JP2006129978A - Method for manufacturing catheter balloon - Google Patents

Method for manufacturing catheter balloon Download PDF

Info

Publication number
JP2006129978A
JP2006129978A JP2004320335A JP2004320335A JP2006129978A JP 2006129978 A JP2006129978 A JP 2006129978A JP 2004320335 A JP2004320335 A JP 2004320335A JP 2004320335 A JP2004320335 A JP 2004320335A JP 2006129978 A JP2006129978 A JP 2006129978A
Authority
JP
Japan
Prior art keywords
balloon
parison
sleeve
mold
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320335A
Other languages
Japanese (ja)
Inventor
Mitsuharu Korogi
光治 興梠
Yoichi Yamaguchi
洋一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004320335A priority Critical patent/JP2006129978A/en
Publication of JP2006129978A publication Critical patent/JP2006129978A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for thinning a sleeve part of a catheter balloon. <P>SOLUTION: This method for manufacturing the catheter balloon by biaxial stretch blow molding of a parison carries out biaxial stretch blow molding of the balloon and thereafter, heats a balloon sleeve part with laser beams to stretch and thin it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カテーテル用バルーンに関わり、更に詳しくは末梢血管成形、冠状動脈血管成形および弁膜成形を含む経皮的内腔手術において血管内狭窄部を拡張治療し、抹消側血流を改善するために使用するカテーテル用バルーンに関する。   The present invention relates to a balloon for a catheter, and more particularly, to expand and treat an intravascular stenosis in percutaneous luminal surgery including peripheral angioplasty, coronary angioplasty and valvuloplasty to improve peripheral blood flow. The present invention relates to a catheter balloon used in the above.

従来、血管などの脈管において狭窄あるいは閉塞が生じた場合、脈管の狭窄部位あるいは閉塞部位を拡張して、血管末梢側の血流を改善するために行なう脈管成形術(PTA:Percutaneous Transluminal Angioplasty、PTCA:Percutaneous Transluminal Coronary Angioplastyなど)は、多くの医療機関において多数の術例があり、この種の症例における手術としては一般的になっている。   Conventionally, when stenosis or occlusion occurs in a vessel such as a blood vessel, angioplasty (PTA: Percutaneous Transluminal) is performed to expand the stenosis or occlusion site of the vessel and improve blood flow on the peripheral side of the vessel. Angioplasty, PTCA (Percutaneous Transluminal Coronary Angioplasty, etc.) have a large number of surgical cases in many medical institutions, and have become common as a surgical operation in this type of case.

バルーンカテーテルは、主に冠状動脈の狭窄部位を拡張するために、ガイドカテーテルとガイドワイヤーとのセットで使用される。このバルーンカテーテルを用いた脈管成形術は、まずガイドカテーテルを大腿動脈から挿入して大動脈を経て冠状動脈の入口に先端を位置させた後、バルーンカテーテルを貫通させたガイドワイヤーを冠状動脈の狭窄部位を超えて前進させ、その後バルーンカテーテルをガイドワイヤーに沿って前進させ、バルーンを狭窄部位に位置させた状態で膨張させて狭窄部位を拡張する手順で行ない、そしてバルーンを収縮させて体外に除去するのである。しかし、バルーンカテーテルは、動脈狭窄の治療だけに限定されず、血管の中への挿入、ならびに種々の体腔への挿入を含む多くの医療的用途に有用である。   Balloon catheters are used in a set of guide catheter and guide wire, mainly to dilate the stenotic site of the coronary artery. In this angioplasty using a balloon catheter, the guide catheter is first inserted from the femoral artery, the tip is positioned at the entrance of the coronary artery through the aorta, and then the guide wire penetrating the balloon catheter is narrowed in the coronary artery. Advance beyond the site, then advance the balloon catheter along the guidewire, inflate with the balloon positioned at the stenosis site and dilate the stenosis site, then deflate the balloon and remove it outside the body To do. However, balloon catheters are not limited to treating arterial stenosis but are useful for many medical applications including insertion into blood vessels as well as insertion into various body cavities.

バルーンは、通常チューブを二軸延伸ブロー成形することにより製造されるものである。カテーテルバルーンは比較的肉厚が均一な直管部と、その両端から外側に向かい径小に傾斜するテーパー部と、更にその両端から外側に向かう細い円筒状のスリーブ部からなる。   The balloon is usually manufactured by biaxially stretching blow molding a tube. The catheter balloon is composed of a straight tube portion having a relatively uniform thickness, a tapered portion that is inclined outwardly from both ends and having a small diameter, and a thin cylindrical sleeve portion that extends outward from both ends.

