JP2006134740A - Flat electrochemical element and its manufacturing method - Google Patents

Flat electrochemical element and its manufacturing method Download PDF

Info

Publication number
JP2006134740A
JP2006134740A JP2004323388A JP2004323388A JP2006134740A JP 2006134740 A JP2006134740 A JP 2006134740A JP 2004323388 A JP2004323388 A JP 2004323388A JP 2004323388 A JP2004323388 A JP 2004323388A JP 2006134740 A JP2006134740 A JP 2006134740A
Authority
JP
Japan
Prior art keywords
exterior body
electrochemical element
insulating packing
opening
flat electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004323388A
Other languages
Japanese (ja)
Inventor
忠義 ▲高▼橋
Tadayoshi Takahashi
Yukimasa Igawa
幸昌 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004323388A priority Critical patent/JP2006134740A/en
Publication of JP2006134740A publication Critical patent/JP2006134740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve leakage resistance to a horizontal stress and heat bumping of a flat electrochemical element sealed with a caulking seal. <P>SOLUTION: When caulking the opening of a positive electrode case 1 of the flat electrochemical element to the inside, the positive electrode case 1 is pressurized from the vertical direction and the horizontal direction at the same time, and a part of the side of the positive electrode case 1 is bent to the inside to form a recess 1a. Since an insulation packing 3 are compressed from the vertical direction and the horizontal direction, the sealing performance of the flat electrochemical element is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カシメ封口により封止されている偏平形電気化学素子の封止性能の改良に関するものである。   The present invention relates to an improvement in sealing performance of a flat electrochemical element sealed with a caulking seal.

コイン型(ボタン型)、円筒型、角型などの形状の電気化学素子は、カシメ封口またはレーザ封口により液封止されている。レーザ封口に比べてカシメ封口は工程が簡素でコスト的に安価となり、特に大量生産されているコイン型、偏平角型などの形状の偏平形電気化学素子に広く用いられている。   Electrochemical elements having a coin type (button type), cylindrical type, square type, or the like are liquid-sealed by a caulking seal or a laser seal. The caulking seal is simpler and less expensive than the laser seal, and is widely used in flat electrochemical devices having a shape such as a coin type and a flat rectangular type that are mass-produced.

図5及び図6に偏平形電気化学素子の一例であるコイン型電池の代表的なカシメ封口の工法を示す。コイン型電池は、外装体としての正極ケース1、蓋体としての負極ケース2、両ケース間に位置して電気的絶縁と気密を保つ絶縁パッキング3で構成される容器の内部に発電要素を収納されており、以下のようにして作製される。まず、負極ケース2に絶縁パッキング3を取付け、正極ケース1を上向きに開口させた状態で、その内部に負極材料4、セパレータ5および正極材料6を重ねて配置し、所定量の電解液を充填した後、下向きに開口した正極ケース1を絶縁パッキング3の外側にはめ合わせる。その後、図5に示すように封口金型に仕掛かりの電池を挿入し、図6のように封口金型を閉じると、正極ケース1の開口部を金型に沿わせて上下からはさみこむことで、絶縁パッキング3を圧縮して正極ケース1と負極ケース2の開口部を封口する。封口金型を開いて取り出すと、図4に示す断面構造のコイン型電池ができあがる。   5 and 6 show a typical caulking sealing method for a coin-type battery which is an example of a flat electrochemical element. A coin-type battery stores a power generation element in a container composed of a positive electrode case 1 as an exterior body, a negative electrode case 2 as a lid, and an insulating packing 3 positioned between both cases to maintain electrical insulation and airtightness. It is manufactured as follows. First, the insulating packing 3 is attached to the negative electrode case 2, and the positive electrode case 1 is opened upward, and the negative electrode material 4, the separator 5 and the positive electrode material 6 are arranged in an overlapping manner, and a predetermined amount of electrolyte is filled. After that, the positive electrode case 1 opened downward is fitted to the outside of the insulating packing 3. Thereafter, as shown in FIG. 5, the in-process battery is inserted into the sealing mold, and when the sealing mold is closed as illustrated in FIG. 6, the opening of the positive electrode case 1 is placed along the mold and sandwiched from above and below. Then, the insulating packing 3 is compressed to seal the openings of the positive electrode case 1 and the negative electrode case 2. When the sealing mold is opened and taken out, a coin-type battery having a cross-sectional structure shown in FIG. 4 is completed.

