JP2006131475A - Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure - Google Patents

Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure Download PDF

Info

Publication number
JP2006131475A
JP2006131475A JP2004324856A JP2004324856A JP2006131475A JP 2006131475 A JP2006131475 A JP 2006131475A JP 2004324856 A JP2004324856 A JP 2004324856A JP 2004324856 A JP2004324856 A JP 2004324856A JP 2006131475 A JP2006131475 A JP 2006131475A
Authority
JP
Japan
Prior art keywords
carbon
substrate
film
nanofibers
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324856A
Other languages
Japanese (ja)
Inventor
Masayuki Tanemura
眞幸 種村
Masashi Kitazawa
正志 北澤
Akira Ota
亮 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Nagoya Institute of Technology NUC
Original Assignee
Olympus Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Nagoya Institute of Technology NUC filed Critical Olympus Corp
Priority to JP2004324856A priority Critical patent/JP2006131475A/en
Publication of JP2006131475A publication Critical patent/JP2006131475A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube, a carbon nanofiber and a conical, pyramidal, acicular, columnar or the like projection (nano-structure) which are capable of being manufactured with high reproducibility while controlling selective growth and number density by low current ion irradiation. <P>SOLUTION: A piece of the carbon nanotube or the carbon nanofiber is grown selectively only on the projecting apex on a substrate by irradiating a soot like carbon film formed on the substrate with ion beam in a vacuum chamber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フィールド・エミッション・ディスプレイのカソード電極(電子源)やテレビの電子銃ならびにX線発生源のための電子銃やSPM用のSTMあるいはAFM等の探針あるいは導入針やマニュピレータ用の微小プローブの先端、太陽電池、光触媒、触媒担体として使用される。   The present invention relates to a field emission display cathode electrode (electron source), an electron gun for a television, an electron gun for an X-ray generation source, a probe such as an STM for SPM or AFM, an introduction needle, and a micro for an manipulator. Used as probe tip, solar cell, photocatalyst, catalyst carrier.

従来の炭素膜の成膜方法はアークイオンプレイティング法やアーク蒸着法、イオンビームスパッタ法さらにはECRプラズマCVD法等で成膜される。上記4つの方法によって得られる膜の特徴は、非常に緻密で堅い膜が形成される。アークイオンプレイティング法やアーク蒸着法は主に工具のコーティングに用いられる。ECRプラズマCVDは主にハードディスクの保護膜として使用される。
図1のカーボンナノファイバの成長装置を参照しながら従来技術によるカーボンナノファイバを成長させる場合について述べる。図1に示すように真空排気3、高エネルギービーム照射用のビーム径数mm〜数十cmのイオンガン4、駆動部2を設け、試料加熱が1000℃程度まで可能なヒーター加熱部5を備えた試料ステージ8からなる真空装置1を用いて、真空装置内にイオンガン4がカーボンナノファイバの成長させる方向と平行になるようにステージ8を可動させて、ステージ上に成長させたい基板6を配置する。
このような装置内で、真空度10−2〜10−8Pa程度、好ましくは10−3Pa〜10−5Pa程度とし、希ガスイオン種のアルゴンイオンを加速電圧0.1〜300keV、平均イオン電流密度を2μA/cm〜10mA/cm程度、イオンビームのスパッタ速度は2nm〜1μm/min程度として、室温で1〜100分のイオン照射により、探針先端より1μm程度のカーボンナノファイバを成長形成させる。このように、基板上にイオン照射を行うと、突起先端部の原子の化学結合及び移動が起こり、選択的に突起先端に1本の細線が形成されることになる。ここで、カーボンナノファイバの成長にあたっては室温で行ったが、室温から約500〜600℃まで加熱しながら行うことも可能であり、また室温から−150℃まで冷却しても良い。これらの場合には、カーボンナノファイバのみならずカーボンナノチューブも形成することができる。また、イオンビームのイオン電流密度、加速電圧を変えることにより、スパッタ速度を容易に変える事ができる。さらに、希ガスイオン種のアルゴンイオンを用いたが、ヘリウムイオン、ネオンイオン、キセノンイオンあるいは窒素イオン、酸素イオン又はCH基を含むイオン等の反応性ガスイオン種でも良い。
Conventional carbon film deposition methods include arc ion plating, arc vapor deposition, ion beam sputtering, and ECR plasma CVD. The characteristic of the film obtained by the above four methods is that a very dense and rigid film is formed. The arc ion plating method and arc vapor deposition method are mainly used for tool coating. ECR plasma CVD is mainly used as a protective film for hard disks.
The case of growing carbon nanofibers according to the prior art will be described with reference to the carbon nanofiber growth apparatus of FIG. As shown in FIG. 1, a vacuum exhaust 3, an ion gun 4 with a beam diameter of several mm to several tens of cm for irradiation with a high energy beam, and a drive unit 2 are provided, and a heater heating unit 5 capable of heating the sample up to about 1000 ° C. is provided. Using the vacuum apparatus 1 including the sample stage 8, the stage 8 is moved in the vacuum apparatus so that the ion gun 4 is parallel to the growth direction of the carbon nanofibers, and the substrate 6 to be grown on the stage is disposed. .
In such an apparatus, the degree of vacuum is about 10 −2 to 10 −8 Pa, preferably about 10 −3 Pa to 10 −5 Pa, and argon ions of rare gas ion species are averaged at an acceleration voltage of 0.1 to 300 keV. Carbon nanofibers having an ion current density of about 2 μA / cm 2 to 10 mA / cm 2 , an ion beam sputtering speed of about 2 nm to 1 μm / min, and ion irradiation of 1 to 100 minutes at room temperature for about 1 μm from the probe tip. Grow and form. Thus, when ion irradiation is performed on the substrate, chemical bonding and movement of atoms at the tip of the protrusion occur, and one thin line is selectively formed at the tip of the protrusion. Here, the growth of the carbon nanofibers was performed at room temperature, but can be performed while heating from room temperature to about 500 to 600 ° C., or may be cooled from room temperature to −150 ° C. In these cases, not only carbon nanofibers but also carbon nanotubes can be formed. Also, the sputtering rate can be easily changed by changing the ion current density and acceleration voltage of the ion beam. Furthermore, although the rare gas ion species argon ion is used, a reactive gas ion species such as helium ion, neon ion, xenon ion, nitrogen ion, oxygen ion or ion containing CH group may be used.

