JP2006132901A - Heat exchange type blowing method and device - Google Patents

Heat exchange type blowing method and device Download PDF

Info

Publication number
JP2006132901A
JP2006132901A JP2004325210A JP2004325210A JP2006132901A JP 2006132901 A JP2006132901 A JP 2006132901A JP 2004325210 A JP2004325210 A JP 2004325210A JP 2004325210 A JP2004325210 A JP 2004325210A JP 2006132901 A JP2006132901 A JP 2006132901A
Authority
JP
Japan
Prior art keywords
boiler
heat
water
blow
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004325210A
Other languages
Japanese (ja)
Inventor
Hayashi Yamatani
林 山谷
Yoshiyasu Sakai
義康 坂井
Yoshiyuki Aizawa
善之 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquas Corp
Original Assignee
Aquas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquas Corp filed Critical Aquas Corp
Priority to JP2004325210A priority Critical patent/JP2006132901A/en
Publication of JP2006132901A publication Critical patent/JP2006132901A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange type blowing method and device capable of cooling the temperature of a boiler blow water at an outlet of a heat exchanger to a safe temperature (normally below 95°C) for discharge even when the temperature of boiler feed water is high such as 60°C or higher without increasing a heat transfer area. <P>SOLUTION: The heat exchange type blowing method for preheating boiler feed water and cooling blow water to discharge it by bringing the boiler feed water and blow water of a boiler into contact to exchange heat in a heat exchanger is characterized by exchanging heat by a plurality of heat exchangers provided in series, and the heat exchange type blowing device for preheating the boiler feed water and cooling the blow water to discharge it by connecting a blow water discharge pipe 3 from the boiler 1 to the heat exchanger 2, and bringing the boiler feed water and the blow water of the boiler into contact to exchange heat in the heat exchanger 2 is characterized by providing a plurality of heat exchangers 2 in series. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ボイラ水をブロー(ブローオフ)する際に、このボイラのブロー水とボイラ給水との熱交換を行って、ボイラ給水を予熱すると共にブロー水を冷却し排出する、熱交換型ブロー方法と装置とに関する。   The present invention relates to a heat exchange type blowing method in which when boiler water is blown (blow-off), heat is exchanged between the blow water of the boiler and the boiler feed water, the boiler feed water is preheated and the blow water is cooled and discharged. And device.

ボイラを運転する上で、ボイラ水質に起因するボイラの腐食障害、スケール障害、キャリーオーバーによる蒸気純度の低下等の各種障害防止のため、ボイラ水のブロー(連続ブロー)を行う必要がある。
高温のブロー排水に含まれる熱は、そのまま捨ててしまうのは無駄であるばかりか、地球温暖化防止の観点からも見過ごすことができない。
このため、ブロー水から熱を回収し、これをボイラ給水に与える熱交換型ブロー装置が各種提案されている(例えば、特許文献1、2、3参照)。
When operating the boiler, it is necessary to blow boiler water (continuous blow) in order to prevent various obstacles such as boiler corrosion failure, scale failure, and steam purity reduction due to carry-over due to boiler water quality.
The heat contained in the hot blow drainage is not only discarded but also cannot be overlooked from the viewpoint of preventing global warming.
For this reason, various heat exchange type blow devices which collect heat from blow water and give this to boiler feed water are proposed (for example, refer to patent documents 1, 2, and 3).

この従来の熱交換型ブロー装置においては、ボイラからのブロー水排出管を熱交換器に接続し、前記熱交換器にてボイラ給水とボイラのブロー水とを熱交換器にて接触させ熱交換を行って、ボイラ給水を予熱すると共にブロー水を冷却し排出している(図3参照)。
通常、ボイラ給水に用いる水の温度は20〜30℃の室温レベルであるので、このような熱交換型ブロー装置を用いて熱交換を行って、例えば170℃などという高温のブロー水をフラッシングしない安全な95℃未満の水温まで、例えば70〜80℃程度まで低下させて排出しつつ、給水温度を例えば40℃程度まで上昇させてボイラに導入しており、これにより良好に熱を回収することができる。
In this conventional heat exchange type blower, the blow water discharge pipe from the boiler is connected to the heat exchanger, and the boiler water supply and the boiler blow water are contacted by the heat exchanger in the heat exchanger to exchange heat. The boiler feed water is preheated and the blow water is cooled and discharged (see FIG. 3).
Usually, since the temperature of the water used for boiler feed water is a room temperature level of 20 to 30 ° C., heat exchange is performed using such a heat exchange type blow device, and high temperature blow water such as 170 ° C. is not flushed. The water supply temperature is raised to, for example, about 40 ° C. while being discharged to a safe water temperature of less than 95 ° C., for example, about 70-80 ° C., and heat is recovered satisfactorily. Can do.

しかしながら、近年は熱の回収技術が進み、ボイラの蒸気凝縮水を回収して、これを再度ボイラ給水に利用するなどの手段が講じられていることなどから、熱交換前における給水温度が従来の20〜30℃という温度よりかなり高くなる傾向にある。   However, in recent years, heat recovery technology has progressed, and measures such as recovering boiler steam condensate and reusing it for boiler feed water have been taken. It tends to be considerably higher than the temperature of 20-30 ° C.