偏平形電気化学素子は、電子機器のメモリーのバックアップ電源などに用いられており、交換がしにくいため、長期間にわたって高い信頼性を確保することが求められる。特に封止部分がその信頼性に大きく影響を及ぼす。封止が不十分な場合には、液漏れによる機器の破損、封止部からの電解液蒸発にともなう電気化学素子の性能低下による機器の動作不良などの品質問題を引き起こす危険性がある。   The flat electrochemical element is used for a backup power source of a memory of an electronic device and is difficult to replace, and therefore, it is required to ensure high reliability over a long period of time. In particular, the sealing portion greatly affects the reliability. If the sealing is insufficient, there is a risk of causing quality problems such as damage to the device due to liquid leakage and malfunction of the device due to degradation of the performance of the electrochemical element due to evaporation of the electrolyte from the sealing portion.

カシメ封口自体は外装体としての正極ケースを曲げて絶縁パッキングを圧縮しているだけであり、封止性能としては十分とはいいがたい。カシメ封口の封止構造の改良に関する提案が行われており、部品の形状に関するものと、金型の形状や、部品と金型との寸法関係のカシメ封口工程に関するものの2つに大別される。部品形状については、蓋体(封口体)としての負極ケースにカシメ封口される側にハット(上に凸の突起)を設けることでパッキング材の圧縮強度を向上させる提案(特許文献1)がある。また、カシメ封口については、封口金型の形状に傾斜をつけることで側面から先端部にかけ圧縮面積を向上させる提案(特許文献2)が一例としてあげられる。
特開平8−339785号公報 特開2001−28259号公報
The caulking seal itself is merely bending the positive electrode case as an exterior body and compressing the insulating packing, and it is difficult to say that the sealing performance is sufficient. Proposals for improving the sealing structure of caulking seals have been made and are roughly divided into two types: those related to the shape of the part, and those related to the caulking sealing process related to the shape of the mold and the dimensions of the part and the mold . Regarding the part shape, there is a proposal (Patent Document 1) for improving the compressive strength of the packing material by providing a hat (protruding protrusion) on the side to be caulked and sealed in the negative electrode case as a lid (sealing body). . As an example of the caulking seal, a proposal (Patent Document 2) is proposed that improves the compression area from the side surface to the tip by inclining the shape of the sealing mold.
JP-A-8-339785 JP 2001-28259 A

しかしながら、上記の提案による改良にもかかわらず、偏平形電気化学素子の耐漏液性能の向上はほとんど認められなかった。また、偏平形電気化学素子への端子付け作業の際や特殊用途などでは、急激な温度変化や横からの弱い力によりひどい漏液をおこすこともあった。   However, in spite of the improvement by the above proposal, almost no improvement in the leakage resistance performance of the flat electrochemical element was observed. In addition, when a terminal is attached to a flat electrochemical device or in a special application, a severe liquid leakage may occur due to a sudden temperature change or a weak force from the side.

本発明は、偏平形電気化学素子の耐漏液性能を向上させることを目的とする。   An object of the present invention is to improve the leakage resistance performance of a flat electrochemical element.

上記課題を解決するため、本発明の偏平形電気化学素子は、半殻体に形成された外装体と、この外装体の開口部を封口する蓋体と、前記外装体と前記蓋体との間に介在した絶縁パッキングとで構成される容器の内部に発電要素を収納し、前記外装体の開口部を内側にかしめてなる偏平形電気化学素子において、前記外装体はその側面の一部が内側に湾曲した凹部を備え、前記絶縁パッキングが上下方向と横方向とから圧縮されていることを特徴とする。   In order to solve the above-described problems, a flat electrochemical element of the present invention includes an exterior body formed in a half-shell, a lid body that seals an opening of the exterior body, and the exterior body and the lid body. In a flat electrochemical element in which a power generation element is housed in a container composed of an insulating packing interposed therebetween, and an opening of the exterior body is caulked inward, the exterior body has a part of a side surface thereof. A concave portion curved inward is provided, and the insulating packing is compressed in the vertical direction and the horizontal direction.

