JP2006131691A - Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water - Google Patents

Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water Download PDF

Info

Publication number
JP2006131691A
JP2006131691A JP2004319921A JP2004319921A JP2006131691A JP 2006131691 A JP2006131691 A JP 2006131691A JP 2004319921 A JP2004319921 A JP 2004319921A JP 2004319921 A JP2004319921 A JP 2004319921A JP 2006131691 A JP2006131691 A JP 2006131691A
Authority
JP
Japan
Prior art keywords
oxide
biomass
hydrogen
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004319921A
Other languages
Japanese (ja)
Inventor
Masaru Watanabe
賢 渡邉
Hiroshi Inomata
宏 猪股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004319921A priority Critical patent/JP2006131691A/en
Publication of JP2006131691A publication Critical patent/JP2006131691A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of selectively synthesizing hydrogen at a low temperature under high pressure, without using a high-priced catalyst. <P>SOLUTION: In this method, biomass is partially oxidized at the low temperature, so as to make carbon monoxide (CO) selectively react, and the CO and water are converted into the hydrogen through water gas shift reaction. Thus, the hydrogen is selectively produced at one step by making the biomass, the water of the high pressure and a high temperature, oxygen, and a metal oxide, such as zinc oxide, coexist in a reaction tube and together reacting them for a prescribed time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温プロセスが可能で、高価な触媒は使用しない、水素の製造方法に関する。 The present invention relates to a method for producing hydrogen that can be processed at a low temperature and does not use an expensive catalyst.

従来、セルロースに代表される木質系バイオマスからの水素製造は水を用いない乾式ガス化と水を用いる湿式ガス化が行われている。乾式ガス化の場合には効率よくガス化するために依然として600℃以上の高温で行われているのに対し、より省エネルギーでのプロセスを指向して湿式ガス化が行われている。特に圧力を保持し液体様の高温高圧水を用いた高温高圧水ガス化に関して、これまで、以下の方法が提案されてきた。   Conventionally, hydrogen production from woody biomass represented by cellulose has been performed by dry gasification without using water and wet gasification using water. In the case of dry gasification, in order to efficiently gasify, it is still performed at a high temperature of 600 ° C. or higher, whereas wet gasification is performed aiming at a more energy-saving process. In particular, the following methods have been proposed so far regarding gasification of high-temperature and high-pressure water using liquid-like high-temperature and high-pressure water while maintaining pressure.

特許文献1(特開平11-502891号)では、バイオマスや有機廃棄物を超臨界水中において、酸素を添加せず固体炭素系触媒を使用して接触熱分解し、水素およびメタンを含有するガスを得ている。これによれば、ウェット・バイオマスなどからメタンおよび多量の水素を含むガスを生成することができる。   In Patent Document 1 (Japanese Patent Laid-Open No. 11-502891), biomass and organic waste are subjected to catalytic pyrolysis in supercritical water using a solid carbon-based catalyst without adding oxygen to produce a gas containing hydrogen and methane. It has gained. According to this, a gas containing methane and a large amount of hydrogen can be generated from wet biomass or the like.

しかし、処理するバイオマスなどの処理量に比べかなり多量のココナッツ殻活性炭などの固体炭素系触媒を使用する必要があり、使用後の炭素系触媒の最終処理が問題である。また、活性炭などの固体炭素系触媒は吸着機能が強く、バイオマスなどの中に含まれる無機塩類を捕集するため、短期間に活性を失いやすい。このため固体炭素系触媒の寿命は充分ではない。更には触媒粒子間に無機塩類や炭素が析出し、反応器を閉塞するに至るおそれがある。   However, it is necessary to use a considerably larger amount of solid carbon-based catalyst such as coconut shell activated carbon than the amount of biomass to be treated, and the final treatment of the carbon-based catalyst after use is a problem. In addition, solid carbon catalysts such as activated carbon have a strong adsorption function and collect inorganic salts contained in biomass and the like, and thus easily lose their activity in a short time. For this reason, the lifetime of the solid carbon-based catalyst is not sufficient. Furthermore, there is a possibility that inorganic salts and carbon are deposited between the catalyst particles and the reactor is blocked.

特許文献1(特開平11-502891号)の欠点を補うガス化方法として提案された特許文献2(特開2004-131560号)では、超臨界水中において有機物スラリーを酸素の存在下Ni系触媒あるいはRu系触媒による接触分解を行い、メタンや水素を主要成分としたガスを得ている。この際、無機塩類や炭素を捕集する固体粒子を有機物スラリーに混在させておき、触媒劣化を防ぐことが提案されている。この方法において、無機塩類などによる触媒劣化が軽減される可能性はあるが、ガス化に使用されている触媒がNiもしくは貴金属であるため、メタン化も同時進行するため、500℃以下で本法を運転する場合には水素を選択的に合成することはできない。   In Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-131560) proposed as a gasification method that compensates for the drawbacks of Patent Document 1 (Japanese Patent Application Laid-Open No. 11-502891), an organic slurry in a supercritical water in the presence of oxygen or a Ni-based catalyst Catalytic cracking with Ru-based catalyst is performed to obtain gas containing methane and hydrogen as main components. At this time, it has been proposed that solid particles for collecting inorganic salts and carbon are mixed in an organic slurry to prevent catalyst deterioration. Although this method may reduce catalyst deterioration due to inorganic salts, etc., since the catalyst used for gasification is Ni or a noble metal, methanation also proceeds simultaneously. Hydrogen cannot be selectively synthesized when operating.

更にバイオマスの高温水中でのガス化について整理して述べると、この方法には大きく分けて次の3つの手法が提案されている。   Furthermore, the gasification of biomass in high-temperature water will be summarized. The following three methods have been proposed for this method.