しかながら、かかる従来の方法ではカーボンナノファイバを成長させる場合、アークイオンプレイティング法で成膜した炭素皮膜を用いるとイオン電流密度が前記のように220μA/cm2程度必要であり、大型基板にカーボンナノファイバを成長させる場合、大電流を出すイオン源が必要となる。また今回アークイオンプレイティング法を用いたが、アーク蒸着法ならびにECRプラズマCVD法によって形成された炭素膜は同様にカーボンナノファイバを成長させるために200μA/cm2の電流値が必要であることは確認された。 However, in the case of growing carbon nanofibers in such a conventional method, if a carbon film formed by the arc ion plating method is used, an ionic current density of about 220 μA / cm 2 is necessary as described above, which is necessary for a large substrate. When carbon nanofibers are grown, an ion source that generates a large current is required. In addition, the arc ion plating method was used this time, but the carbon film formed by the arc vapor deposition method and the ECR plasma CVD method similarly needs a current value of 200 μA / cm 2 to grow the carbon nanofiber. confirmed.

本発明は上記課題に鑑みなされたもので、簡単な方法で、低電流のイオン照射で、選択成長性、数密度制御可能かつ、再現性良く製造可能なカーボンナノチューブ、カーボンナノファイバおよび円錐状、角錐状、針状、柱状等の突起(ナノ構造)を提供することを目的とする。
請求項毎に目的を述べると、請求項1、2に係わる発明は、イオン照射によるカーボンナノファイバを成長させるためのカーボン供給源を容易に提供することを目的とする。請求項3〜7に係わる発明は、具体的且つ最適なカーボンナノチューブ、カーボンナノファイバの製造方法を提供することを目的とする。請求項8に係わる発明は、選択成長性、数密度を制御して、金属、半導体、プラスチック、セラミックス等の任意の基板上に円錐状、角錐状、針状、柱状等の突起(ナノ構造)を製造する具体的且つ最適な方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems. Carbon nanotubes, carbon nanofibers, and cones that can be produced with a simple method, low-current ion irradiation, selective growth, number density control, and reproducibility, The object is to provide projections (nanostructures) such as pyramids, needles, and columns.
When the purpose is described for each claim, the invention according to claims 1 and 2 aims to easily provide a carbon supply source for growing carbon nanofibers by ion irradiation. It is an object of the present invention to provide a specific and optimum method for producing carbon nanotubes and carbon nanofibers. The invention according to claim 8 controls the selective growth property and the number density, and has a conical, pyramidal, acicular, columnar or the like projection (nanostructure) on an arbitrary substrate such as a metal, a semiconductor, a plastic, or a ceramic. It is an object to provide a specific and optimum method for producing the above.