このような状況下、ボイラ給水の温度が60℃以上と高い場合、従来の連続ブロー装置では、熱交換器出口におけるボイラブロー水(飽和水)の温度を安全な温度(通常、95℃未満、好ましくは90℃未満)まで冷却(熱交換)して排出するためには、非常に大きな伝熱面積をもった大型の熱交換器が必要となってしまうという問題があった。
ここで伝熱面積を大きくとらないと、熱交換器の出口でブロー水が充分に冷却されず、一部が蒸気化し、熱交換器の伝熱管、流量計のフロート等に衝撃を与え、機器を損傷してしまうおそれがある。特に、伝熱管が損傷すると、ボイラブロー水が給水側に漏れ出して、給水出口温度も100℃を超え、この高温給水が給水ポンプに入り、キャビテーションを起こし、更にはボイラの耐熱性の低い機器類をも膨潤・損傷させ、ボイラプラントが非常停止してしまうことがある。また、給水中にボイラ水が混入することとなり、正常なボイラ給水が事実上不可能となるなど、大きな危険があった。
従って、上記のように給水温度が高い場合には、装置の安全性の面から、或いは装置の大型化(設置スペース)回避の面から、熱の回収は諦めていたのが実情である。
Under such circumstances, when the temperature of the boiler feed water is as high as 60 ° C. or higher, the temperature of the boiler blow water (saturated water) at the outlet of the heat exchanger is set to a safe temperature (usually less than 95 ° C., preferably Has a problem that a large heat exchanger having a very large heat transfer area is required for cooling (heat exchange) to a temperature of less than 90 ° C.).
If the heat transfer area is not increased here, the blow water will not be cooled sufficiently at the outlet of the heat exchanger, and part of it will evaporate, impacting the heat exchanger tubes of the heat exchanger, the float of the flow meter, etc. May be damaged. In particular, when the heat transfer tube is damaged, the boiler blow water leaks to the feed water side, the feed water outlet temperature also exceeds 100 ° C., this high temperature feed water enters the feed water pump, causes cavitation, and the equipment with low heat resistance of the boiler May also swell and damage the boiler plant. In addition, there is a great danger that boiler water is mixed into the water supply, and normal boiler water supply is virtually impossible.
Therefore, when the feed water temperature is high as described above, the fact is that the recovery of heat has been abandoned from the viewpoint of safety of the apparatus or from the viewpoint of avoiding the enlargement (installation space) of the apparatus.

特開昭54−16003号公報JP 54-16003 A 特開昭55−31201号公報Japanese Patent Laid-Open No. 55-31201 特開2002−22106号公報JP 2002-22106 A

本発明は、上記従来の問題を解消し、熱交換器の伝熱面積を増やすことなく、ボイラ給水の温度が、高い場合(例えば60℃以上)においても、熱交換器出口におけるボイラブロー水温度を安全な温度(通常、95℃未満、好ましくは90℃未満)まで冷却(熱交換)して排出することのできる熱交換型ブロー方法とその装置とを提供することを目的とするものである。   The present invention eliminates the above-mentioned conventional problems, and increases the boiler blow water temperature at the outlet of the heat exchanger even when the boiler feed water temperature is high (for example, 60 ° C. or higher) without increasing the heat transfer area of the heat exchanger. It is an object of the present invention to provide a heat exchange type blowing method and apparatus capable of cooling (heat exchange) and discharging to a safe temperature (usually less than 95 ° C., preferably less than 90 ° C.).

本発明者らは上記の問題点を解決すべく鋭意検討を行った結果、驚くべきことに、小型の熱交換器を複数台、しかも直列に設けることにより、大型の熱交換器を1台用いた場合よりも複数台の熱交換器の合計の総伝熱面積を小さくした場合であっても、ボイラ給水の温度が、例えば60℃以上と高い場合において、熱交換器出口におけるボイラブロー水温度を安全な温度(通常、95℃未満、好ましくは90℃未満)まで冷却(熱交換)して排出することができることを見出し、この知見に基づいて本発明を完成するに至った。このように、小型の熱交換器を直列に複数台設けるという発想はこれまで全く見られなかった。   As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that a plurality of small heat exchangers and a series of large heat exchangers are provided by providing a plurality of small heat exchangers in series. Even when the total heat transfer area of the plurality of heat exchangers is smaller than the case where the boiler feed water temperature is high, for example, 60 ° C. or higher, the boiler blow water temperature at the heat exchanger outlet is It has been found that it can be cooled (heat exchange) to a safe temperature (usually less than 95 ° C., preferably less than 90 ° C.) and discharged, and the present invention has been completed based on this finding. Thus, the idea of providing a plurality of small heat exchangers in series has never been seen.

即ち、請求項1に係る本発明は、ボイラ給水とボイラのブロー水とを熱交換器にて接触させ熱交換を行って、ボイラ給水を予熱すると共にブロー水を冷却し排出する交換型ブロー方法において、直列に複数台設けた熱交換器により熱交換を行うことを特徴とする熱交換型ブロー方法を提供するものである。
請求項2に係る本発明は、ボイラ給水の温度が60℃以上である、請求項1に記載の方法を提供するものである。
請求項3に係る本発明は、熱交換器出口のブロー水温度が95℃未満である、請求項1又は請求項2に記載の方法を提供するものである。
請求項4に係る本発明は、ボイラからのブロー水排出管を熱交換器に接続し、前記熱交換器にてボイラ給水とボイラのブロー水とを接触させ熱交換を行って、ボイラ給水を予熱すると共にブロー水を冷却し排出する熱交換型ブロー装置において、前記熱交換器を直列に複数台設けたことを特徴とする熱交換型ブロー装置を提供するものである。
That is, the present invention according to claim 1 is a heat exchange type blow that preheats the boiler feed water and cools and discharges the blow water by bringing the boiler feed water and the blow water of the boiler into contact with each other by a heat exchanger to perform heat exchange. In the method, a heat exchange type blowing method is provided, wherein heat exchange is performed by a plurality of heat exchangers provided in series.
This invention which concerns on Claim 2 provides the method of Claim 1 whose temperature of boiler feed water is 60 degreeC or more.
The present invention according to claim 3 provides the method according to claim 1 or claim 2, wherein the blow water temperature at the outlet of the heat exchanger is less than 95 ° C.
According to a fourth aspect of the present invention, a blow water discharge pipe from a boiler is connected to a heat exchanger, the boiler water supply and the blow water of the boiler are brought into contact with each other in the heat exchanger, and heat exchange is performed. In a heat exchange type blower that preheats and cools and discharges blow water, a heat exchange type blower provided with a plurality of the heat exchangers in series is provided.