1つ目はハワイ大学のAntal教授らのグループが開発した500℃以上での活性炭を触媒とする方法(活性炭法)である。これは先に示した特許文献1のことである。この方法では先に述べたように高温を必要とすること、活性炭上に炭素が析出してしまうことなどの問題がある。   The first is a method using activated carbon above 500 ° C (activated carbon method) developed by a group of Prof. Antal at the University of Hawaii. This is the patent document 1 described above. As described above, this method has problems such as requiring a high temperature and depositing carbon on the activated carbon.

2つ目は、産総研の美濃輪博士やドイツ・カールスルーエ研究所のKruse博士が提案する400〜600℃でのアルカリ触媒を用いる方法(アルカリ法)である。この場合も比較的高温を必要とし、さらにアルカリを含まない有機化合物の場合にはアルカリを添加しなければならず、その際の触媒再利用とアルカリによる反応内壁の腐食の問題がある。   The second is a method using an alkali catalyst at 400-600 ° C (alkaline method) proposed by Dr. Minowa of AIST and Dr. Kruse of Karlsruhe Institute in Germany. In this case as well, a relatively high temperature is required, and in the case of an organic compound containing no alkali, an alkali must be added, and there are problems of catalyst reuse and corrosion of the inner wall of the reaction due to the alkali.

3つ目は、東北大・新井教授、産総研・美濃輪博士、アメリカのElliott博士およびDumesic教授らが提案する200〜400℃での貴金属触媒を用いる方法(貴金属法)である。この場合には、温度領域にもよるが様々なバイオマス資源をガス化させることができるものの
、高価な貴金属を用いている点と、メタンの副生により水素の選択率が低いという点が問題である。信州大学の富安教授はルテニウム酸化物を用いる方法を提案しているが、この方法は基本的に貴金属法と同様と見てよい。
The third is a method (noble metal method) proposed by Tohoku University / Professor Arai, AIST / Minowa, Dr. Elliott of the United States and Prof. Dumesic using a noble metal catalyst at 200-400 ° C. In this case, although depending on the temperature range, various biomass resources can be gasified, the problem is that expensive noble metals are used and the selectivity of hydrogen is low due to the byproduct of methane. is there. Prof. Fuyasu of Shinshu University has proposed a method using ruthenium oxide, but this method can be seen basically as the precious metal method.

また、本発明と同様に水中での部分酸化を利用した水素製造方法にメタンやメタノールの改質・水素製造法がある。この方法での反応温度は250℃程度であり本手法と同様であるが、圧力は常圧であるためこの方法はこの条件で気体になる物質以外には適用できなかった。
特開平11−502891号公報 特開平2004−131560号公報
Similarly to the present invention, a hydrogen production method utilizing partial oxidation in water includes methane and methanol reforming and hydrogen production methods. The reaction temperature in this method is about 250 ° C., which is the same as this method. However, since the pressure is normal pressure, this method cannot be applied to substances other than those that become gas under these conditions.
Japanese Patent Laid-Open No. 11-502891 Japanese Patent Laid-Open No. 2004-131560

上記の特許および非特許文献の情報を整理・集約すると、高温反応法(活性炭およびアルカリ法)ではガス化・水素選択的生成が容易であるものの、高温という高いエネルギーを必要とする点と炭素析出や反応装置の腐食の点が問題点として挙げられる。低温反応法(貴金属法)は高価な貴金属を用いる点とメタンが副生してしまうところが問題である。また、メタンやメタノールから水蒸気改質・水素製造法は水蒸気条件であるためバイオマスは溶解せずバイオマスからの水素製造には適用できなかった。これらの問題点を解決するためには低温・高圧で、高価な触媒は使用せず、水素を選択的に合成できる方法の提案を行う。   Organizing and consolidating the information in the above patents and non-patent literature, high temperature reaction method (activated carbon and alkali method) is easy to gasify and hydrogen selectively, but requires high energy of high temperature and carbon deposition. And the point of corrosion of the reactor is cited as a problem. The low temperature reaction method (noble metal method) is problematic in that expensive noble metals are used and methane is by-produced. In addition, since steam reforming and hydrogen production from methane and methanol are steam conditions, the biomass is not dissolved and cannot be applied to hydrogen production from biomass. To solve these problems, we propose a method that can selectively synthesize hydrogen at low temperature and high pressure without using expensive catalysts.

本発明によれば、高温高圧水中下におけるバイオマスのガス化反応において、金属酸化物触媒、と酸化剤、とを用いる事を特徴とするバイオマスからの水素製造方法を得る事ができる。本発明によれば、前記酸化剤は、有機物を部分酸化させCOを生成させる性能の高い部分酸化触媒能金属酸化物、あるいは、COの水性ガスシフト反応を有効に進行させる水性ガスシフト反応金属酸化物、の内の1つあるいはその双方である事を特徴とするバイオマスからの水素製造方法を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the hydrogen production method from biomass characterized by using a metal oxide catalyst and an oxidizing agent in the gasification reaction of biomass in high temperature / high pressure water can be obtained. According to the present invention, the oxidizing agent may be a partial oxidation catalytic ability metal oxide having a high performance of partially oxidizing organic substances to generate CO, or a water gas shift reaction metal oxide that effectively proceeds a water gas shift reaction of CO, It is possible to obtain a method for producing hydrogen from biomass characterized by being one or both of the above.