上記課題を解決するため、請求項1に係わる発明は、煤状の炭素皮膜を基板上に形成した後、真空チャンバーでイオンビームを照射することで基板上の突起形状頂上部のみに選択的に一本のカーボンナノチューブあるいはカーボンナノファイバを成長させることを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 selectively forms only the top of the protrusion shape on the substrate by irradiating an ion beam in a vacuum chamber after forming a bowl-shaped carbon film on the substrate. One carbon nanotube or carbon nanofiber is grown.

このような製造方法により、容易にカーボン供給源を基板上に形成できると共に、低電流のイオン照射でカーボンナノファイバが製造でき、低コスト化が実現可能となる。   By such a manufacturing method, a carbon supply source can be easily formed on a substrate, and carbon nanofibers can be manufactured by ion irradiation with a low current, so that cost reduction can be realized.

請求項2に係わる発明は、請求項1の煤状炭素皮膜を炭素皮膜処理された基板にも適応することで、低電流のイオン照射で、更に効率よくかつ高密度にカーボンナノチューブ、カーボンナノファイバーが製造でき、低コスト化が実現可能となる。   The invention according to claim 2 applies the saddle-like carbon film of claim 1 to a substrate coated with a carbon film, so that carbon nanotubes and carbon nanofibers can be more efficiently and densely irradiated with low current ions. Can be manufactured and the cost can be reduced.

請求項3に係わる発明は、請求項1、2の煤状炭素皮膜は大気中において火炎先端に基板を近づけることで炭素膜を形成する事を特徴とする。   The invention according to claim 3 is characterized in that the cage-like carbon film of claims 1 and 2 forms a carbon film by bringing the substrate close to the flame tip in the atmosphere.

請求項4に係わる発明は、例えば高分子基板、プラスチック基板の様に耐熱性の無い基板に、請求項1、2の煤状炭素皮膜を形成する事を特徴とする。   The invention according to claim 4 is characterized in that the saddle-like carbon film of claims 1 and 2 is formed on a substrate having no heat resistance such as a polymer substrate or a plastic substrate.

請求項5に係わる発明は、請求項1〜4の煤状炭素皮膜の密度に応じてカーボンナノチューブあるいはカーボンナノファイバの選択性成長を制御する事を特徴とする。   The invention according to claim 5 is characterized in that the selective growth of carbon nanotubes or carbon nanofibers is controlled according to the density of the cage-like carbon film of claims 1 to 4.

請求項6に係わる発明は、請求項1〜5の煤状炭素皮膜の密度、厚さに応じてカーボンナノチューブあるいはカーボンナノファイバの成長する本数(数密度)を制御する事を特徴とする。当該数密度は、1本/mm〜10本/mmの制御が可能である。 The invention according to claim 6 is characterized in that the number of carbon nanotubes or carbon nanofibers to grow (number density) is controlled according to the density and thickness of the cage-like carbon film of claims 1 to 5. The number density can be controlled at 1 line / mm 2 to 10 7 lines / mm 2 .

請求項7に係わる発明は、請求項1〜6の煤状炭素皮膜の膜厚に応じてカーボンナノチューブあるいはカーボンナノファイバの太さや長さを制御する事を特徴とする。   The invention according to claim 7 is characterized in that the thickness and length of the carbon nanotubes or carbon nanofibers are controlled in accordance with the film thickness of the cage-like carbon film of claims 1-6.

請求項8に係わる発明は、請求項1〜7で成長したカーボンナノチューブあるいはカーボンナノファイバ付き基板を、水、アルコール等の液体中で、例えば超音波洗浄等により洗浄することで、カーボンナノチューブあるいはカーボンナノファイバを除去し、選択成長性、数密度を制御して、基板上に円錐状、角錐状、針状、柱状等の突起(ナノ構造)を形成することを特徴とする。   In the invention according to claim 8, the carbon nanotube or carbon nanofiber-grown substrate grown in claims 1 to 7 is washed in a liquid such as water or alcohol by, for example, ultrasonic cleaning, etc. Nanofibers are removed, and selective growth properties and number density are controlled to form conical, pyramidal, acicular, columnar, etc. protrusions (nanostructures) on the substrate.