また、本発明の偏平形電気化学素子の製造方法は、半殻体に形成された外装体と、この外装体の開口部を封口する蓋体と、前記外装体と前記蓋体との間に介在した絶縁パッキングで構成される容器の内部に発電要素を収納し、前記外装体の開口部を内側にかしめてなる偏平形電気化学素子において、前記外装体を上下方向と横方向から同時に加圧するとともに、前記外装体の側面の一部を内側に湾曲させることを特徴とする。   The flat electrochemical element manufacturing method of the present invention includes an exterior body formed in a half-shell, a lid body that seals an opening of the exterior body, and between the exterior body and the lid body. In a flat electrochemical element in which a power generation element is housed in a container composed of intervening insulating packing and the opening of the exterior body is caulked inward, the exterior body is pressurized simultaneously in the vertical and lateral directions. In addition, a part of the side surface of the exterior body is curved inward.

本発明によれば、絶縁パッキングが上下方向に加えて横方向からも圧縮されることで、偏平型電気化学素子のカシメ封口の封止性能が格段に向上する。端子付け作業の際や特殊用途などで熱衝撃を受けた際における耐漏液性能に優れ、加えて横からなどの力を受けた際における耐漏液性能に優れた偏平形電気化学素子を提供することができる。   According to the present invention, the insulating packing is compressed from the lateral direction in addition to the vertical direction, so that the sealing performance of the caulking seal of the flat electrochemical element is significantly improved. To provide a flat electrochemical device with excellent leakage resistance when subjected to thermal shock during terminal attachment work or special applications, as well as excellent leakage resistance when subjected to lateral force. Can do.

以下、本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明は、半殻体に形成された外装体と、この外装体の開口部を封口する蓋体と、前記外装体と前記蓋体との間に介在した絶縁パッキングとで構成される容器の内部に発電要素を収納し、前記外装体の開口部を内側にかしめてなる偏平形電気化学素子において、前記外装体はその側面の一部が内側に湾曲した凹部を備え、前記絶縁パッキングが上下方向と横方向とから圧縮されていることを特徴とする偏平形電気化学素子である。   The present invention relates to a container composed of an exterior body formed in a half-shell, a lid body that seals an opening of the exterior body, and an insulating packing interposed between the exterior body and the lid body. In a flat electrochemical element that houses a power generation element and caulks the opening of the exterior body on the inside, the exterior body includes a concave portion whose side surface is curved inward, and the insulating packing is vertically It is a flat electrochemical element characterized by being compressed from the direction and the lateral direction.

前記の構成によると、外装体、蓋体の金属部品間で絶縁パッキングが上下方向から力による圧縮されて封止されているのに加えて、側面において横方向からも絶縁パッキングが圧縮されており、従来の上下2点での封止から上下に横を加えた3点での封止となる。   According to the above configuration, in addition to the insulation packing being compressed by the force from above and below between the metal parts of the exterior body and the lid, the insulation packing is also compressed from the lateral direction on the side surface. From the conventional sealing at the upper and lower two points, the sealing is performed at three points by adding horizontal to the upper and lower sides.

従来の2点封止では、内部からのひどい漏液と、部品間の隙間に製造工程において溜まっていた電解液が軽く漏れる軽い漏液の2種類の液漏れがある。軽い漏液は部品のはめ合わせにより電気化学素子を製造する際に、側面において外装体と絶縁パッキングとの間に隙間が発生し、その部分に電解液が溜まることが多く、製品になった後に熱衝撃による急激な温度変化により絶縁パッキングの膨張・収縮を起こしたり、横方向からの力で容易に絶縁パッキングが変形することにより、電気化学素子を保持する工程で外装体と絶縁パッキングとの間に隙間に溜まった電解液が液漏れしてしまうことによる。これは、外装体の開口部の先端のみで封止されているので、外装体と絶縁パッキングとの間に隙間に溜まった電解液が漏れやすいのは当然である。また、絶縁パッキングの側面部が無圧縮状態であるために絶縁パッキング自体が熱衝撃や力により容易に弾性変形してしまうので、端子付け作業の際や特殊用途などで熱衝撃を受けた際には内部からのひどい漏液が発生しやすい。   In the conventional two-point sealing, there are two types of liquid leakage: severe liquid leakage from the inside and light liquid leakage that lightly leaks the electrolyte accumulated in the manufacturing process in the gap between the components. Light leakage is often caused when an electrochemical element is manufactured by fitting parts together, and a gap is generated between the exterior body and the insulation packing on the side surface, and the electrolyte often accumulates in that part. The insulation packing expands and contracts due to a sudden temperature change due to thermal shock, or the insulation packing easily deforms due to a lateral force. This is because the electrolyte accumulated in the gap leaks. Since this is sealed only at the front end of the opening of the exterior body, it is natural that the electrolyte accumulated in the gap between the exterior body and the insulating packing is likely to leak. Also, since the side surface of the insulating packing is in an uncompressed state, the insulating packing itself is easily elastically deformed by thermal shock and force, so when it is subjected to thermal shock during terminal attachment work or special applications Is prone to severe leakage from the inside.