二軸延伸ブロー成形をした場合、直管部と比較してテーパー部およびスリーブ部が肉厚になるのは避けられない。   When biaxial stretch blow molding is performed, it is inevitable that the tapered portion and the sleeve portion become thicker than the straight pipe portion.

カテーテルシャフトの遠位部に設けられたバルーンは血管内の狭窄部を拡張するというその役割から種々の特性が要求される。石灰化した硬い狭窄部位を拡張するために高い耐圧強度が必要である。また屈曲した狭窄部位に位置させるためには高い柔軟性が必要になる。また、狭窄度が99%といった極めて高い狭窄度を有する狭窄部位に位置させるためには柔軟性のみならず、バルーンが十分に薄いことが要求される。これらの特性を総合すると、バルーンは薄く、膜強度が高く、柔軟性が高いことが要求される。   The balloon provided at the distal portion of the catheter shaft is required to have various characteristics due to its role of expanding the stenosis in the blood vessel. A high compressive strength is required to expand the calcified hard stenosis. In addition, high flexibility is required in order to locate the bent stenosis. In addition, in order to be positioned at a stenosis site having a very high stenosis degree of 99%, not only flexibility but also a sufficiently thin balloon is required. When these characteristics are combined, the balloon is required to be thin, to have high film strength, and to have high flexibility.

円錐部及び接合部が厚肉になることによってバルーンの折り畳み時にその径が増大し、バルーンの柔軟性が損なわれる。そこで従来バルーンのテーパー部及びテーパー部を薄肉にする幾多の方法が提案されている。   When the cone and the joint are thick, the diameter of the balloon increases when the balloon is folded, and the flexibility of the balloon is impaired. Therefore, various methods have been proposed to make the tapered portion of the balloon and the tapered portion thinner.

特許文献1では、バルーンを成形した後にスリーブ部またはテーパー部を温風で加熱して引張って薄くするという技術が開示されている。しかしながらこの方法は、延伸したくない直管部も加熱されてしまうために直管部も延伸されて薄肉になり、破壊圧、寸法安定性などの性能が低下するという難点がある。   Patent Document 1 discloses a technique in which after forming a balloon, the sleeve portion or the taper portion is heated with hot air to be pulled and thinned. However, in this method, since the straight pipe portion that is not desired to be stretched is also heated, the straight pipe portion is also stretched to become thin, and the performance such as the breaking pressure and the dimensional stability is lowered.

特許文献2では、スリーブ部に相当する部分が薄肉のパリソンを作っておき、それをブロー成形してスリーブ部を薄肉にする方法がある。しかしこの方法はあらかじめそのようなパリソンを成形することが困難であり、ブロー成形の際にバルーンのテーパー、スリーブ部にパリソンのあらかじめ薄肉にした部分を持っていくことが困難であるという難点がある。
特開平4−17463 特開平8−38618 上記の例から明らかなように、これまで開示されている方法はバルーンに優れた特性をもたらすものの、一方で別の問題点を引き起こすため完璧な方法とは言えなかった。
In Patent Document 2, there is a method in which a parison having a thin portion corresponding to the sleeve portion is made and blown to make the sleeve portion thin. However, this method is difficult to form such a parison in advance, and it is difficult to bring the pre-thinned portion of the parison into the taper of the balloon and the sleeve during blow molding. .
JP-A-4-17463 As is apparent from the above example, the methods disclosed so far provide excellent properties for the balloon, but on the other hand cause other problems and are not perfect.

本発明の課題は、パリソンを二軸延伸ブロー成形したカテーテルバルーンの直管部肉厚を薄くすることなくテーパー部またはスリーブ部肉厚を薄くする製造方法を提供することである。   An object of the present invention is to provide a manufacturing method for reducing the thickness of a tapered portion or a sleeve portion without reducing the thickness of a straight tube portion of a catheter balloon formed by biaxially stretching blow molding a parison.

前記課題を解決すべく研究を重ねた結果、レーザー光を用いてバルーンテーパー部、スリーブ部を加熱して延伸し薄肉にする方法を発明するに至った。   As a result of repeated studies to solve the above-mentioned problems, a method for heating and thinning the balloon taper portion and the sleeve portion using laser light has been invented.