本発明によれば、大型の熱交換器1台の場合と比較して、複数台の熱交換器の合計の総伝熱面積を小さくした場合であっても、大きな熱交換(熱回収)が可能となった。
即ち、本発明によれば、より小型の熱交換器を複数台直列に配置して給水−ブロー水間の熱交換を行うことにより、給水量、給水温度、ブロー水量、ブロー水温度から設定される伝熱面積を有する1台の熱交換器を用いた場合と比較して、より小さい伝熱面積でも大きな熱交換が得られる。
その結果、ボイラ給水の温度が、例えば60℃以上と高い場合においても、熱交換器出口におけるボイラブロー水温度を安全な温度(通常、95℃未満、好ましくは90℃未満)まで冷却(熱交換)して排出することが可能となり、ブロー水の一部が蒸気化して熱交換器内の伝熱管、流量計のフロート等に衝撃を与え、機器を損傷するおそれがなくなった。また、その分、装置を小型化することができ、圧力容器としての強度を保つのが容易となり、熱交換器の破損のおそれが少なくなる。
また、本発明によれば、ブロー水から多くの熱を回収することができ、熱回収率が上がることから、ボイラ運転のための燃料費の削減、炭酸ガス排出量の削減という効果が得られる。
さらに、本発明によれば、各熱交換器をより小型にできることで、圧力容器としての強度を保つことが容易となると共に、厚生労働省の圧力容器安全規則における第1種圧力容器の規格から外れて小型圧力容器又は簡易圧力容器の規格で製作・設置することが可能となり、メンテナンスも簡易とすることができる等の実益がある。
According to the present invention, even when the total heat transfer area of the plurality of heat exchangers is reduced as compared with the case of one large heat exchanger, large heat exchange (heat recovery) is achieved. It has become possible.
That is, according to the present invention, by setting a plurality of smaller heat exchangers in series and performing heat exchange between the feed water and the blow water, the water supply amount, the feed water temperature, the blow water amount, and the blow water temperature are set. Compared with the case of using one heat exchanger having a heat transfer area, a large heat exchange can be obtained even with a smaller heat transfer area.
As a result, even when the boiler feed water temperature is as high as 60 ° C. or higher, the boiler blow water temperature at the outlet of the heat exchanger is cooled to a safe temperature (usually less than 95 ° C., preferably less than 90 ° C.) (heat exchange). As a result, a part of the blow water is vaporized and impacts the heat transfer tube in the heat exchanger, the float of the flow meter, etc., and the equipment is not damaged. Further, the apparatus can be reduced in size accordingly, the strength as a pressure vessel can be easily maintained, and the risk of damage to the heat exchanger is reduced.
Further, according to the present invention, a large amount of heat can be recovered from the blow water, and the heat recovery rate is increased, so that the effects of reducing fuel costs for boiler operation and reducing carbon dioxide emission can be obtained. .
Furthermore, according to the present invention, each heat exchanger can be made smaller, so that it is easy to maintain the strength as a pressure vessel, and it is not within the standards for the first type pressure vessel in the pressure vessel safety regulations of the Ministry of Health, Labor and Welfare. Therefore, it can be manufactured and installed according to the standard of a small pressure vessel or a simple pressure vessel, and there is an advantage that the maintenance can be simplified.

以下、本発明の一実施態様を図面に基づいて詳細に説明する。図1は、本発明を実施している熱交換型ブロー装置の一態様を示すフロー図である。また、図2は、本発明を実施している熱交換型ブロー装置の他の態様を示すフロー図である。
図中、符号1はボイラであり、符号2は熱交換器である。また、符号3はボイラ1からのブロー水排出管であり、符号4はボイラ1への給水管である。さらに、符号5は給水ポンプであり、符号6はホットウェルタンク(給水タンク)であり、符号7はブロー水排水管であり、符号8はブロー弁である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flow diagram showing one aspect of a heat exchange type blower embodying the present invention. Moreover, FIG. 2 is a flowchart which shows the other aspect of the heat exchange type blow apparatus which is implementing this invention.
In the figure, reference numeral 1 is a boiler, and reference numeral 2 is a heat exchanger. Reference numeral 3 is a blow water discharge pipe from the boiler 1, and reference numeral 4 is a water supply pipe to the boiler 1. Further, reference numeral 5 is a water supply pump, reference numeral 6 is a hot well tank (water supply tank), reference numeral 7 is a blow water drain pipe, and reference numeral 8 is a blow valve.