一方、本発明では、絶縁パッキングが上下方向に加えて横方向からも圧縮されているので、側面において外装体と絶縁パッキング間に隙間ができなくなることで、製造工程でこの部分に電解液が溜まることがない。したがって、これに起因する軽い液漏れはなくなる
。また、外装体の開口部の先端部分と底面部分の2箇所での圧縮に加えて側面からの圧縮することで絶縁パッキングの側面部全体に渡って封止を行うことで、絶縁パッキングが外部要因によって変形することを抑制することができるので、軽い漏液だけでなく、内部からのひどい漏液についても非常に効果があり、優れた耐漏液性能の偏平形電気化学素子とすることができる。
On the other hand, in the present invention, since the insulating packing is compressed from the lateral direction in addition to the vertical direction, the gap is not formed between the exterior body and the insulating packing on the side surface, so that the electrolytic solution accumulates in this portion in the manufacturing process. There is nothing. Therefore, there is no light leakage due to this. In addition, in addition to compression at the front end portion and bottom surface portion of the opening of the exterior body, by sealing from the side surface by compressing from the side surface, the insulation packing is an external factor. Therefore, not only light leakage but also severe leakage from the inside is very effective, and a flat electrochemical element having excellent leakage resistance can be obtained.

上記構成において、絶縁パッキングがポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ナイロンであるとより好適である。   In the above configuration, the insulating packing is more preferably polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or nylon.

絶縁パッキングとして一般的に用いられているポリプロピレン(PP)は、ある程度柔らかく伸びやすいため、はめあわせ部品との寸法公差を圧入状態まで許容できるので、従来のカシメ封口を行っても形状に対して追随性があることで外装体と絶縁パッキングとの隙間が小さくなる。一方、電気化学素子の耐熱性を向上するために用いられるPPSやPEEKやナイロンは耐熱温度が高くなる反面、硬く非常に伸びにくい。このような絶縁パッキングを用いて封口する際には、絶縁パッキングに亀裂が入れるのを抑制するために、通常のPPの絶縁パッキングを用いる場合に比べてよりゆるく封口している。そのため、カシメ封口後は側面における外装体と絶縁パッキングとの隙間がかなり大きくなり、特に軽い漏液が全数に渡って発生することがある。また、このような耐熱性の樹脂からなる絶縁パッキングを用いる偏平形電気化学素子は、基板への手ハンダまたはリフローなどにより実装される用途がほとんどであり、そのための偏平形電気化学素子へのリード端子の溶接は必須となる。溶接時には偏平形電気化学素子を横からはさみ込んで位置を固定することが必要で、この時に、横からの力に対する耐漏液性能が非常に悪く、その固定には非常に弱い力で厳しく管理しなければならない状況であり、リード端子の溶接後には全数液漏れ確認が必要となる。   Polypropylene (PP), which is generally used as an insulation packing, is soft and stretchable to some extent, so it can tolerate dimensional tolerances with mating parts up to the press-fit state, so it can follow the shape even if a conventional caulking seal is used. The gap between the exterior body and the insulating packing is reduced due to the property. On the other hand, PPS, PEEK, and nylon used for improving the heat resistance of the electrochemical element have a high heat resistance temperature, but are hard and hardly stretched. When sealing using such an insulating packing, the sealing is performed more loosely than when a normal PP insulating packing is used in order to suppress cracks in the insulating packing. For this reason, after the caulking, the gap between the exterior body and the insulating packing on the side surface becomes considerably large, and particularly light leakage may occur over the entire number. In addition, flat electrochemical elements using insulating packings made of such heat-resistant resin are mostly mounted by hand soldering or reflow on the substrate, and lead to flat electrochemical elements for that purpose. Terminal welding is essential. When welding, it is necessary to fix the position by sandwiching a flat electrochemical element from the side. At this time, the leakage resistance against the force from the side is very poor, and the fixing is strictly controlled with a very weak force. This is a situation that must be confirmed, and it is necessary to check all the liquid leaks after welding the lead terminals.