本発明によれば、前記部分酸化触媒能金属酸化物は、Ce酸化物、Cu酸化物、Cr酸化物、Mn酸化物、Mo酸化物、Ni酸化物、Zn酸化物、Zr酸化物、W酸化物の内の1つあるいはその組み合わせである事を特徴とするバイオマスからの水素製造方法を得ることができる。
本発明によれば、前記水性ガスシフト反応金属酸化物はCu酸化物、Cr酸化物、Fe酸化物、Ni酸化物、Zn酸化物、Zr酸化物の内の1つあるいはその組み合せである事を特徴とするバイオマスからの水素製造方法を得ることができる。
According to the present invention, the partial oxidation catalytic ability metal oxide is Ce oxide, Cu oxide, Cr oxide, Mn oxide, Mo oxide, Ni oxide, Zn oxide, Zr oxide, W oxidation. It is possible to obtain a method for producing hydrogen from biomass, which is characterized in that it is one of the products or a combination thereof.
According to the present invention, the water gas shift reaction metal oxide is one or a combination of Cu oxide, Cr oxide, Fe oxide, Ni oxide, Zn oxide, and Zr oxide. A method for producing hydrogen from biomass can be obtained.

本発明によれば、前記高温が200℃〜500℃であり、前記高圧が10〜30気圧である事を特徴とするバイオマスからの水素製造方法を得ることができる。   According to the present invention, it is possible to obtain a method for producing hydrogen from biomass, characterized in that the high temperature is 200 ° C. to 500 ° C. and the high pressure is 10 to 30 atm.

本発明は、従来バイオマスのガス化反応では極力混入を避けられていた酸素や過酸化水素などの酸化剤を、積極的に存在させて低温でバイオマスを部分酸化することによりCOを選択的に反応させ、そのCOを水と水性ガスシフト反応を介して水素に変換する方法である。本発明によれば、反応管にグルコースなどの有機物と、高温高圧の水、酸素と酸化亜鉛などの金属酸化物を共存させて所定時反応させることにより一段で選択的に水素が製造できるという効果が得られる。   The present invention selectively reacts with CO by partially oxidizing biomass at a low temperature by actively presenting an oxidizing agent such as oxygen or hydrogen peroxide, which has been avoided in the gasification reaction of biomass as much as possible. The CO is converted to hydrogen through water and water gas shift reaction. Advantageous Effects of Invention According to the present invention, hydrogen can be selectively produced in one step by reacting a reaction tube at a predetermined time with an organic substance such as glucose, high-temperature and high-pressure water, and oxygen and a metal oxide such as zinc oxide in a reaction tube. Is obtained.

本法のメリットは、まず低温で酸化剤による部分酸化によりCOを生成させ、その後、水性ガスシフトで水素ガスを製造する方法であるため、本ガス化反応ではメタンはほとんど生成せず、高選択的な水素製造方法であるということである。   The advantage of this method is that CO is first produced at a low temperature by partial oxidation with an oxidant, and then hydrogen gas is produced by water gas shift. Therefore, in this gasification reaction, methane is hardly produced and highly selective. This is a new hydrogen production method.

2番目のメリットとしては、酸化剤による酸化反応によるガス化であるため、触媒上への炭素析出がほとんど起こらないことが挙げられる。   The second merit is that almost no carbon deposition occurs on the catalyst because it is gasification by oxidation reaction with an oxidizing agent.

3番目として、常圧の加熱水蒸気中でのメタンやメタノールの水素改質と異なり、本手法は高温高圧水(高密度の水溶媒環境)を反応場としているためバイオマスや有機廃棄物など様々な有機物質のガス化・水素製造に適用できることを挙げることができる。   Third, unlike hydrogen reforming of methane or methanol in atmospheric steam, this method uses high-temperature and high-pressure water (a high-density aqueous solvent environment) as a reaction field, so there are various types of biomass and organic waste. It can be mentioned that it can be applied to gasification of organic substances and hydrogen production.

4番目として、本手法で使用している触媒が、酸化亜鉛などの安価な金属酸化物を使用できることにある。この触媒に求められる性能は有機物を酸化剤で部分酸化させCOを生成させる性能が高いこと、またCOの水性ガスシフト反応を有効に進行させられること、の2点である。したがって、部分酸化触媒能が高い金属酸化物(Ce酸化物、Cu酸化物、Cr酸化物、Mn酸化物、Mo酸化物、Ni酸化物、Zn酸化物、Zr酸化物、W酸化物など)と水性ガスシフト反応に有効な金属酸化物(Cu酸化物、Cr酸化物、Fe酸化物、Ni酸化物、Zn酸化物、Zr酸化物など)それぞれもしくはそれらの複合物が本手法に有効である。   Fourthly, the catalyst used in this method can use an inexpensive metal oxide such as zinc oxide. The performance required for this catalyst is two points: high performance of partially oxidizing organic substances with an oxidizing agent to generate CO, and effective progression of CO water gas shift reaction. Therefore, metal oxides (Ce oxide, Cu oxide, Cr oxide, Mn oxide, Mo oxide, Ni oxide, Zn oxide, Zr oxide, W oxide, etc.) with high partial oxidation catalytic ability Each metal oxide (Cu oxide, Cr oxide, Fe oxide, Ni oxide, Zn oxide, Zr oxide, etc.) effective for the water gas shift reaction or a composite thereof is effective for this method.

5番目のメリットは、本手法がバイオマスガス化の手法では300℃前後と低い温度であるということであり、エネルギー的に有利であるということである。6番目としては、200℃〜300℃前後のバイオマスガス化や常温常圧での微生物などによる生物学的なガス化反応の反応時間は数時間〜数日程度必要なのに対し、本手法では数秒から数分のオーダーでバイオマスをガス化できることにある。   The fifth merit is that this method has a low temperature of around 300 ° C. in the biomass gasification method, which is advantageous in terms of energy. Sixthly, the reaction time for biological gasification reaction with microorganisms such as biomass gasification at around 200 ° C to 300 ° C or at normal temperature and normal pressure is required from several hours to several days, whereas in this method, it takes from several seconds. Biomass can be gasified on the order of several minutes.