給水ポンプ5によりホットウェルタンク(給水タンク)6から吸い上げられた水は、通常は図1に示すように、熱交換器2を経て、給水管4によりボイラ1へ給水される。なお、図1では、熱交換器2とボイラ1との間の給水管4に分岐を設けて、ボイラのブロー水と熱交換したボイラ給水の一部をホットウェルタンク(給水タンク)6に戻し、再び循環させているが、この分岐は必要に応じて省略することもできる。
一方、ボイラ1からのブロー水排出管3が熱交換器2に接続されており、熱交換器2を経て、ブロー水排水管7より排水される。
ここで熱交換器2において、ボイラ1への給水管により供給されたボイラ給水と、ボイラ1からブロー水排出管3により排出されたボイラのブロー水とが接触させられ熱交換される。
その結果、ボイラ給水が予熱されると共にブロー水が冷却されることになる。予熱されたボイラ給水は、給水管4によりボイラ1へ給水される。一方、冷却されたブロー水は、ブロー水排水管7より排水される。但し、予熱されたボイラ給水をホットウェルタンク(給水タンク)6に回収し、再び循環させてもよい。
なお、必要に応じて、図2に示すように、熱交換器2によりボイラのブロー水と熱交換したボイラ給水を一旦ホットウェルタンク(給水タンク)6に入れ(戻し)、ホットウェルタンク(給水タンク)6から給水管4によりボイラ1へ給水することもできる。
The water sucked up from the hot well tank (water supply tank) 6 by the water supply pump 5 is usually supplied to the boiler 1 through the heat exchanger 2 and the water supply pipe 4 as shown in FIG. In FIG. 1, a branch is provided in the feed water pipe 4 between the heat exchanger 2 and the boiler 1, and a part of the boiler feed water exchanged with the boiler blow water is returned to the hot well tank (feed water tank) 6. However, this branch can be omitted if necessary.
On the other hand, a blow water discharge pipe 3 from the boiler 1 is connected to the heat exchanger 2, and is discharged from the blow water drain pipe 7 through the heat exchanger 2.
Here, in the heat exchanger 2, the boiler feed water supplied from the boiler 1 to the boiler 1 and the boiler blow water discharged from the boiler 1 through the blow water discharge pipe 3 are brought into contact with each other to exchange heat.
As a result, the boiler feed water is preheated and the blow water is cooled. The preheated boiler feed water is fed to the boiler 1 through the feed pipe 4. On the other hand, the cooled blow water is drained from the blow water drain pipe 7. However, the preheated boiler feed water may be collected in the hot well tank (feed water tank) 6 and circulated again.
If necessary, as shown in FIG. 2, the boiler feed water heat-exchanged with the boiler blow water by the heat exchanger 2 is once put (returned) into the hot well tank (feed water tank) 6, and the hot well tank (feed water) Water can be supplied from the tank 6 to the boiler 1 through the water supply pipe 4.

ここでボイラ給水の温度が、請求項2に記載したように、60℃以上、特に80℃以上と高い場合に、本発明は特に好適に用いることができる。
前記したように、ボイラ給水の温度が60℃以上と高い場合には、従来の連続ブロー装置では、熱交換器出口におけるボイラブロー水の温度を安全な温度(通常、95℃未満、好ましくは90℃未満)まで冷却(熱交換)して排出するためには、非常に大きな伝熱面積をもった大型の熱交換器が必要となってしまうという問題があったが、本発明によれば、そのような従来の問題点を解消できた。
Here, as described in claim 2, when the temperature of boiler feed water is as high as 60 ° C. or higher, particularly 80 ° C. or higher, the present invention can be used particularly suitably.
As described above, when the temperature of the boiler feed water is as high as 60 ° C. or higher, the temperature of the boiler blow water at the outlet of the heat exchanger is set to a safe temperature (usually less than 95 ° C., preferably 90 ° C.). However, according to the present invention, there is a problem that a large heat exchanger having a very large heat transfer area is required. The conventional problems such as these were solved.

本発明においては、上記した如き熱交換器2を直列に複数台設け、そのような直列に複数台設けた熱交換器2により熱交換を行うことを特徴としている。
図1では、熱交換器を直列に2台設けた例(第1の熱交換器2Aと第2の熱交換器2B)を示しているが、これに限定されるものではなく、必要に応じて3台以上直列に設けることもできる。例えば、小型の熱交換器を3台以上直列に設けた場合には、大型の熱交換器を1台設けた場合と比べて、熱交換器2の総伝熱面積が若干増加してしまうものの、著しく熱交換器出口のブロー水温度を低下させることができるというメリットがある。
なお、本発明においては、熱交換器2を直列に複数台設けることにより、大きな熱交換(熱回収)を可能としたものである。
本発明においては熱交換器を直列に複数台設けることが必要であって、熱交換器を複数台設けたとしても並列に設けた場合には、本発明の目的を達成することはできない。その理由は定かではないが、熱交換器を直列に複数台設けることによって、より流速を速くすることができることも一因ではないかと考えられる。
ここで熱交換器2中を流れる水の流れには、ブロー水の流れと給水側(ボイラ給水側)の流れとの2つがある。本発明の趣旨からすると、このうちのブロー水の流れから見て、熱交換器2を直列に複数台設けることが必要不可欠ということである。つまりブロー水を熱交換器2に常時直列に流すことが必要であるということであって、給水側(ボイラ給水側)の流れについて、これを常時直列に流すことが絶対不可欠というものではないと考えられる。
従って、圧力損失が大きくなり過ぎるような場合等には、必要に応じて給水側の流れ(ボイラ給水)を熱交換器2に並列に流すことができるような構成を採用することもできる。但し、この場合には、ブロー水及びボイラ給水のいずれも熱交換器2に直列に流した場合と比べて、若干(5%程度)熱回収率が低下してしまうものと考えられる。
The present invention is characterized in that a plurality of heat exchangers 2 as described above are provided in series, and heat exchange is performed by such heat exchangers 2 provided in series.
In FIG. 1, although the example (1st heat exchanger 2A and 2nd heat exchanger 2B) which provided the two heat exchangers in series is shown, it is not limited to this, As needed 3 or more can be provided in series. For example, when three or more small heat exchangers are provided in series, the total heat transfer area of the heat exchanger 2 is slightly increased as compared with the case where one large heat exchanger is provided. There is an advantage that the blow water temperature at the outlet of the heat exchanger can be remarkably lowered.
In the present invention, a large number of heat exchangers 2 are provided in series to enable large heat exchange (heat recovery).
In the present invention, it is necessary to provide a plurality of heat exchangers in series, and even if a plurality of heat exchangers are provided, the object of the present invention cannot be achieved if they are provided in parallel. The reason is not clear, but it is thought that the fact that the flow rate can be further increased by providing a plurality of heat exchangers in series may be a cause.
Here, the flow of water flowing through the heat exchanger 2 includes two flows: a flow of blow water and a flow on the water supply side (boiler water supply side). From the gist of the present invention, it is indispensable to provide a plurality of heat exchangers 2 in series when viewed from the flow of blow water. In other words, it is necessary to always flow the blow water through the heat exchanger 2 in series, and it is not absolutely essential for the flow on the water supply side (boiler water supply side) to always flow in series. Conceivable.
Therefore, when the pressure loss becomes too large, a configuration in which the water supply side flow (boiler feed water) can be flowed in parallel to the heat exchanger 2 can be adopted as necessary. However, in this case, it is considered that the heat recovery rate slightly decreases (about 5%) as compared with the case where both blow water and boiler feed water are flowed in series with the heat exchanger 2.