本発明の製造方法によれば、レーザー光が当たっている部分のみが加熱されるので、テーパー部、スリーブ部にレーザースポットを絞って照射して延伸すれば直管部を薄くすることなくテーパー、スリーブ部を薄肉化することができる。   According to the manufacturing method of the present invention, only the portion that is irradiated with the laser beam is heated, so that the taper portion and the sleeve portion can be tapered without irradiating and stretching the laser spot without reducing the straight tube portion, The sleeve portion can be thinned.

本発明において、バルーンの材料となるポリマー材料は特に限定しないが、ポリエステル、ポリアミド、ポリエステルエラストマー、ポリアミドエラストマー、ポリオレフィン、ポリウレタン等を使用することができる。また、2種類以上の材料のブレンドでもよい。また、2種類以上の材料の多層構造をとってもよい。   In the present invention, the polymer material used as the balloon material is not particularly limited, and polyester, polyamide, polyester elastomer, polyamide elastomer, polyolefin, polyurethane, and the like can be used. Moreover, the blend of 2 or more types of materials may be sufficient. Moreover, you may take the multilayered structure of two or more types of materials.

本発明のバルーンの製造方法では、例えば図1に示す装置を用いてバルーンの二軸延伸ブロー成形がなされる。すなわちバルーンに成形されるのに適切な材質、直径、肉厚であるバルーン用パリソン1を金型2内に導入し、金型2を加熱し、バルーン用パリソンのバルーン成形部分3の軸方向の応力変化をフォースゲージ4で検知し、固定部5、6をバルーン用パリソン1を保持したまま軸方向でかつ各々反対側へスライドテーブル7上を移動させ、同時に拡張流体8をパリソン内に注入してパリソンを膨らませ、金型中2を更に加熱して拡張流体8をパリソン内に注入してバルーンを成形する。その後金型2を冷却してバルーンを取り出す。   In the balloon manufacturing method of the present invention, for example, the apparatus shown in FIG. 1 is used to perform biaxial stretch blow molding of the balloon. That is, a balloon parison 1 having a material, diameter, and thickness suitable for being molded into a balloon is introduced into the mold 2, the mold 2 is heated, and an axial direction of the balloon molding portion 3 of the balloon parison 3 is introduced. The change in stress is detected by the force gauge 4, and the fixing portions 5 and 6 are moved on the slide table 7 in the axial direction while holding the parison 1 for the balloon, and at the same time, the expansion fluid 8 is injected into the parison. Then, the parison is inflated, the inside 2 of the mold is further heated, and the expansion fluid 8 is injected into the parison to form a balloon. Thereafter, the mold 2 is cooled and the balloon is taken out.

本発明のバルーンの製造方法において、テーパー部、スリーブ部にレーザー光を照射して延伸する工程は、例えば図2に示す装置を用いてなされる。二軸延伸ブロー成形されたバルーン9の両端を固定部10および11で固定し、レーザー照射装置12によってバルーン直管部に照射することなく、テーパー部およびスリーブ部のみにレーザー光13を照射し、固定部11を移動させることによりバルーンテーパー部、スリーブ部を延伸する。   In the balloon manufacturing method of the present invention, the step of irradiating the taper portion and the sleeve portion by irradiating a laser beam is performed using, for example, the apparatus shown in FIG. Both ends of the biaxially stretched blow molded balloon 9 are fixed by the fixing portions 10 and 11, and the laser beam 13 is irradiated only to the tapered portion and the sleeve portion without irradiating the balloon straight tube portion by the laser irradiation device 12, The balloon taper part and the sleeve part are stretched by moving the fixing part 11.

ここでレーザー光を当てるのはスリーブ部のみ、またはテーパー部のみでもよい。   Here, only the sleeve portion or only the taper portion may be irradiated with the laser beam.

本発明のバルーンの製造方法において、レーザー放出源としては特に限定されないが、二酸化炭素を放出源とするものが、ポリエステル、ナイロンのバルーン材料が適度な吸収を示す波長帯であり、高出力で安価であるという理由で望ましい。一方向からレーザー光を照射するよりも、均一な延伸をするために、多方向から同時に照射することが望ましい。また、テーパー部および/またはスリーブ部を延伸した後、再度バルーンを金型内に挿入して再拡張してもよい。   In the balloon manufacturing method of the present invention, the laser emission source is not particularly limited, but carbon dioxide as the emission source is a wavelength band in which the balloon material of polyester or nylon has an appropriate absorption, high output and low cost. It is desirable because it is. Rather than irradiating laser light from one direction, it is desirable to irradiate simultaneously from multiple directions in order to achieve uniform stretching. Further, after the taper portion and / or the sleeve portion is stretched, the balloon may be inserted again into the mold and re-expanded.