以下、本発明の実施の形態について図面を参照しながら説明する。まず、本発明の実証のための実験内容を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the contents of an experiment for demonstrating the present invention will be described.

実験には、和光純薬(株)製のD-Glucose(純度98+%)を用いた。水は超純水製造装置を用いて処理した蒸留水を使用した。実験に用いた触媒は、均一触媒としてH2SO4およびNaOHであり、その濃度はいずれも1mMとした。また、金属酸化物としてMoO3、Ag2O、TiO2、MnO2、ZrO2、Fe2O3、Cr2O3、CuO、NiO、ZnO、およびRuO2であり、全て和光純薬から購入した市販品をそのまま用いた。金属触媒としてNiおよびRuも用いた。これらも和光純薬から購入したものを用いた。 In the experiment, D-Glucose (purity 98 +%) manufactured by Wako Pure Chemical Industries, Ltd. was used. Distilled water treated using an ultrapure water production apparatus was used as water. The catalysts used in the experiment were H 2 SO 4 and NaOH as homogeneous catalysts, and the concentrations were both 1 mM. In addition, MoO3, Ag2O, TiO2, MnO2, ZrO2, Fe2O3, Cr2O3, CuO, NiO, ZnO, and RuO2 were used as metal oxides, and all commercially available products purchased from Wako Pure Chemicals were used as they were. Ni and Ru were also used as metal catalysts. These were also purchased from Wako Pure Chemical.

実験は、図1に示す回分式反応装置を用いて行った。内容積は6
ccとした。また、気体の仕込みおよび回収のために高圧用ストップバルブを設置した。反応温度は200〜500℃と変化させたが、主に300℃とした。その他実験条件は、水1.0g、グルコース0.1g、各種固体触媒0.1gとした。酸素を加えた実験では、10〜30気圧程度の酸素もしくは30%過酸化水素水を0.05〜0.1g程度仕込んだ。反応時間は60秒から300秒とした。反応温度200℃での実験の際に60分程度までの反応も行った。
The experiment was conducted using a batch reactor shown in FIG. The internal volume is 6
cc. In addition, a high-pressure stop valve was installed for gas charging and recovery. Although the reaction temperature was changed from 200 to 500 ° C, it was mainly 300 ° C. Other experimental conditions were 1.0 g of water, 0.1 g of glucose, and 0.1 g of various solid catalysts. In the experiment in which oxygen was added, about 0.05 to 0.1 g of oxygen of about 10 to 30 atmospheres or 30% hydrogen peroxide was charged. The reaction time was 60 to 300 seconds. During the experiment at a reaction temperature of 200 ° C., the reaction was carried out for up to about 60 minutes.

反応管内に所定量の試料、蒸留水、触媒などを仕込み、反応管内の空気を2.5 MPa のArガスで置換もしくは所定量の酸素を導入した。反応は所定温度に設定した流動砂浴に反応管を投入することにより開始した。急速に昇温させるため、投入した反応管を砂浴中で震盪した。所定時間経過後、反応管を砂浴から取り出し、冷水浴に浸すことで反応を停止させた。反応管にシース式K型熱電対を取り付けて反応管内の温度変化を測定した結果、試料や流動砂浴の温度によらずほぼ90
secで砂浴の温度まで昇温し、10 secで室温まで冷却された。
A predetermined amount of sample, distilled water, catalyst, and the like were charged into the reaction tube, and the air in the reaction tube was replaced with 2.5 MPa Ar gas or a predetermined amount of oxygen was introduced. The reaction was started by putting the reaction tube into a fluidized sand bath set at a predetermined temperature. In order to raise the temperature rapidly, the charged reaction tube was shaken in a sand bath. After a predetermined period of time, the reaction tube was removed from the sand bath and immersed in a cold water bath to stop the reaction. As a result of measuring the temperature change in the reaction tube with a sheath type K-type thermocouple attached to the reaction tube, it was almost 90 regardless of the temperature of the sample or the fluidized sand bath.
The temperature was raised to the temperature of the sand bath in sec and cooled to room temperature in 10 sec.

ストップバルブを体積測定用シリンジに接続して生成ガスを回収するとともに体積を測定した。その後、2台のGC-TCDを用いて気体生成物(H2、CO、CO2)の定量を行った。検量線は標準ガスのピーク面積を用いて作成した。 A stop valve was connected to a volumetric syringe to collect the generated gas and measure the volume. Thereafter, the gas products (H 2 , CO, CO 2 ) were quantified using two GC-TCDs. A calibration curve was prepared using the peak area of the standard gas.

気体回収後、反応管内を超純水で洗浄し、内容物をすべてビーカーに回収した。これをメンブランフィルター(孔径0.2
μm)を用いて吸引濾過し、水可溶分と水不溶分に分離した。水不溶分は60℃で24時間乾燥させたのち秤量した。水可溶分は全有機炭素量をTOCで測定し、定性・定量はHPLC-UV/RIを用いて行った。検量線は濃度既知の試料のピーク面積を用いて作成した。
After gas recovery, the inside of the reaction tube was washed with ultrapure water, and the entire contents were recovered in a beaker. This is a membrane filter (pore size 0.2
(μm) and filtered with suction to separate a water-soluble component and a water-insoluble component. The water-insoluble matter was weighed after drying at 60 ° C. for 24 hours. For water-soluble matter, the total organic carbon content was measured by TOC, and qualitative and quantitative analysis was performed using HPLC-UV / RI. A calibration curve was prepared using the peak area of a sample with a known concentration.