本発明においては、直列に複数台設けた熱交換器2の総伝熱面積を、熱交換器1台だけの場合の伝熱面積と比べて、同等乃至それ以下にした場合であっても、より大きな熱交換(熱回収)を行うことができる。つまり、例えば大型の熱交換器1台の代わりに小型の熱交換器2台を直列に設置することにより、総伝熱面積が同等乃至それ以下の場合であっても、より大きな熱交換(熱回収)を行うことができる。
そして本発明によれば、請求項3に記載したように、熱交換器出口のブロー水温度を95℃未満、より好ましくは90℃未満とすることができ、ブロー水の一部が蒸気化して熱交換器内の伝熱管、流量計のフロート等に衝撃を与え、機器を損傷するおそれがなくなった。
In the present invention, the total heat transfer area of a plurality of heat exchangers 2 provided in series is equal to or less than the heat transfer area in the case of only one heat exchanger, Larger heat exchange (heat recovery) can be performed. In other words, for example, by installing two small heat exchangers in series instead of one large heat exchanger, even if the total heat transfer area is equal to or less than that, a larger heat exchange (heat Recovery) can be performed.
According to the present invention, as described in claim 3, the blow water temperature at the outlet of the heat exchanger can be less than 95 ° C, more preferably less than 90 ° C, and a part of the blow water is vaporized. There was no risk of damaging the equipment by impacting the heat transfer tubes in the heat exchanger, the float of the flowmeter, etc.

なお、本発明においては、より小型の熱交換器2を直列に複数台設け、そのような直列に複数台設けた熱交換器2により熱交換を行うこと以外は、基本的には従来公知のブロー方法及びブロー装置により行うことができる。図示されてはいないが、例えば従来公知のブロー装置に設けられている逆止弁が、給水ポンプ5と熱交換器2との間に設けられている。また、ブロー水排水管7の管路には、ボイラ水をブローするためのブロー弁8が設けられている。さらに、従来公知のブロー装置に設けられている運転制御装置を設けることもできる。この運転制御装置により、ブロー8弁を開いてブローするタイミングを制御することができる。   In the present invention, a plurality of smaller heat exchangers 2 are provided in series, and heat exchange is performed by such heat exchangers 2 provided in series. It can be performed by a blowing method and a blowing device. Although not shown, for example, a check valve provided in a conventionally known blow device is provided between the water supply pump 5 and the heat exchanger 2. Further, a blow valve 8 for blowing boiler water is provided in the pipe line of the blow water drain pipe 7. Furthermore, an operation control device provided in a conventionally known blow device can be provided. By this operation control device, the blow timing can be controlled by opening the blow 8 valve.

本発明におけるボイラ1としては、従来一般に使用されているボイラだけでなく、近年の熱回収技術が取り入れられたもの、つまりボイラの蒸気凝縮水を回収して、これを再度ボイラ給水に利用する手法が取り入れられたようなものも用いることができる。この場合、熱交換前のボイラ給水温度は、従来一般に使用されているボイラにおける20〜30℃という温度よりかなり高く、60℃以上、特に80℃以上と高くなっているが、前記したように、本発明はこのような場合に特に好適に用いることができる。
なお、本発明は、ボイラ給水とボイラのブロー水とを熱交換させるものであるが、熱を回収する用水は、必ずしもボイラ給水に限られず、他の加熱が必要な用水と、ボイラブロー水との熱交換にも本発明を適用し、直列に複数台設けた熱交換器により熱交換を行うことが可能である。
As the boiler 1 in the present invention, not only a boiler generally used in the past, but also a technique incorporating recent heat recovery technology, that is, a method of recovering steam condensate of the boiler and reusing it for boiler feed water It is also possible to use those in which is incorporated. In this case, the boiler feed water temperature before the heat exchange is considerably higher than the temperature of 20 to 30 ° C. in a conventionally used boiler, and is higher than 60 ° C., particularly 80 ° C. or higher. The present invention can be particularly preferably used in such a case.
In the present invention, the boiler feed water and the boiler blow water are heat-exchanged. However, the water for recovering the heat is not necessarily limited to the boiler feed water, and other water that needs to be heated and the boiler blow water. The present invention is also applied to heat exchange, and heat exchange can be performed by a plurality of heat exchangers provided in series.

次に、本発明を実施例によりさらに詳しく説明するが、本発明の範囲はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, the scope of the present invention is not limited at all by these Examples.

