by pattern projection method
JP6324025B2 (en) Information processing apparatus and information processing method
Albarelli et al. Robust camera calibration using inaccurate targets
JP5811327B2 (en) Camera calibration device
JP2007263669A (en) Three-dimensional coordinates acquisition system
CN104616292A (en) Monocular vision measurement method based on global homography matrix
JP2009042162A (en) Calibration device and method therefor
JP2010014443A (en) Position measurement method, position measurement device, and program
JP2010014450A (en) Position measurement method, position measurement device, and program
JP6641729B2 (en) Line sensor camera calibration apparatus and method
Ding et al. A robust detection method of control points for calibration and measurement with defocused images
JP3842988B2 (en) Image processing apparatus for measuring three-dimensional information of an object by binocular stereoscopic vision, and a method for recording the same, or a recording medium recording the measurement program
JP2005016979A (en) Vehicle-mounted camera calibration tool and vehicle-mounted camera calibrating method
JP3696336B2 (en) How to calibrate the camera
CN111998834B (en) Crack monitoring method and system
Pless et al. Extrinsic calibration of a camera and laser range finder
US20230070281A1 (en) Methods and systems of generating camera models for camera calibration
CN116823963A (en) External parameter calibration method and device based on vehicle-mounted reversing image system
JP5285487B2 (en) Image recording system and image recording method
JP2006135621A (en) Camera calibrating device
JP2007034964A (en) Method and device for restoring movement of camera viewpoint and three-dimensional information and estimating lens distortion parameter, and program for restoring movement of camera viewpoint and three-dimensional information and estimating lens distortion parameter
JP2004309318A (en) Position detection method, its device and its program, and calibration information creation method
JP2019032660A (en) Imaging system and imaging method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108