生成物の炭素(または水素)収率はグルコース基準で評価した。
次に実験結果について説明を行う。
ここでは、ガス化反応、特に水素の生成に着目して結果の説明を行う。
図2に気体生成物の炭素収率および水素収率を示す。すべての触媒で転化率はほぼ100%であり、気体生成物としては主にH2およびCO2が得られた。
The carbon (or hydrogen) yield of the product was evaluated on a glucose basis.
Next, the experimental results will be described.
Here, the results will be described focusing on the gasification reaction, particularly the generation of hydrogen.
FIG. 2 shows the carbon yield and hydrogen yield of the gaseous product. The conversion was almost 100% for all the catalysts, and mainly H 2 and CO 2 were obtained as gaseous products.

過酸化水素などの酸化剤を仕込まない場合(図2中で触媒名のみ記された実験は酸化剤を仕込まない場合の実験結果である)、ガス化反応の進行はMoO3、Ag2O、CuO、ZnO、RuO2、およびRu/Cにおいて顕著であった。超臨界水(374℃、22.1MPa以上)のガス化に有効であることが知られているRuO2は、本実験条件においてCO2収率は高い(32.9%)がH2はほとんど生成しなかった(0.6%)。MoO3、Ag2O、およびRu/CでもCO2収率が高い(ほぼ20%)ものの、RuO2同様、水素がほとんど生成しなかった。一方、メタノール水蒸気改質触媒に使用されているZnOおよびCuOにおいては高いH2収率(ZnO:4.7%、CuO:2.3%)が得られたもののCuOではCO2収率も高かった(31.6%)。 When no oxidizing agent such as hydrogen peroxide is charged (the experiment with only the catalyst name shown in Fig. 2 is the experimental result when no oxidizing agent is charged), the gasification progress is MoO3, Ag2O, CuO, ZnO. , RuO 2 , and Ru / C. RuO 2 , which is known to be effective for gasification of supercritical water (374 ° C, 22.1 MPa or more), has a high CO 2 yield (32.9%) under this experimental condition, but hardly generates H 2. (0.6%). MoO3, Ag2O, and Ru / C also had high CO2 yields (almost 20%), but almost no hydrogen was produced, as was RuO2. On the other hand, ZnO and CuO used in methanol steam reforming catalysts showed high H 2 yields (ZnO: 4.7%, CuO: 2.3%), but CuO also had high CO 2 yields (31.6%). ).

ParkとTomiyasuはRuO2の触媒反応に関して、400℃程度では図3に示すように有機物酸化によりRu4+がRu2+に還元され、H2Oの還元によってH2が生成する際にRu4+に戻る機構を提唱している。この反応機構に従えば、300℃の実験結果はRuO2が有機物をCO2とH2Oに酸化するものの、H2Oを還元する反応が遅いためにH2生成が少なかったものと考える。また、Cuは+2価から+1価へ容易に還元されることから、CuOにおいてもRuO2と同様の有機物の酸化反応が進行した可能性が示唆された。 Park and Tomiyasu relate to the catalytic reaction of RuO 2 at about 400 ° C when Ru 4+ is reduced to Ru 2+ by organic oxidation as shown in Fig. 3, and when H 2 is produced by reduction of H 2 O, Ru 4 Proposes a mechanism to return to + . According to this reaction mechanism, the experimental results at 300 ° C. suggest that RuO 2 oxidizes organic matter to CO 2 and H 2 O, but H 2 production was low due to the slow reaction of reducing H 2 O. In addition, Cu was easily reduced from +2 to +1, suggesting that the oxidation reaction of organic substances similar to RuO 2 may proceed in CuO.

これはMoO3、Ag2O、およびRu/C上でも同様の反応が進行している、つまり金属または金属酸化物と有機物/水との酸化還元反応がガス化を進行させるが、この反応温度では水を還元する反応が進行しにくいと考える。一方、ZnOではCO2収率は低くH2収率が高かった。ZnOが水性ガスシフト(WGS)反応を触媒することから、CuOやRuO2と異なりグルコースがまずCOに分解した後にWGSによりH2が生成したと考える。したがって、ZnOを用いることにより、有機物がCO2とH2Oに完全酸化することを防ぎ、H2を効率よく生成できると考える。 This is the same reaction on MoO3, Ag2O, and Ru / C, that is, the oxidation-reduction reaction of metal or metal oxide and organic matter / water promotes gasification. I think that the reaction to reduce does not progress easily. On the other hand, ZnO had a low CO 2 yield and a high H 2 yield. Considering the fact that ZnO catalyze the water gas shift (WGS) reaction, the WGS after decomposed into CuO or RuO 2 with different glucose is first CO with H 2 was produced. Therefore, by using the ZnO, organic matter prevents full oxidation to CO 2 and H 2 O, considered of H 2 can be efficiently produced.