実施例1
本実施例1においては、実際のボイラシステムのブローラインに表1に示す各種熱交換器を図1(本発明)又は図3に示すようにして設置し、給水と熱交換を行った際の、熱交換器出口のブロー水温度、給水出口温度、及び熱交換量を測定した。結果を表1に示す。
なお、ボイラの運転圧力は1MPa、ブロー水温度は183℃、ブロー水量は1200L/h、給水温度は70℃、給水量は12000L/hであった。
また、熱交換器は、全てアクアス株式会社製の連続ブロー装置(ミニブロー:アクアス株式会社所有の登録商標)を用いた。型式HOT−1200はブロー水側の最大流量が1200L/h、型式HOT−1600はブロー水側の最大流量が1600L/h、型式HOT−2000はブロー水側の最大流量が2000L/hである。
Example 1
In the first embodiment, various heat exchangers shown in Table 1 are installed in the blow line of an actual boiler system as shown in FIG. 1 (the present invention) or FIG. 3 to perform heat exchange with water supply. The blow water temperature at the outlet of the heat exchanger, the feed water outlet temperature, and the heat exchange amount were measured. The results are shown in Table 1.
The operating pressure of the boiler was 1 MPa, the blow water temperature was 183 ° C., the blow water amount was 1200 L / h, the feed water temperature was 70 ° C., and the feed water amount was 12000 L / h.
Moreover, all the heat exchangers used the continuous blow apparatus made from Aqua Co., Ltd. (mini blow: registered trademark owned by Aqua Co., Ltd.). The model HOT-1200 has a blow water maximum flow rate of 1200 L / h, the model HOT-1600 has a blow water maximum flow rate of 1600 L / h, and the model HOT-2000 has a blow water maximum flow rate of 2000 L / h.

Figure 2006132901
Figure 2006132901

表1の結果によれば、給水温度が70℃と高い本実施例においては、小型の熱交換器(HOT‐1200)を1台用いた場合には、熱交換器出口のブロー水温度が111℃と極めて高いことが分かる。熱交換器出口のブロー水温度は95℃未満でないと、蒸気振動により破損事故が生ずるおそれがある。
次に、中型の熱交換器(HOT‐1600)を1台用いた場合においても、やはり熱交換器出口のブロー水温度が104℃と95℃以上であることが分かる。
また、大型の熱交換器(HOT‐2000)を1台用いた場合においても、熱交換器出口のブロー水温度を安全な95℃未満とすることができなかった。これ以上伝熱面積の大きな熱交換器を用いると、第1種圧力容器に該当するおそれがあり、メンテナンスが煩雑となる。
これに対して、小型の熱交換器(HOT‐1200)を2台直列に設置した本発明の場合には、大型の熱交換器(HOT‐2000)を1台用いた場合と比べて総伝熱面積が小さいにもかかわらず、熱交換器出口のブロー水温度を86℃とより低くすることができた。このときの熱交換量は117000kcal/hと、大型の熱交換器(HOT‐2000)を1台用いた場合と比べてより大きなものであった。
なお、小型の熱交換器(HOT‐1200)を2台並列に設置した場合には、熱交換器出口のブロー水温度は102℃であり、95℃未満とすることはできなかった。
According to the results in Table 1, in this embodiment, where the feed water temperature is as high as 70 ° C., when one small heat exchanger (HOT-1200) is used, the blow water temperature at the heat exchanger outlet is 111. It can be seen that the temperature is extremely high as ℃. If the blow water temperature at the outlet of the heat exchanger is not less than 95 ° C., there is a risk of causing a damage accident due to steam vibration.
Next, even when one medium heat exchanger (HOT-1600) is used, it can be seen that the blow water temperature at the outlet of the heat exchanger is 104 ° C. and 95 ° C. or higher.
Further, even when one large heat exchanger (HOT-2000) was used, the blow water temperature at the outlet of the heat exchanger could not be made safe below 95 ° C. If a heat exchanger having a larger heat transfer area is used, there is a risk that the heat exchanger may fall under the first type pressure vessel, and maintenance becomes complicated.
In contrast, in the case of the present invention in which two small heat exchangers (HOT-1200) are installed in series, the total transmission is compared with the case where one large heat exchanger (HOT-2000) is used. Despite the small heat area, the blow water temperature at the outlet of the heat exchanger could be lowered to 86 ° C. The amount of heat exchange at this time was 117000 kcal / h, which was larger than when one large heat exchanger (HOT-2000) was used.
When two small heat exchangers (HOT-1200) were installed in parallel, the blow water temperature at the heat exchanger outlet was 102 ° C. and could not be less than 95 ° C.

実施例2
本実施例2においても、実際のボイラシステムのブローラインに表2に示す各種熱交換器を図1(本発明)又は図3に示すようにして設置し、給水と熱交換を行った際の、熱交換器出口のブロー水温度、給水出口温度、及び熱交換量を測定した。結果を表2に示す。
但し、本実施例2においては、ボイラの運転圧力は2MPa、ブロー水温度は212℃、ブロー水量は600L/h、給水温度は80℃、給水量は6000L/hであり、前記実施例1と比べて、給水温度が80℃とさらに高く、しかもブロー水温度も212℃と高いものであった。
また、熱交換器は、全てアクアス株式会社製の連続ブロー装置(ミニブロー:登録商標)を用いた。型式HOT−600はブロー水側の最大流量が600L/hのものである。他の型式の熱交換器については、実施例1に記載したとおりである。
Example 2
Also in the second embodiment, various heat exchangers shown in Table 2 are installed in the blow line of an actual boiler system as shown in FIG. 1 (the present invention) or FIG. The blow water temperature at the outlet of the heat exchanger, the feed water outlet temperature, and the heat exchange amount were measured. The results are shown in Table 2.
However, in Example 2, the boiler operating pressure is 2 MPa, the blow water temperature is 212 ° C., the blow water amount is 600 L / h, the feed water temperature is 80 ° C., and the feed water amount is 6000 L / h. In comparison, the feed water temperature was as high as 80 ° C., and the blow water temperature was as high as 212 ° C.
Moreover, all the heat exchangers used the continuous blow apparatus (mini blow: registered trademark) by Aquas Corporation. Model HOT-600 has a maximum flow rate on the blow water side of 600 L / h. Other types of heat exchangers are as described in Example 1.