延伸後のバルーンスリーブ部は膜厚tcは、直管部の直径をDaとし、直管部の膜厚をtaとし、スリーブ部の直径をDcとすると、式1:
c(Dc−tc)<0.70ta(Da−ta
の関係を満たす薄さであることが望ましく、更に式:
c(Dc−tc)<0.60ta(Da−ta
の関係を満たすことがより望ましい。
式1が示すのはスリーブ部の断面積が直管部の0.70倍より小さいということであり、スリーブ部が直管部に比べてより大きく延伸されていることを示す。
The stretched balloon sleeve portion has a thickness t c , where the diameter of the straight tube portion is D a , the thickness of the straight tube portion is t a, and the diameter of the sleeve portion is D c :
t c (D c -t c) <0.70t a (D a -t a)
It is desirable that the thickness satisfies the relationship:
t c (D c -t c) <0.60t a (D a -t a)
It is more desirable to satisfy this relationship.
Expression 1 indicates that the cross-sectional area of the sleeve portion is smaller than 0.70 times that of the straight pipe portion, and indicates that the sleeve portion is extended more than the straight pipe portion.

テーパー部の膜厚はテーパー部の中間部の膜厚をtbとし、中間部の直径をDbとした時に式:
b(Db−tb)<0.80ta(Da−ta
の関係を満たすことが望ましく、更に式:
b(Db−tb)<0.70ta(Da−ta
の関係を満たすことがより望ましい。
The film thickness of the taper part is expressed by the equation when the film thickness of the intermediate part of the taper part is t b and the diameter of the intermediate part is D b :
t b (D b -t b) <0.80t a (D a -t a)
It is desirable to satisfy the relationship:
t b (D b -t b) <0.70t a (D a -t a)
It is more desirable to satisfy this relationship.

図3は本発明のバルーンカテーテルの一実施例を示す概略断面図である。本発明のバルーンカテーテルにおいて、バルーンを接合するカテーテルシャフトは図3に示すように少なくとも遠位部が、遠位端が開口し第1のルーメン14Lを有する内管14と、遠位端が前記内管の遠位端よりも近位側に存在し前記内管とほぼ同軸状に配置され、前記内管との間に第2のルーメン15Lを有する外管15から構成される構造であれば、前記内管14と前記外管15を構成する材料種は特に限定されない。つまり、ポリオレフィン、ポリアミド、ポリエステル、ポリウレタン、ポリイミド、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリエステルエラストマー、ポリウレタンエラストマーなどの既存の材料が使用可能であり、内管14と外管15の材料種の組み合せも特に限定されるものではなく、使用目的に応じた物性を有する材料を取捨選択可能である。   FIG. 3 is a schematic sectional view showing an embodiment of the balloon catheter of the present invention. In the balloon catheter of the present invention, as shown in FIG. 3, the catheter shaft for joining the balloon has at least a distal portion, an inner tube 14 having an open distal end and a first lumen 14L, and a distal end which is the inner tube. If the structure is composed of the outer tube 15 that is located on the proximal side of the distal end of the tube, is arranged substantially coaxially with the inner tube, and has the second lumen 15L between the inner tube, The material type which comprises the said inner tube 14 and the said outer tube 15 is not specifically limited. That is, existing materials such as polyolefin, polyamide, polyester, polyurethane, polyimide, polyolefin elastomer, polyamide elastomer, polyester elastomer, and polyurethane elastomer can be used, and combinations of material types of the inner tube 14 and the outer tube 15 are also particularly limited. The material having physical properties according to the purpose of use can be selected.

また、バルーン16と内管14及び外管15の接合方法にも特に制限はなく、接合部17に置いて熱溶着、接着剤による接着などの公知の手法が採用可能であることは言うまでもない。さらに付け加えるならば、本発明の効果を制限させることなく、バルーン16の内部に存在する内管14にX線不透過マーカー18を1個もしくは複数個付与させることができる。   Further, the method for joining the balloon 16 to the inner tube 14 and the outer tube 15 is not particularly limited, and it goes without saying that a known method such as heat welding or adhesion using an adhesive can be employed in the joining portion 17. In addition, one or a plurality of radiopaque markers 18 can be imparted to the inner tube 14 existing inside the balloon 16 without limiting the effects of the present invention.