次に、ZnOの触媒活性をより詳細に検討するために、200℃および300℃において気体生成物の経時変化を検討した。図4に200℃、および300℃における気体生成物収率の経時変化を示す。COおよびCH4収率はいずれの場合も0.4%未満と低いため示していない。転化率は200℃、5minにおいては80%となり、他はほぼ100%となった。200℃での検討結果では、昇温過程で気体はほとんど生成しなかった。これは200℃以下ではガス化反応の進行が遅いことを示している。H2収率は15分で2%、60分で3.1%と徐々に増加し、CO2収率も7%(15分)から14%(60分)と時間とともに増大した。300℃では、昇温過程において極めて迅速にガス化反応が進行するが、その後反応時間を15分から30分とした場合にH2収率はほとんど増加しないのに対し、CO2収率は徐々に増加した。 Next, in order to examine the catalytic activity of ZnO in more detail, the time course of the gas product was examined at 200 ° C and 300 ° C. FIG. 4 shows changes with time in the yield of gas products at 200 ° C. and 300 ° C. CO and CH 4 yield are not shown for low and less than 0.4% in any case. The conversion rate was 80% at 200 ° C for 5 minutes, and almost 100% for the others. According to the examination results at 200 ° C., almost no gas was generated during the heating process. This indicates that the gasification reaction proceeds slowly below 200 ° C. The H 2 yield gradually increased from 2% in 15 minutes to 3.1% in 60 minutes, and the CO 2 yield also increased from 7% (15 minutes) to 14% (60 minutes) with time. At 300 ° C, the gasification reaction proceeds very rapidly during the temperature increase process, but when the reaction time is changed from 15 minutes to 30 minutes, the H 2 yield hardly increases, whereas the CO 2 yield gradually increases. Increased.

このように、いずれの温度でも反応の初期においてはH2の生成反応が進行するが、時間とともに生成速度が遅くなり、一方でCO2収率は増加し続けた。これについては以下の理由が考えられる。つまり、(1)CO2の生成がWGS反応の進行を示しているとすると、生成したH2を消費する反応が進行している、(2)グルコースは異性化や脱水、逆アルドール縮合などを経てアルデヒドやカルボン酸に変換されるが、生成したカルボン酸が脱炭酸などにより分解したためCO2が生成している、(3)ZnOにおいてもRuO2やCuOと同様の酸化反応が徐々に進行している、などである。 Thus, at any temperature, the H 2 production reaction proceeded at the beginning of the reaction, but the production rate slowed with time, while the CO 2 yield continued to increase. The following reasons are conceivable. In other words, (1) If the production of CO 2 indicates the progress of the WGS reaction, the reaction that consumes the generated H 2 is proceeding. (2) Glucose undergoes isomerization, dehydration, reverse aldol condensation, etc. After that, it is converted to aldehyde and carboxylic acid, but CO 2 is generated because the generated carboxylic acid is decomposed by decarboxylation, etc. (3) In ZnO, oxidation reaction similar to RuO 2 and CuO proceeds gradually. And so on.

上記のようにZnOは水素製造に有効である可能性が明らかになったが、ZnO/水/グルコースだけでは水素収率が低かった。ZnOが水性ガスシフト反応の触媒であるなら、COの生成を促進すればよく、そのためにはCuOのような酸化触媒かもしくは酸素や過酸化水素のような酸化剤などを加えることで酸化反応を促進させ、CO収率を増大させればよいことになる。   As described above, it has been clarified that ZnO is effective for hydrogen production, but the yield of hydrogen was low only with ZnO / water / glucose. If ZnO is a catalyst for the water gas shift reaction, it is only necessary to promote the production of CO. To that end, an oxidation catalyst such as CuO or an oxidizing agent such as oxygen or hydrogen peroxide is added to promote the oxidation reaction. And increase the CO yield.

そこで、ZnO/水/グルコースの系に0.055gおよび0.1gの30%過酸化水素(H2O2)を加えた実験を行った。結果を図2に示した(図中でZnO+30% H2O2 (0.055g)とZnO+30% H2O2 (0.1g)とした項目)。図に示すように、0.055gの過酸化水素を加えることで水素収率が10%程度と過酸化水素を加えなかった場合の2倍に増大した。さらに0.1g加えることで25%程度の水素を製造することができた。   Therefore, an experiment was conducted in which 0.055 g and 0.1 g of 30% hydrogen peroxide (H2O2) were added to the ZnO / water / glucose system. The results are shown in FIG. 2 (in the figure, items with ZnO + 30% H2O2 (0.055 g) and ZnO + 30% H2O2 (0.1 g)). As shown in the figure, by adding 0.055 g of hydrogen peroxide, the hydrogen yield increased to about 10%, which is twice as much as when hydrogen peroxide was not added. An additional 0.1 g of hydrogen could produce about 25% hydrogen.

この水素製造量を他のガス化反応と比較するために、RuO2触媒を用いて400℃、5分と500℃、1分の実験を行った。結果は同様に図2に示した。400℃、5分では水素が12%程度生成し、同時に30%程度のメタンが生成した。500℃、1分では水素が20%程度生成し、やはり25%程度のメタンの生成がみられた。   In order to compare this hydrogen production with other gasification reactions, experiments were conducted using RuO2 catalyst at 400 ° C for 5 minutes and at 500 ° C for 1 minute. The results are also shown in FIG. At 400 ° C for 5 minutes, about 12% of hydrogen was produced, and about 30% of methane was produced at the same time. At 500 ° C for 1 minute, about 20% of hydrogen was produced, and about 25% of methane was produced.

過酸化水素を加えたZnOの結果と比べると、300℃という低温であるにも関わらずRuO2を用いて500℃でガス化を行った場合と同量の水素が回収できた。またZnOではメタンがほとんど生成しないため、水素の選択率は極めて高い。   Compared to the results of ZnO with hydrogen peroxide, the same amount of hydrogen was recovered as when gasified at 500 ° C using RuO2 despite the low temperature of 300 ° C. ZnO produces very little methane, so hydrogen selectivity is extremely high.