Figure 2006132901
Figure 2006132901

表2の結果によれば、給水温度が80℃とさらに高く、しかもブロー水温度も212℃と高い本実施例2においては、小型の熱交換器(HOT‐1200)を1台用いた場合には、熱交換器出口のブロー水温度が117℃と極めて高いことが分かる。熱交換器出口のブロー水温度は95℃未満でないと、蒸気振動により破損事故が生ずるおそれがある。
次に、中型の熱交換器(HOT‐1600)を1台用いた場合においても、やはり熱交換器出口のブロー水温度が104℃と95℃以上であることが分かる。
また、大型の熱交換器(HOT‐2000)を1台用いた場合にも、熱交換器出口のブロー水温度は99℃と95℃以上となってしまった。
これに対して、小型の熱交換器(HOT‐1200)を2台直列に設置した本発明の場合には、大型の熱交換器(HOT‐2000)を1台用いた場合と比べて総伝熱面積が小さいにもかかわらず、熱交換器出口のブロー水温度を91℃とより低くすることができた。このときの熱交換量は72500kcal/hと、大型の熱交換器(HOT‐2000)を1台用いた場合と比べてより大きなものであった。
さらに、小型の熱交換器(HOT‐600)を3台直列に設置した本発明の場合には、大型の熱交換器(HOT‐2000)を1台用いた場合と比べて総伝熱面積が若干大きくなるものの、熱交換器出口のブロー水温度を85℃と著しく低くすることができた。このときの熱交換量は76200kcal/hと、大型の熱交換器(HOT‐2000)を1台用いた場合と比べてより大きなものであった。また、このように小型の熱交換器(HOT‐600)を3台直列に設置した本発明の場合には、小型の熱交換器(HOT‐1200)を2台直列に設置した本発明の場合と比べても、総伝熱面積が大きくなるものの、熱交換器出口のブロー水温度を低くすることができ、しかも熱交換量を大きくすることができた。
According to the results in Table 2, in Example 2 where the feed water temperature is as high as 80 ° C. and the blow water temperature is as high as 212 ° C., when one small heat exchanger (HOT-1200) is used. Shows that the blow water temperature at the outlet of the heat exchanger is as extremely high as 117 ° C. If the blow water temperature at the outlet of the heat exchanger is not less than 95 ° C., there is a risk of causing a damage accident due to steam vibration.
Next, even when one medium heat exchanger (HOT-1600) is used, it can be seen that the blow water temperature at the outlet of the heat exchanger is 104 ° C. and 95 ° C. or higher.
In addition, even when one large heat exchanger (HOT-2000) was used, the blow water temperature at the outlet of the heat exchanger was 99 ° C. and 95 ° C. or higher.
In contrast, in the case of the present invention in which two small heat exchangers (HOT-1200) are installed in series, the total transmission is compared with the case where one large heat exchanger (HOT-2000) is used. Despite the small heat area, the blow water temperature at the outlet of the heat exchanger could be lowered to 91 ° C. The amount of heat exchange at this time was 72500 kcal / h, which was larger than when one large heat exchanger (HOT-2000) was used.
Furthermore, in the case of the present invention in which three small heat exchangers (HOT-600) are installed in series, the total heat transfer area is larger than when one large heat exchanger (HOT-2000) is used. Although slightly larger, the blow water temperature at the heat exchanger outlet could be remarkably lowered to 85 ° C. The amount of heat exchange at this time was 76200 kcal / h, which was larger than when one large heat exchanger (HOT-2000) was used. In the case of the present invention in which three small heat exchangers (HOT-600) are installed in series in this way, in the case of the present invention in which two small heat exchangers (HOT-1200) are installed in series Compared with, the total heat transfer area was increased, but the blow water temperature at the outlet of the heat exchanger could be lowered, and the amount of heat exchange could be increased.

実施例3
給水温度が高く、ブロー水の蒸気化を避けるために、従来はブロー水の熱回収を諦めていたボイラに対し、図2に示すようにして小型の熱交換器(HOT‐1200)を2台直列に設置して熱回収を試みた。その結果、大きな熱回収が可能となった。
即ち、ブロー水量800L/h、給水量12000L/h、給水(入口)温度80℃、ブロー水温度183℃、ボイラ圧力1MPaの条件にて、1日に8時間、月に22日間、1年間運転(年間12ヶ月×22日×8時間/日運転)のボイラについて、小型の熱交換器(HOT‐1200)を2台直列に設置して熱回収を試みたところ、熱交換器出口のブロー水温度は83℃となり、A重油換算で71万円/年の熱回収ができた。
また、特に、近年の厳しく二酸化炭素排出削減を求める状況にあって、A重油換算で64.5トン/年の削減にも貢献できることが分かった。
Example 3
Two small heat exchangers (HOT-1200) are used as shown in Fig. 2 for boilers that have given up the heat recovery of blow water in order to avoid the vaporization of blow water in order to avoid the vaporization of blow water . Heat recovery was attempted by installing in series. As a result, large heat recovery is possible.
That is, it operates for 8 hours a day, 22 days a month for 1 year under the conditions of a blow water amount of 800 L / h, a water supply amount of 12000 L / h, a water supply (inlet) temperature of 80 ° C., a blow water temperature of 183 ° C., and a boiler pressure of 1 MPa. About the boiler (12 months x 22 days x 8 hours / day operation), when two small heat exchangers (HOT-1200) were installed in series and heat recovery was attempted, blow water at the outlet of the heat exchanger The temperature was 83 ° C., and heat recovery was 710,000 yen / year in terms of heavy oil A.
In particular, it has been found that it can contribute to the reduction of 64.5 tons / year in terms of heavy oil A, especially in the recent severe demand for carbon dioxide emission reduction.