しかし、PPSやPEEKやナイロンなどの硬くて伸びにくい樹脂からなる絶縁パッキングを用いた場合においても、上記の構成による偏平形電気化学素子では耐漏液性能が格段に向上する。   However, even when an insulating packing made of a hard and difficult-to-extend resin such as PPS, PEEK, or nylon is used, the leak-proof liquid performance is greatly improved in the flat electrochemical element configured as described above.

耐熱性を向上する為に、PPS、PEEK、ナイロンにガラスやチタン酸カリウムなどの無機繊維を充填材として添加する場合についても、同様な効果が得られる。   In order to improve heat resistance, the same effect can be obtained when adding inorganic fibers such as glass and potassium titanate to PPS, PEEK, and nylon as fillers.

また、上記構成において、外装体はその側面の一部が内側に湾曲した凹部を全周にわたって連続して備えて、絶縁パッキングが横方向から全周にわたって圧縮されてもよいし、外装体はその側面の一部が内側に湾曲した凹部を全周にわたって断続的に備えて、絶縁パッキングが横方向から全周にわたって断続的に圧縮されてもよく、いずれにおいても効果が得られる。   Further, in the above configuration, the exterior body may be provided with a concave portion whose side surface is curved inward continuously over the entire circumference, and the insulating packing may be compressed over the entire circumference from the lateral direction. The insulating packing may be intermittently compressed from the lateral direction over the entire circumference by providing a concave portion having a part of the side surface curved inward over the entire circumference.

また、本発明は、半殻体に形成された外装体と、この外装体の開口部を封口する蓋体と、前記外装体と前記蓋体との間に介在した絶縁パッキングで構成される容器の内部に発電要素を収納してなる、前記外装体の開口部を内側にかしめてなる偏平形電気化学素子において、前記外装体の開口部を内側にかしめる際に、前記外装体を上下方向と横方向から同時に加圧するとともに、前記外装体の側面の一部を内側に湾曲させることを特徴とする偏平形電気化学素子の製造方法である。   Further, the present invention provides a container comprising an outer package formed in a half-shell, a lid for sealing the opening of the outer package, and an insulating packing interposed between the outer package and the lid In the flat electrochemical element in which the power generation element is housed inside and the opening of the exterior body is caulked inside, when the opening of the exterior body is caulked inward, the exterior body is moved in the vertical direction. And applying pressure from the lateral direction at the same time, and curving a part of the side surface of the exterior body inward.

外装体を上下方向と横方向からの加圧の開始は別々であっても同時であってもよいが、同時に加圧している期間があって同時に加圧を終了することが必要である。これにより、絶縁パッキングは上下方向と横方向とから圧縮され、耐漏液性能が向上した偏平形電気化学素子を製造することが可能となる。   The pressurization of the exterior body from the vertical direction and the lateral direction may be separate or simultaneous, but it is necessary to terminate the pressurization at the same time because there is a period of simultaneous pressurization. As a result, the insulating packing is compressed from the vertical direction and the horizontal direction, and it becomes possible to manufacture a flat electrochemical element having improved leakage resistance.

従来のように上下方向からの加圧によるカシメの後に、上下方向の加圧を解放した状態で横方向から加圧をした場合には、上下方向に圧力が分散してしまうので、絶縁パッキングが上下方向と横方向とから圧縮されることはなく、耐漏液性は向上しない。   When pressure is applied from the horizontal direction with the pressure applied in the vertical direction released after the caulking by the pressure applied from the vertical direction as in the prior art, the pressure is dispersed in the vertical direction. There is no compression from the vertical direction and the horizontal direction, and the liquid leakage resistance is not improved.

(実施例)
以下、本発明の詳細を、直径4mm、厚さ1.4mmのコイン形マンガンリチウム二次電池の実施例で説明する。
(Example)
The details of the present invention will be described below with reference to examples of coin-type manganese lithium secondary batteries having a diameter of 4 mm and a thickness of 1.4 mm.