酸化剤を加えた場合のZnOによるガス化を、より詳細に検討するために、加える酸素量を変化させた実験を行った。酸化剤は過酸化水素もしくは酸素である。結果を図5に示す。炭素に対して酸素を増大させることでガス化が進行し、O/Cが1程度までは25%程度の水素が製造できる。一方、それ以上酸素を増加させても水素収率は17〜18%程度と酸素量に依存せずほぼ一定となった。CO2生成量もほぼ80%程度とほぼ一定であった。これより、酸素/炭素比には最適な値が存在する可能性が示唆された。   In order to examine in detail gasification with ZnO when an oxidizing agent is added, an experiment was performed in which the amount of oxygen added was changed. The oxidizing agent is hydrogen peroxide or oxygen. The results are shown in FIG. Gasification progresses by increasing oxygen with respect to carbon, and about 25% hydrogen can be produced up to about 1 O / C. On the other hand, even if oxygen was increased further, the hydrogen yield was about 17-18%, which was almost constant regardless of the amount of oxygen. The amount of CO2 produced was almost constant at about 80%. This suggested that there may be an optimum value for the oxygen / carbon ratio.

さらに、よりガス化反応の機構を解明するために、O/Cを2程度に固定し、経時変化について検討した。結果を図6に示す。メタンはいずれの場合も収率が0であったため、ここには示さない。実験点にばらつきはあるものの、酸素が消費されるにしたがって、CO2、CO、およびH2が徐々に生成した。水素は徐々に増加しているようにも見て取れるが、反応時間60秒からすでに約20%程度であり、顕著な増加は見られなかった。これより、本系でのガス生成、特に水素生成は極めて短時間で進行し、その後、酸素を添加しなかった場合と同様に水素の消費反応もしくはCO生成反応停止のために、水素を増加させることができなかった。   Furthermore, in order to further elucidate the mechanism of the gasification reaction, the O / C was fixed at about 2, and the change with time was examined. The results are shown in FIG. Methane was not shown here because the yield was 0 in all cases. Although there were variations in experimental points, CO2, CO, and H2 were gradually generated as oxygen was consumed. Although it can be seen that hydrogen is gradually increasing, the reaction time was already about 20% from 60 seconds, and no significant increase was observed. As a result, gas generation in this system, particularly hydrogen generation, proceeds in a very short time, and then hydrogen is increased to stop the hydrogen consumption reaction or CO generation reaction as in the case where oxygen is not added. I couldn't.

従来の水素製造方法において高温反応法(活性炭およびアルカリ法)ではガス化・水素選択的生成が容易であるものの、高温という高いエネルギーを必要とする点と炭素析出や反応装置の腐食の点が問題点として挙げられる。低温反応法(貴金属法)は高価な貴金属を用いる点とメタンが副生してしまうところが問題である。   In conventional hydrogen production methods, high-temperature reaction methods (activated carbon and alkali methods) are easy to gasify and selectively produce hydrogen, but they require high energy at high temperatures and carbon deposition and corrosion of reactors. It is mentioned as a point. The low temperature reaction method (noble metal method) is problematic in that expensive noble metals are used and methane is by-produced.

本発明によれば低温でバイオマスを部分酸化することによりCOを選択的に反応させ、そのCOを水と水性ガスシフト反応を介して水素に変換することができる。本発明はバイオマスを用いた安価で、有害副産物のない水素製造方法である。   According to the present invention, CO can be selectively reacted by partially oxidizing biomass at a low temperature, and the CO can be converted to hydrogen through water and water gas shift reaction. The present invention is an inexpensive hydrogen production method using biomass and free from harmful byproducts.

実験に用いた回分式反応装置Batch reactor used in the experiment グルコースガス化反応に及ぼす触媒および過酸化水素の効果反応温度:300℃,反応時間:90秒、水:1.0g、グルコース0.1g、触媒0.1g、H2SO4:1mM、NaOH:1mM。ただし、RuO2の実験では400℃および500℃の実験も行った。この際の反応時間は400℃で5分、500℃では1分とした。Effect of catalyst and hydrogen peroxide on glucose gasification reaction Reaction temperature: 300 ° C., reaction time: 90 seconds, water: 1.0 g, glucose 0.1 g, catalyst 0.1 g, H 2 SO 4 : 1 mM, NaOH: 1 mM. However, in the RuO 2 experiment, experiments at 400 ° C. and 500 ° C. were also conducted. The reaction time at this time was 5 minutes at 400 ° C. and 1 minute at 500 ° C. RuO2におけるガス化機構Gasification mechanism in RuO2. ZnOを用いたガス化反応の反応時間依存性Reaction time dependence of gasification reaction using ZnO 酸素/炭素比がガス化に及ぼす影響(300℃、90秒)Effect of oxygen / carbon ratio on gasification (300 ° C, 90 seconds) O/C = 2におけるZnO/O2/グルコース/水系でのガス化反応の経時変化(300℃)Temporal change of gasification reaction in ZnO / O2 / glucose / water system at O / C = 2 (300 ℃) 連続式バイオマス転換型水素製造装置 反応装置概略図Continuous biomass conversion hydrogen production system 連続式バイオマス転換型水素製造装置Continuous biomass conversion hydrogen production system

Claims (5)