本発明を実施している熱交換型ブロー装置の一態様を示すフロー図である。It is a flowchart which shows the one aspect | mode of the heat exchange type blower which is implementing this invention. 本発明を実施している熱交換型ブロー装置の他の態様を示すフロー図である。It is a flowchart which shows the other aspect of the heat exchange type blow apparatus which is implementing this invention. 従来の熱交換型ブロー装置のフロー図である。It is a flowchart of the conventional heat exchange type blower.

符号の説明Explanation of symbols

1 ボイラ
2 熱交換器
2A 第1の熱交換器
2B 第2の熱交換器
3 ブロー水排出管
4 給水管
5 給水ポンプ
6 ホットウェルタンク
7 ブロー水排水管
8 ブロー弁

DESCRIPTION OF SYMBOLS 1 Boiler 2 Heat exchanger 2A 1st heat exchanger 2B 2nd heat exchanger 3 Blow water discharge pipe 4 Water supply pipe 5 Water supply pump 6 Hot well tank 7 Blow water drain pipe 8 Blow valve

Claims (4)

ボイラ給水とボイラのブロー水とを熱交換器にて接触させ熱交換を行って、ボイラ給水を予熱すると共にブロー水を冷却し排出する熱交換型ブロー方法において、直列に複数台設けた熱交換器により熱交換を行うことを特徴とする熱交換型ブロー方法。   Heat exchange with multiple units in series in a heat exchange type blow method in which boiler feed water and boiler blow water are brought into contact with a heat exchanger to perform heat exchange to preheat boiler feed water and cool and discharge blow water A heat exchange blow method, wherein heat exchange is performed by a vessel. ボイラ給水の温度が60℃以上である、請求項1に記載の方法。   The method of Claim 1 that the temperature of boiler feedwater is 60 degreeC or more. 熱交換器出口のブロー水温度が95℃未満である、請求項1又は請求項2に記載の方法。   The method according to claim 1 or 2, wherein the blow water temperature at the heat exchanger outlet is less than 95 ° C. ボイラからのブロー水排出管を熱交換器に接続し、前記熱交換器にてボイラ給水とボイラのブロー水とを接触させ熱交換を行って、ボイラ給水を予熱すると共にブロー水を冷却し排出する熱交換型ブロー装置において、前記熱交換器を直列に複数台設けたことを特徴とする熱交換型ブロー装置。
The blow water discharge pipe from the boiler is connected to the heat exchanger, and the heat exchange is performed by contacting the boiler feed water and the boiler blow water in the heat exchanger, so that the boiler feed water is preheated and the blow water is cooled and discharged. In the heat exchange type blow apparatus, a plurality of the heat exchangers are provided in series.
JP2004325210A 2004-11-09 2004-11-09 Heat exchange type blowing method and device Pending JP2006132901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325210A JP2006132901A (en) 2004-11-09 2004-11-09 Heat exchange type blowing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325210A JP2006132901A (en) 2004-11-09 2004-11-09 Heat exchange type blowing method and device

Publications (1)

Publication Number Publication Date
JP2006132901A true JP2006132901A (en) 2006-05-25

Family

ID=36726592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325210A Pending JP2006132901A (en) 2004-11-09 2004-11-09 Heat exchange type blowing method and device

Country Status (1)

Country Link
JP (1) JP2006132901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111016A (en) * 2013-12-06 2015-06-18 三浦工業株式会社 Boiler apparatus
CN107166369A (en) * 2017-04-27 2017-09-15 新奥泛能网络科技股份有限公司 Water supply system
CN109539227A (en) * 2018-10-31 2019-03-29 山西钢科碳材料有限公司 A kind of method that boiler system reduces blowdown rate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111016A (en) * 2013-12-06 2015-06-18 三浦工業株式会社 Boiler apparatus
CN107166369A (en) * 2017-04-27 2017-09-15 新奥泛能网络科技股份有限公司 Water supply system
CN109539227A (en) * 2018-10-31 2019-03-29 山西钢科碳材料有限公司 A kind of method that boiler system reduces blowdown rate

Similar Documents

Publication Publication Date Title
US10875770B2 (en) Method and equipment for cooling sulphuric acid
JP6802801B2 (en) A system that passively removes heat from a pressurized water reactor through a steam generator
CN107112059A (en) Stop cooling system and the nuclear facilities with the stopping cooling system
US9890948B2 (en) Method for preheating feed water in steam power plants, with process steam outcoupling
KR20130117857A (en) Boiler plant
IL192620A (en) Steam circuit in a power station
JP2006132901A (en) Heat exchange type blowing method and device
US20100115949A1 (en) Condensing equipment
EP1771696B1 (en) A method of and an apparatus for protecting a heat exchanger and a steam boiler provided with an apparatus for protecting a heat exchanger
CN209840154U (en) Boiler flue gas waste heat recovery system based on fluoroplastic heat exchanger
JP5984506B2 (en) Utilization method and system of waste heat in sulfuric acid production facility
JP4092262B2 (en) Water supply method to boiler of coke dry fire extinguishing equipment
US9791146B2 (en) Processed vapor make-up process and system
US4089304A (en) Apparatus for supplying feedwater to a steam generator
JP2000292589A (en) Reactor power generation facility
JPH07119918A (en) Drain recovering apparatus
CN219160325U (en) Water supply and temperature rise system of thermal deaerator of heating medium furnace
CN217109523U (en) Condensate system and dry quenching boiler system
CN217584394U (en) Energy-saving system of boiler blow-down flash tank
JP2556596B2 (en) Heat recovery device for coke dry fire extinguishing equipment
RU2213293C2 (en) Apparatus for producing of high-pressure superheated water
CN105180141B (en) Boiler and water supply system passivating film high-efficient cleaning system
Thumann et al. Steam System Optimization: A Case Study
JPH10237451A (en) Heat recovery apparatus of coke dry-quenching apparatus
CN105164486A (en) Shell and tube heat exchanger arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A131 Notification of reasons for refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422