周縁部にポリフェニレンサルファイド製の絶縁パッキング3を取付けたステンレス鋼製で浅い皿状の負極ケース(蓋体)2の内側に接合されたアルミニウム2aの内面に、負極4である金属リチウムシートを所定量圧着し、ポリフェニレンサルファイド製不織布からなるセパレータ5、正極活物質としてのマンガン酸リチウム複合酸化物に導電剤としてのカーボンブラック、結着剤としてのフッ素樹脂粉末をそれぞれ混合した正極合剤からなる正極6を順に配置し、プロピレンカーボネートと1,2−ジメトキシエタンを体積比1:1に混合した2成分系の混合溶媒にリチウム塩としてLiN(CF3SO22を1モル/lの濃度で溶解した非水電解液を所定量充填した後、ステンレス鋼の正極ケース(外装体)1をかぶせた。 A predetermined amount of a lithium metal sheet serving as the negative electrode 4 is formed on the inner surface of the aluminum 2a joined to the inside of the stainless steel shallow dish-shaped negative electrode case (lid) 2 having a polyphenylene sulfide insulating packing 3 attached to the periphery. A separator 6 made of a polyphenylene sulfide non-woven fabric, and a cathode 6 made of a cathode mixture in which a lithium manganate composite oxide as a cathode active material is mixed with carbon black as a conductive agent and a fluororesin powder as a binder. Are arranged in order, and LiN (CF 3 SO 2 ) 2 as a lithium salt is dissolved at a concentration of 1 mol / l in a binary solvent mixture in which propylene carbonate and 1,2-dimethoxyethane are mixed at a volume ratio of 1: 1. After filling a predetermined amount of the non-aqueous electrolyte, a stainless steel positive electrode case (exterior body) 1 was covered.

この後、図2に示すように上下方向に開閉して負極ケース2の平面部を上方から加圧するA金型7と正極ケース1を電池の側面四方から開閉して正極ケース1を加圧する4つ割りのB金型8からなる封口金型に仕掛かり品の電池を配置する。B金型8の内側は、正極ケース1の開口部をかしめるように0.7mmの曲率半径のカシメ封口部8aと正極ケース1の側面を加圧するように0.5mmの曲率半径で凸部8bが設けられている。まず、A金型7が閉じられて電池の厚みが1.35mmに規制される。次に、四方から内側に向かってB金型8が閉じられて、正極ケース1の側面に凹部1aが形成されるとともに、正極ケース1の開口部がかしめられる。こうして封口金型を開くと図1に示すような断面構造のコイン型電池ができあがる。この電池では絶縁パッキング3が正極ケース1の開口部の先端部分と底面部分の2箇所での圧縮に加えて側面からも圧縮されている。   After that, as shown in FIG. 2, the A mold 7 and the positive electrode case 1 that open and close in the vertical direction and pressurize the flat portion of the negative electrode case 2 from above are opened and closed from the four sides of the battery to pressurize the positive electrode case 4. A work-in-process battery is placed in a sealing mold composed of a split B mold 8. The inner side of the B mold 8 is a convex portion with a radius of curvature of 0.5 mm so as to pressurize the caulking sealing portion 8 a with a radius of curvature of 0.7 mm so as to crimp the opening of the positive electrode case 1 and the side surface of the positive electrode case 1. 8b is provided. First, the A mold 7 is closed, and the thickness of the battery is regulated to 1.35 mm. Next, the B mold 8 is closed from the four sides to the inside to form a recess 1a on the side surface of the positive electrode case 1, and the opening of the positive electrode case 1 is caulked. Thus, when the sealing mold is opened, a coin-type battery having a cross-sectional structure as shown in FIG. 1 is completed. In this battery, the insulating packing 3 is compressed from the side surface in addition to the compression at the tip portion and the bottom portion of the opening of the positive electrode case 1.

このようにして作製した電池を発明電池Aとした。また、B金型に凸部が設けられていない以外は発明電池Aと同様にして作製した電池を比較電池1とした。また、図5、図6に示した方法で図4に示すような電池を作製し、これを比較電池2とした。   The battery thus produced was designated as invention battery A. Further, a battery produced in the same manner as the inventive battery A, except that the B mold was not provided with a convex portion, was designated as comparative battery 1. Further, a battery as shown in FIG. 4 was produced by the method shown in FIGS.

発明電池Aと比較電池1、比較電池2について、横方向と、上下方向の2方向からそれぞれ、20N、100Nの応力で電池を挟んだ後、液漏れの有無を顕微鏡にて確認した(挟み込みテスト)。   Regarding the inventive battery A, the comparative battery 1 and the comparative battery 2, the batteries were sandwiched with stresses of 20N and 100N from two directions, the lateral direction and the vertical direction, respectively, and then the presence or absence of liquid leakage was confirmed with a microscope (pinch test) ).