以上のような製造方法により、容易にカーボンナノチューブ、カーボンナノファイバを選択的に密度や太さや長さの制御が可能となる。また、任意の基板に、選択的に、密度や太さや長さを制御して、円錐(コーン)状、角錐状、針(ニードル)状、柱(ロッド)状等の突起(ナノ構造)を形成することができる。   With the manufacturing method as described above, it is possible to easily control the density, thickness, and length of carbon nanotubes and carbon nanofibers easily. In addition, by selectively controlling the density, thickness, and length on any substrate, protrusions (nanostructures) such as cones, pyramids, needles, or rods are formed. Can be formed.

本発明に係る煤状炭素皮膜を用いるカーボンナノチューブ、カーボンナノファイバの製造方法によれば、煤状炭素皮膜を容易に基板に付着させることができるので大型の形成装置は必要ない。また従来のイオンビーム電流密度を低減しカーボンナノチューブ、カーボンナノファイバを成長させることができるので低コスト化が実現可能になる。さらにカーボンナノチューブ、カーボンナノファイバの数密度や太さ、長さを用途に応じて容易に制御できる効果を奏する。また基板上に突起や貫通孔が形成されている場合においても、炭素膜を容易に基板に付着させることができ、下地の形状や材料の影響を受けないで形成が可能になる。さらに、形成されたカーボンナノチューブ、カーボンナノファイバを除去することで、基板構成元素からなる、円錐(コーン)状、角錐状、針(ニードル)状、柱(ロッド)状等の突起(ナノ構造)を、金属、半導体、プラスチック、セラミックス等の任意の基板上に成長領域を制御し、高密度に形成することが可能になる。   According to the method for producing carbon nanotubes and carbon nanofibers using the cage-like carbon coating according to the present invention, the cage-like carbon coating can be easily attached to the substrate, so that a large-sized forming apparatus is not necessary. In addition, since the conventional ion beam current density can be reduced and carbon nanotubes and carbon nanofibers can be grown, the cost can be reduced. Furthermore, the number density, thickness, and length of carbon nanotubes and carbon nanofibers can be easily controlled according to the application. Further, even when protrusions or through holes are formed on the substrate, the carbon film can be easily attached to the substrate and can be formed without being affected by the shape or material of the base. Furthermore, by removing the formed carbon nanotubes and carbon nanofibers, projections (nanostructures) such as cones, pyramids, needles, columns (rods), etc., consisting of the constituent elements of the substrate It is possible to control the growth region on an arbitrary substrate such as a metal, a semiconductor, a plastic, or a ceramic, and to form it at high density.

以下、図面を参照しながら実施例に基づいて本発明を説明するが、もとより本発明は、これに限定されるものではない。   Hereinafter, the present invention will be described based on examples with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明に係るカーボンナノファイバの成長装置の図であって、構成は、上記背景技術で述べた図1と同様である。4インチφのシリコン基板上6にアークイオンプレイティング法にてグラファイト膜を3μm被服しておき、その基板を基板ステージ8上に搭載し、チャンバー1を真空排気させ、1×10-7Torr以下に達したところで、イオン源にアルゴンガスを導入し、イオン源を動作させ、約1.2kVで引き出し、220μA/cm2で基板ステージ8上の基板6にイオンを照射する。この照射する前に基板加熱ヒータ5で基板を約200℃まで加熱しておく。   FIG. 1 is a diagram of a carbon nanofiber growth apparatus according to the present invention, and the configuration is the same as that of FIG. 1 described in the background art. A graphite film of 3 μm is coated on a 4 inch φ silicon substrate 6 by arc ion plating, the substrate is mounted on the substrate stage 8, and the chamber 1 is evacuated to 1 × 10 −7 Torr or less. At that point, argon gas is introduced into the ion source, the ion source is operated, extracted at about 1.2 kV, and the substrate 6 on the substrate stage 8 is irradiated with ions at 220 μA / cm 2. Before the irradiation, the substrate is heated to about 200 ° C. by the substrate heater 5.