(実施例1)
ポリアミド系エラストマーPEBAX7233SA01(エルフ・アトケム社製)を所定の方法で押出成形し、外径1.14mm、内径0.51mmのパリソンを作成した。このパリソンを直管部直径が3.0mmのバルーン金型に挿入し、金型の温度を90℃に加熱して、パリソンの両側をそれぞれ15mmずつ延伸し、同時にパリソンに加圧窒素を吹込んで膨らませた後、金型を110℃に加熱した後に金型を水で冷却して金型からバルーンを取り出した。このとき直管部膜厚は0.028mmであった。
Example 1
A polyamide-based elastomer PEBAX7233SA01 (manufactured by Elf Atchem) was extruded by a predetermined method to prepare a parison having an outer diameter of 1.14 mm and an inner diameter of 0.51 mm. This parison was inserted into a balloon mold having a straight tube diameter of 3.0 mm, the mold temperature was heated to 90 ° C., and both sides of the parison were stretched by 15 mm each, and simultaneously pressurized nitrogen was blown into the parison. After inflating, the mold was heated to 110 ° C., and then the mold was cooled with water to take out the balloon from the mold. At this time, the thickness of the straight pipe portion was 0.028 mm.

バルーン遠位側スリーブ部にマンドレルを挿入し、CO2レーザー光をスリーブ部に照射して延伸した。延伸前スリーブ部の直径は1.02mm、肉厚は0.090mmであった。延伸後スリーブ部の直径は1.00mm、肉厚は0.050mmであった。延伸後の直管部膜厚は0.028mmであり、延伸前と比較して変化しなかった。   A mandrel was inserted into the balloon distal sleeve, and the sleeve was irradiated with CO2 laser light and stretched. The diameter of the sleeve portion before stretching was 1.02 mm, and the wall thickness was 0.090 mm. After stretching, the sleeve portion had a diameter of 1.00 mm and a wall thickness of 0.050 mm. The thickness of the straight pipe portion after stretching was 0.028 mm, and did not change compared to before stretching.

延伸後のスリーブ部断面積は直管部断面積の0.57倍であり、スリーブ部のみを延伸して薄肉化する効果があったことを示す。   The cross-sectional area of the sleeve part after stretching is 0.57 times the cross-sectional area of the straight pipe part, which indicates that only the sleeve part was stretched and thinned.

(実施例2)
実施例1と同じパリソンを用いた。このパリソンを直管部直径が3.0mmのバルーン金型に挿入し、金型の温度を90℃に加熱して、パリソンの両側をそれぞれ15mmずつ延伸し、同時にパリソンに加圧窒素を吹込んで膨らませた後、金型を110℃に加熱した後に金型を水で冷却して金型からバルーンを取り出した。このとき直管部膜厚は0.028mmであった。
(Example 2)
The same parison as in Example 1 was used. This parison was inserted into a balloon mold having a straight tube diameter of 3.0 mm, the mold temperature was heated to 90 ° C., and both sides of the parison were stretched by 15 mm each, and simultaneously pressurized nitrogen was blown into the parison. After inflating, the mold was heated to 110 ° C., and then the mold was cooled with water to take out the balloon from the mold. At this time, the thickness of the straight pipe portion was 0.028 mm.

CO2レーザー光をテーパー部とスリーブ部に照射して延伸した。延伸前スリーブ部の直径は1.02mm、肉厚は0.090mmであった。延伸前テーパー部中間部の直径は2.01mm、肉厚は0.043mmであった。ブロー成形したときと同じ金型を110℃に加熱して金型内でバルーンを再度拡張した。   The taper portion and the sleeve portion were irradiated with CO2 laser light and stretched. The diameter of the sleeve portion before stretching was 1.02 mm, and the wall thickness was 0.090 mm. The diameter of the taper part middle part before extending | stretching was 2.01 mm, and wall thickness was 0.043 mm. The same mold as in the blow molding was heated to 110 ° C., and the balloon was expanded again in the mold.

延伸、再拡張後スリーブ部の直径は1.02mm、肉厚は0.050mmであった。延伸、再拡張後テーパー部中間部の直径は2.01mmであり、肉厚は0.028mmであった。再拡張後の直管部膜厚は0.028mmであり、延伸前と比較して変化しなかった。   After stretching and re-expansion, the sleeve portion had a diameter of 1.02 mm and a wall thickness of 0.050 mm. After stretching and re-expansion, the diameter of the intermediate portion of the tapered portion was 2.01 mm, and the wall thickness was 0.028 mm. The thickness of the straight pipe portion after re-expansion was 0.028 mm, and did not change compared to before stretching.