高温高圧水中下におけるバイオマスのガス化反応において、金属酸化物触媒、と酸化剤、とを用いる事を特徴とするバイオマスからの水素製造方法。 A method for producing hydrogen from biomass, comprising using a metal oxide catalyst and an oxidizing agent in a gasification reaction of biomass in high-temperature and high-pressure water. 前記酸化剤は、有機物を部分酸化させCOを生成させる性能の高い部分酸化触媒能金属酸化物、あるいは、COの水性ガスシフト反応を有効に進行させる水性ガスシフト反応金属酸化物、の内の1つあるいはその双方である事を特徴とする請求項1記載のバイオマスからの水素製造方法。 The oxidizing agent may be one of a partial oxidation catalytic ability metal oxide having a high performance for partially oxidizing an organic substance to generate CO, or a water gas shift reaction metal oxide for effectively promoting a water gas shift reaction of CO, or The method for producing hydrogen from biomass according to claim 1, characterized in that it is both of them. 前記部分酸化触媒能金属酸化物は、Ce酸化物、Cu酸化物、Cr酸化物、Mn酸化物、Mo酸化物、Ni酸化物、Zn酸化物、Zr酸化物、W酸化物の内の1つあるいはその組み合わせである事を特徴とする請求項2記載のバイオマスからの水素製造方法。 The partial oxidation catalytic ability metal oxide is one of Ce oxide, Cu oxide, Cr oxide, Mn oxide, Mo oxide, Ni oxide, Zn oxide, Zr oxide, and W oxide. Or it is the combination, The hydrogen production method from biomass of Claim 2 characterized by the above-mentioned. 前記水性ガスシフト反応金属酸化物はCu酸化物、Cr酸化物、Fe酸化物、Ni酸化物、Zn酸化物、Zr酸化物の内の1つあるいはその組み合せである事を特徴とする請求項2記載のバイオマスからの水素製造方法。 3. The water gas shift reaction metal oxide is one or a combination of Cu oxide, Cr oxide, Fe oxide, Ni oxide, Zn oxide, and Zr oxide. Of hydrogen production from the biomass. 前記高温が200℃〜500℃であり、前記高圧が10〜30気圧である事を特徴とする請求項1乃至4の内に記載のバイオマスからの水素製造方法。
The method for producing hydrogen from biomass according to claim 1, wherein the high temperature is 200 ° C. to 500 ° C., and the high pressure is 10 to 30 atm.
JP2004319921A 2004-11-02 2004-11-02 Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water Pending JP2006131691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319921A JP2006131691A (en) 2004-11-02 2004-11-02 Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319921A JP2006131691A (en) 2004-11-02 2004-11-02 Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water

Publications (1)

Publication Number Publication Date
JP2006131691A true JP2006131691A (en) 2006-05-25

Family

ID=36725528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319921A Pending JP2006131691A (en) 2004-11-02 2004-11-02 Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water

Country Status (1)

Country Link
JP (1) JP2006131691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849672B1 (en) * 2007-12-04 2008-08-01 주식회사 아이파워 Organic waste treatment apparatus
WO2008109129A2 (en) * 2007-03-05 2008-09-12 Regents Of The University Of Minnesota Solid fuel volatilization to produce synthesis
JP2008222470A (en) * 2007-03-09 2008-09-25 Yokohama National Univ Apparatus and method for producing hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109129A2 (en) * 2007-03-05 2008-09-12 Regents Of The University Of Minnesota Solid fuel volatilization to produce synthesis
WO2008109129A3 (en) * 2007-03-05 2008-10-30 Univ Minnesota Solid fuel volatilization to produce synthesis
JP2008222470A (en) * 2007-03-09 2008-09-25 Yokohama National Univ Apparatus and method for producing hydrogen
KR100849672B1 (en) * 2007-12-04 2008-08-01 주식회사 아이파워 Organic waste treatment apparatus

Similar Documents

Publication Publication Date Title
Villa et al. Glycerol oxidation using gold-containing catalysts
Kumar et al. Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production
Soykal et al. Effect of support particle size in steam reforming of ethanol over Co/CeO2 catalysts
Sun et al. Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application
Azadi et al. Review of heterogeneous catalysts for sub-and supercritical water gasification of biomass and wastes
Sankar et al. Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles
Roh et al. Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO 2–ZrO 2 catalysts
Yao et al. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni–Al catalysts
Pairojpiriyakul et al. Catalytic reforming of glycerol in supercritical water with nickel-based catalysts
Stonor et al. Biomass conversion to H 2 with substantially suppressed CO 2 formation in the presence of Group I & Group II hydroxides and a Ni/ZrO 2 catalyst
CN102292283B (en) Catalysts for the production of hydrogen
Pairojpiriyakul et al. Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts
Naikoo et al. Thermocatalytic hydrogen production through decomposition of methane-A review
ATE521682T1 (en) PRODUCTION PROCESS OF A COBALT CATALYST BY WATER OR WATER VAPOR TREATMENT OF THE PRECURSOR
Therdthianwong et al. Hydrogen production from bioethanol reforming in supercritical water
Meng et al. Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone
CN106475113A (en) Multi-functional carbon-supported catalysts of a kind of cobalt sodium/molybdenum composite metal and its preparation method and application
CN107107017A (en) The method that methane is converted into synthesis gas
Chih et al. Statistical optimization of hydrogen production from bio-methanol steam reforming over Ni-Cu/Al2O3 catalysts
Kumar Ethanol decomposition and dehydrogenation for hydrogen production: a review of heterogeneous catalysts
da Silva et al. Ethanol formation from CO2 hydrogenation at atmospheric pressure using Cu catalysts: Water as a key component
WO2021235443A1 (en) Reaction system, method for collecting solid carbon, method for producing gas containing hydrogen, catalyst set, and catalyst for solid carbon collection
JP2006131691A (en) Method for producing hydrogen from biomass by partial oxidation in high temperature and high pressure water
JP2000143209A (en) Method for converting carbon monoxide, and catalyst
CN108906057B (en) Nano-scale intercalated hydrotalcite catalyst and preparation method and application thereof