この状態で100分程度照射するとシリコン基板上に円錐状の突起が形成され、その円錐形の頂上にイオン照射方向に直径数nm〜数百nmで長さが0.1μm〜10μmのカーボンナノファイバが形成される。   When irradiated for about 100 minutes in this state, a conical protrusion is formed on the silicon substrate, and a carbon nanofiber having a diameter of several nanometers to several hundred nanometers and a length of 0.1 μm to 10 μm is formed on the top of the conical shape. It is formed.

次に、本発明に係る煤状炭素皮膜の製造方法を図2により説明する。
図2は、基板上への煤状炭素皮膜を形成するところを横から見た図である。大気中において蝋燭11上に炎12を形成し、その上部を炭素皮膜を形成する基板13が移動し、表面上に煤を形成する。この時基板13の移動速度を変える事で煤の密度を制御することが可能となる。今回は1cm/秒の速度で移動させ、0.03 g/cm3程度の密度で形成することが可能となった。また炎と形成基板との距離を変える事で煤の厚さを制御することが可能となり、今回は5mm離し、2秒間で基板上に2μm厚の煤を形成することができた。
Next, a method for producing a cage-like carbon film according to the present invention will be described with reference to FIG.
FIG. 2 is a side view of the formation of the cage-like carbon film on the substrate. A flame 12 is formed on the candle 11 in the atmosphere, and a substrate 13 on which a carbon film is formed moves on the flame 12 to form a ridge on the surface. At this time, it is possible to control the density of the soot by changing the moving speed of the substrate 13. This time, it was possible to move at a speed of 1 cm / second and form a density of about 0.03 g / cm 3 . Moreover, it became possible to control the thickness of the soot by changing the distance between the flame and the substrate to be formed. This time, it was possible to form a soot with a thickness of 2 μm on the substrate in 2 seconds with a separation of 5 mm.

この基板を従来の装置に導入し、カーボンナノファイバを成長させる。その場合、イオン電流密度は約 100μA/cm2,30分間で長さ0.1〜3μm程度の、従来と同様なカーボンナノファイバを基板上に約1x105mm-2の数密度で成長させることができる。
勿論1本の蝋燭上をカーボンナノファイバの形成する基板をX、Y方向にスキャンさせても良いが、大型基板の場合は、長尺の炎発生器上をX方向のみに移動させて基板上に煤を形成しても良い。また、ここでは火炎には蝋燭を用いたが、煤を生じるものであれば何でも良く、松脂、ナフタリン等の炭素化合物を燃焼させてもよいことは言うまでも無い。
This substrate is introduced into a conventional apparatus to grow carbon nanofibers. In that case, the same carbon nanofibers with an ion current density of about 100 μA / cm 2 and a length of about 0.1 to 3 μm in 30 minutes can be grown on the substrate at a number density of about 1 × 10 5 mm −2. .
Of course, the substrate on which the carbon nanofibers are formed may be scanned in the X and Y directions on one candle, but in the case of a large substrate, the substrate is moved on the long flame generator only in the X direction. A wrinkle may be formed. Here, candles are used for the flame, but it is possible to use anything that produces soot, and it goes without saying that carbon compounds such as pine resin and naphthalene may be burned.

こうして成長したカーボンナノファイバをエチルアルコール中での超音波洗浄を2分施すことにより基板から除去することができた。カーボンナノファイバが除去された基板には、基板材料元素から成る、高さ1μm程度の円錐状突起が、約1x105mm-2の数密度で形成された。
The carbon nanofibers grown in this way could be removed from the substrate by ultrasonic cleaning in ethyl alcohol for 2 minutes. On the substrate from which the carbon nanofibers were removed, conical protrusions having a height of about 1 μm made of a substrate material element were formed at a number density of about 1 × 10 5 mm −2 .

カーボンナノファイバの成長装置を示した図である。It is the figure which showed the growth apparatus of the carbon nanofiber. 基板上への煤状炭素皮膜を形成する図。The figure which forms the cage-like carbon membrane | film | coat on a board | substrate.