また、発明電池Aと比較電池1、比較電池2について、ピーク温度250℃のリフロー炉を2回通過させた後に、−40℃の槽と85℃の槽でそれぞれ30分間保持した後瞬時に2つの槽で移し換える熱衝撃試験を300サイクル行い、液漏れの有無を顕微鏡にて確認した(熱衝撃テスト)。   Inventive battery A, comparative battery 1 and comparative battery 2 were passed through a reflow furnace having a peak temperature of 250 ° C. twice and then held in a bath of −40 ° C. and a bath of 85 ° C. for 30 minutes, respectively. The thermal shock test for transferring in one tank was performed 300 cycles, and the presence or absence of liquid leakage was confirmed with a microscope (thermal shock test).

上記2つの液漏れ確認のテスト結果を(表1)に示す。   The test results of the above two liquid leakage confirmations are shown in (Table 1).

挟みこみテストでは、上下方向から2水準の負荷をかけた場合にもまったく液漏れは見られなかった。横方向からについては、100Nの応力では比較電池1と比較電池2ではほぼ全数液漏れしたが、発明電池Aは液漏れは認められなかった。   In the pinching test, no liquid leakage was observed even when a load of 2 levels was applied from above and below. Regarding the lateral direction, almost 100% of the comparative battery 1 and comparative battery 2 leaked at 100 N stress, but the inventive battery A showed no liquid leak.

熱衝撃テストでは、比較電池1と比較電池2では半数程度漏液が認められたのに対して、発明電池Aは液漏れが認められなかった。   In the thermal shock test, about half of the liquid leakage was observed in the comparative battery 1 and the comparative battery 2, whereas the liquid leakage of the invention battery A was not recognized.

上記の実施例では耐熱性の絶縁パッキングを用いたコイン型二次電池について示したが、通常のポリプロピレンなどの絶縁パッキングを用いた場合や、水溶液系や非水系などの一次電池、二次電池、キャパシタのすべてのカシメ封口により封止される偏平形電気化学素子について適用できる。   In the above embodiment, a coin-type secondary battery using a heat-resistant insulating packing has been shown, but when using an ordinary insulating packing such as polypropylene, a primary battery such as an aqueous solution system or a non-aqueous system, a secondary battery, The present invention can be applied to flat electrochemical elements sealed by all caulking seals of capacitors.

以上の説明から明らかなように、本発明では、偏平形電気化学素子の絶縁パッキングが通常のカシメ封口における上下方向からの圧縮に加えて横方向からも圧縮されて、耐漏液性能に優れた偏平形電気化学素子を提供することができ、産業上極めて有用である。   As is apparent from the above description, in the present invention, the insulating packing of the flat electrochemical element is compressed from the horizontal direction in addition to the compression from the vertical direction in a normal caulking seal, and is flat with excellent leakage resistance. Can be provided, which is extremely useful in industry.

本発明の実施例におけるコイン型電池の断面図Sectional drawing of the coin-type battery in the Example of this invention 本発明の実施例におけるコイン型電池のカシメ封口前を示す図The figure which shows before the crimping sealing of the coin-type battery in the Example of this invention 本発明の実施例におけるコイン型電池のカシメ封口後を示す図The figure which shows after caulking sealing of the coin-type battery in the Example of this invention 従来のコイン型電池の断面図Cross section of a conventional coin cell battery 従来のコイン型電池のカシメ封口前を示す図The figure which shows before the caulking seal of the conventional coin type battery 従来のコイン型電池のカシメ封口後を示す図The figure which shows after the caulking seal of the conventional coin type battery

符号の説明Explanation of symbols

1 正極ケース
1a 凹部
2 負極ケース
3 絶縁パッキング
4 負極
5 セパレータ
6 正極
7 A金型
8 B金型
8a カシメ封口部
8b 凸部
DESCRIPTION OF SYMBOLS 1 Positive electrode case 1a Concave part 2 Negative electrode case 3 Insulation packing 4 Negative electrode 5 Separator 6 Positive electrode 7 A metal mold | die 8 B metal mold | die 8a Caulking sealing part 8b Convex part

Claims (3)