符号の説明Explanation of symbols

1 真空装置
2 駆動部
3 真空排気
4 イオンガン
5 加熱部
6 基板
8 試料ステージ
11 蝋燭
12 炎
13 基板
DESCRIPTION OF SYMBOLS 1 Vacuum apparatus 2 Drive part 3 Vacuum exhaust 4 Ion gun 5 Heating part 6 Substrate 8 Sample stage 11 Candle 12 Flame 13 Substrate

Claims (8)

煤状の炭素皮膜を基板上に形成した後、真空チャンバーでイオンビームを照射することで基板上の突起形状頂上部のみに選択的に一本のカーボンナノチューブあるいはカーボンナノファイバを成長させることを特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 After forming a cage-like carbon film on a substrate, a single carbon nanotube or carbon nanofiber is selectively grown only on the top of the protrusion shape on the substrate by irradiating an ion beam in a vacuum chamber A method for producing carbon nanotubes or carbon nanofibers. グラファイト、ダイヤモンドライクカーボン、無定形炭素等の炭素膜被覆を施した基板上に、さらに煤状の炭素皮膜を基板上に形成した後、真空チャンバーでイオンビームを照射することで基板上の突起形状頂上部のみに選択的に一本のカーボンナノチューブあるいはカーボンナノファイバを成長させることを特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 Projection shape on the substrate by irradiating an ion beam in a vacuum chamber after forming a cage-like carbon film on the substrate coated with carbon film such as graphite, diamond-like carbon, amorphous carbon, etc. A method of producing a carbon nanotube or carbon nanofiber, wherein a single carbon nanotube or carbon nanofiber is selectively grown only on the top. 請求項1、2の煤状炭素皮膜は大気中において火炎先端に基板を近づけることで炭素膜を形成する事を特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 The method for producing carbon nanotubes or carbon nanofibers characterized in that the carbon film of claim 1 or 2 forms a carbon film by bringing a substrate close to a flame tip in the atmosphere. 請求項1、2の煤状炭素皮膜は、大気中においてガラス板、シリコン板等の鏡面板を火炎先端に近づけることでガラス板、シリコン板上に炭素膜を形成し、煤堆積したガラス板、シリコン板を水、アルコール等の液体中に浸すことで炭素皮膜とガラス板、シリコン板とを剥離し、剥離した煤膜を基板上にすくい堆積させることを特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 The soot-like carbon film according to claim 1 or 2 is a glass plate by bringing a mirror plate such as a glass plate or a silicon plate close to the flame tip in the atmosphere, a carbon film is formed on the silicon plate, and a soot-deposited glass plate, Carbon nanotubes or carbon nanofibers are characterized in that a silicon plate is immersed in a liquid such as water or alcohol to separate the carbon film from the glass plate and the silicon plate, and the peeled film is scooped and deposited on the substrate. Production method. 請求項1〜4の煤状炭素皮膜は煤堆積部分にのみカーボンナノチューブあるいはカーボンナノファイバの選択性成長を制御する事を特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 5. A method for producing carbon nanotubes or carbon nanofibers, wherein the cage-like carbon film according to claim 1 controls the selective growth of carbon nanotubes or carbon nanofibers only in the soot deposition portion. 請求項1〜5の煤状炭素皮膜はその膜密度、厚さに応じて、成長するーボンナノチューブあるいはカーボンナノファイバの数密度(平面内に形成される本数)を制御する事を特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 The cage-like carbon film according to any one of claims 1 to 5 is characterized by controlling the number density (the number formed in a plane) of the bon nanotubes or carbon nanofibers to grow according to the film density and thickness. A method for producing carbon nanotubes or carbon nanofibers. 請求項1〜6の煤状炭素皮膜は厚さに応じてカーボンナノチューブあるいはカーボンナノファイバの太さや長さを制御する事を特徴とするカーボンナノチューブあるいはカーボンナノファイバの製造方法。 The method for producing a carbon nanotube or carbon nanofiber, wherein the cage-like carbon film according to claim 1 controls the thickness and length of the carbon nanotube or carbon nanofiber according to the thickness. 請求項1〜7で成長したカーボンナノチューブあるいはカーボンナノファイバ付き基板を、水、アルコール等の液体中で、例えば超音波洗浄等により洗浄することで、カーボンナノチューブあるいはカーボンナノファイバを除去し、選択成長性、数密度を制御して、基板上に円錐(コーン)状、角錐状、針(ニードル)状、柱(ロッド)状等の突起(ナノ構造)を製造する方法。 The substrate with carbon nanotubes or carbon nanofibers grown in claims 1 to 7 is washed in a liquid such as water or alcohol by, for example, ultrasonic cleaning to remove the carbon nanotubes or carbon nanofibers and selectively grow. The method of manufacturing protrusions (nanostructures) such as a cone shape, a pyramid shape, a needle shape (needle) shape, and a column shape (rod) shape on a substrate by controlling the properties and number density.
JP2004324856A 2004-11-09 2004-11-09 Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure Pending JP2006131475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324856A JP2006131475A (en) 2004-11-09 2004-11-09 Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324856A JP2006131475A (en) 2004-11-09 2004-11-09 Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure

Publications (1)

Publication Number Publication Date
JP2006131475A true JP2006131475A (en) 2006-05-25

Family

ID=36725350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324856A Pending JP2006131475A (en) 2004-11-09 2004-11-09 Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure

Country Status (1)

Country Link
JP (1) JP2006131475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948193B1 (en) 2007-01-09 2010-03-16 재단법인서울대학교산학협력재단 Method for growing indium nanowire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221309A (en) * 1996-02-13 1997-08-26 Agency Of Ind Science & Technol Carbonaceous material having carbon nanotube on surface and its production
JPH11106208A (en) * 1996-02-13 1999-04-20 Agency Of Ind Science & Technol Recovery of carbon nanotube
WO2000073206A1 (en) * 1999-05-27 2000-12-07 Eiji Osawa Method for preparing nano-size particulate graphite
JP2004243490A (en) * 2003-02-14 2004-09-02 Takayoshi Tanji Cnt (carbon nanotube) chip and fabricating method for it, electron gun, and stylet for scan type probe microscopes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221309A (en) * 1996-02-13 1997-08-26 Agency Of Ind Science & Technol Carbonaceous material having carbon nanotube on surface and its production
JPH11106208A (en) * 1996-02-13 1999-04-20 Agency Of Ind Science & Technol Recovery of carbon nanotube
WO2000073206A1 (en) * 1999-05-27 2000-12-07 Eiji Osawa Method for preparing nano-size particulate graphite
JP2004243490A (en) * 2003-02-14 2004-09-02 Takayoshi Tanji Cnt (carbon nanotube) chip and fabricating method for it, electron gun, and stylet for scan type probe microscopes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948193B1 (en) 2007-01-09 2010-03-16 재단법인서울대학교산학협력재단 Method for growing indium nanowire

Similar Documents

Publication Publication Date Title
KR100504971B1 (en) Electron emissive film and method
WO2010038793A1 (en) Nano-carbon material composite substrate and method for manufacturing same
JP4705091B2 (en) Method for growing carbon nanotube arrays
JP2006347878A (en) Method for manufacturing carbon nanotube
US20040191158A1 (en) Carbon nanotube-based device and method for making the same
JP5028606B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP5228986B2 (en) Nanocarbon material composite substrate manufacturing method
JP2004362919A (en) Method of manufacturing electron emission element using carbon nanotube
Chen et al. Aligned conical carbon nanotubes
JP2006131475A (en) Method for manufacturing carbon nanotube or carbon nanofiber and method for forming nano-structure
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
JP3423639B2 (en) Method and apparatus for producing carbon nanotube
JP4829634B2 (en) Method for forming catalyst and method for producing carbon film using the same
JP2005231952A (en) Synthesis of carbon nanotube by laser beam
Sato et al. Fabrication of carbon nanotube array and its field emission property
JPH09309713A (en) Fullerene and its production
CN100342474C (en) Method of ion injecting for increasing emitting performance of carbon mnotube thin film electronic field
JP2002115057A (en) Process for selectively depositing graphite nanofiber thin film by thermal cvd process
JP2002080211A (en) Method of making carbon nanotube
KR100724927B1 (en) Techniques for bonding of an AAM on silicon wafer and fabrication of CNTs field emitter arrays using it
JP4965373B2 (en) Method for producing carbon nanotube
JP2006213551A (en) Method of growing carbon nanotube
JP2006176378A (en) Method for producing oxide needle-like structure
CN116288244A (en) Method for preparing patterned diamond, product with patterned diamond and application of product
KR20040050355A (en) Manufacturing method of carbon nanotube by thermal chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524