半殻体に形成された外装体と、この外装体の開口部を封口する蓋体と、前記外装体と前記蓋体との間に介在した絶縁パッキングとで構成される容器の内部に発電要素を収納し、前記外装体の開口部を内側にかしめてなる偏平形電気化学素子において、
前記外装体はその側面の一部が内側に湾曲した凹部を備え、前記絶縁パッキングが上下方向と横方向とから圧縮されていることを特徴とする偏平形電気化学素子。
A power generation element is provided inside a container that includes an exterior body formed in a half-shell, a lid body that seals an opening of the exterior body, and an insulating packing interposed between the exterior body and the lid body. In the flat electrochemical element formed by caulking the opening of the exterior body inside,
The flat type electrochemical device, wherein the outer package includes a concave portion whose side surface is curved inward, and the insulating packing is compressed from the vertical direction and the horizontal direction.
前記絶縁パッキングがポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ナイロンのいずれかである請求項1記載の偏平形電気化学素子。 The flat electrochemical element according to claim 1, wherein the insulating packing is any one of polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and nylon. 半殻体に形成された外装体と、この外装体の開口部を封口する蓋体と、前記外装体と前記蓋体との間に介在した絶縁パッキングで構成される容器の内部に発電要素を収納し、前記外装体の開口部を内側にかしめてなる偏平形電気化学素子において、
前記外装体の開口部を内側にかしめる際に、前記外装体を上下方向と横方向から同時に加圧するとともに、前記外装体の側面の一部を内側に湾曲させることを特徴とする偏平形電気化学素子の製造方法。


A power generation element is disposed inside a container composed of an exterior body formed in a half-shell, a lid body that seals an opening of the exterior body, and an insulating packing interposed between the exterior body and the lid body. In a flat electrochemical element that is housed and caulked the opening of the exterior body inside,
When the opening of the exterior body is caulked inward, the exterior body is simultaneously pressurized from the vertical direction and the lateral direction, and a part of the side surface of the exterior body is curved inward. Chemical element manufacturing method.


JP2004323388A 2004-11-08 2004-11-08 Flat electrochemical element and its manufacturing method Pending JP2006134740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323388A JP2006134740A (en) 2004-11-08 2004-11-08 Flat electrochemical element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323388A JP2006134740A (en) 2004-11-08 2004-11-08 Flat electrochemical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006134740A true JP2006134740A (en) 2006-05-25

Family

ID=36728080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323388A Pending JP2006134740A (en) 2004-11-08 2004-11-08 Flat electrochemical element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006134740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374849B1 (en) 2012-09-11 2014-03-19 주식회사 루트제이드 Case for secondary battery having bending part
WO2014042417A1 (en) * 2012-09-11 2014-03-20 주식회사 루트제이드 Secondary battery case provided with fastening strengthening unit
KR101464220B1 (en) 2012-09-11 2014-11-24 주식회사 루트제이드 Case for secondary battery having locking part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374849B1 (en) 2012-09-11 2014-03-19 주식회사 루트제이드 Case for secondary battery having bending part
WO2014042417A1 (en) * 2012-09-11 2014-03-20 주식회사 루트제이드 Secondary battery case provided with fastening strengthening unit
KR101464220B1 (en) 2012-09-11 2014-11-24 주식회사 루트제이드 Case for secondary battery having locking part

Similar Documents

Publication Publication Date Title
JP5021900B2 (en) Sealed battery
US11626638B2 (en) Batteries and methods of using and making the same
KR20030028716A (en) Sealed battery
JP2003092149A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2011216479A (en) Coin-shaped battery, holder for coin-shaped battery, and coin-shaped battery housing
JP5083220B2 (en) Capacitor
WO2000035033A1 (en) Flat battery and production method thereof
JP5130942B2 (en) Capacitors
KR101271254B1 (en) Prismatic Battery Having Electrolyte Injection-hole Capable of Providing Excellent Sealing Ability
KR20130122051A (en) Cylindrical battery
JP5115204B2 (en) Surface mount square storage cell
JP2012069455A (en) Coin-shaped battery
JP2006134740A (en) Flat electrochemical element and its manufacturing method
TW202226666A (en) Gasket for electrochemical cell, and electrochemical cell
JP4824271B2 (en) Gasket for electrochemical cell and electrochemical cell
JP3199060B2 (en) Flat organic electrolyte battery and method of manufacturing the same
JP3131145U (en) Button-type alkaline battery
JP2004327427A (en) Coin type electrochemical cell and its sealing method
JP2005191507A (en) Coin-shaped storage element
JP2005123060A (en) Manufacturing method of sealed battery
JP4701637B2 (en) Flat electrochemical element
US20230178829A1 (en) Button battery with improved sealing properties
JP4281428B2 (en) Electrochemical element
JP2009212051A (en) Bobbin type lithium bettry
TW202218229A (en) electrochemical cell