延伸後のスリーブ部断面積は直管部断面積の0.56倍であり、延伸後のテーパー部中間部の断面積は直管部断面積の0.67倍であり、スリーブ部のみを延伸して薄肉化する効果があったことを示す。   The cross-sectional area of the sleeve part after stretching is 0.56 times the cross-sectional area of the straight pipe part, and the cross-sectional area of the taper part intermediate part after stretching is 0.67 times the cross-sectional area of the straight pipe part. It shows that there was an effect of thinning.

(比較例1)
実施例1と同じパリソンを用い、このパリソンを直管部直径が3.0mmのバルーン金型に挿入し、金型中央部の温度を90℃に加熱して、パリソンの両側をそれぞれ15mmずつ延伸し、同時にパリソンに加圧窒素を吹込んで膨らませた後、更に金型を加熱して、バルーンスリーブ部を薄肉化するために、パリソンの両端をそれぞれさらに15mmずつ延伸し、金型中央部を水で冷却して金型からバルーンを取り出した。
このときバルーンスリーブ部の外径は1.02mm、内径は0.90mmであった。バルーンの直管部膜厚は0.027mmであった。
(Comparative Example 1)
Using the same parison as in Example 1, this parison was inserted into a balloon mold having a straight pipe portion diameter of 3.0 mm, the temperature of the mold center was heated to 90 ° C., and both sides of the parison were stretched by 15 mm each. At the same time, after the pressurized nitrogen is blown into the parison and inflated, the mold is further heated to further thin the balloon sleeve part, and both ends of the parison are further stretched by 15 mm each, and the middle part of the mold is washed with water. The balloon was taken out from the mold after cooling with the above.
At this time, the outer diameter of the balloon sleeve portion was 1.02 mm, and the inner diameter was 0.90 mm. The film thickness of the straight tube portion of the balloon was 0.027 mm.

このバルーンを延伸装置にかけ、温風でテーパー部とスリーブ部を加熱して延伸した。ブロー成形したときと同じ金型を110℃に加熱して金型内でバルーンを再度拡張した。延伸、再拡張後の直管部の直径は3.0mm、肉厚は0.026mmであった。延伸、再拡張後のスリーブ部の直径は1.02mm、スリーブ部の肉厚は0.070mmであった。   The balloon was put on a stretching apparatus, and the taper portion and the sleeve portion were heated and stretched with warm air. The same mold as in the blow molding was heated to 110 ° C., and the balloon was expanded again in the mold. The diameter of the straight pipe part after stretching and re-expansion was 3.0 mm, and the wall thickness was 0.026 mm. The diameter of the sleeve portion after stretching and re-expansion was 1.02 mm, and the thickness of the sleeve portion was 0.070 mm.

延伸、再拡張後のスリーブ部断面積は延伸、再拡張後の直管部断面積の0.86倍であり、直管部まで延伸された結果、スリーブ部のみを延伸する効果が小さかったことを示している。   The cross-sectional area of the sleeve part after stretching and re-expansion is 0.86 times the cross-sectional area of the straight pipe part after stretching and re-expansion. As a result of stretching to the straight pipe part, the effect of stretching only the sleeve part was small Is shown.

このように温風で加熱して延伸する方法では直管部まで延伸される結果薄肉になり、破壊圧、寸法安定性の性能が低下する。   Thus, in the method of heating and drawing with warm air, the thin pipe is thinned as a result of being drawn to the straight pipe portion, and the performance of breaking pressure and dimensional stability is lowered.

実施例1および2のバルーンの製造方法は、パリソンを二軸延伸ブロー成形して製造したバルーンのテーパー部、スリーブ部の肉厚を後延伸により薄くしている。実施例1及び2の製造方法で製造したバルーンを搭載したバルーンカテーテルはスリーブ部、テーパー部が薄肉であるために通過性能が良好である。本発明のバルーンの製造方法によれば、高性能なバルーンカテーテルを得ることができる。   In the method for manufacturing the balloon of Examples 1 and 2, the thickness of the tapered portion and the sleeve portion of the balloon manufactured by biaxial stretch blow molding of the parison is reduced by post-stretching. The balloon catheter on which the balloon manufactured by the manufacturing method of Examples 1 and 2 is mounted has good passage performance because the sleeve portion and the tapered portion are thin. According to the balloon manufacturing method of the present invention, a high-performance balloon catheter can be obtained.

バルーンブロー成形装置Balloon blow molding equipment バルーン延伸装置Balloon stretcher バルーンカテーテル概略断面図Balloon catheter schematic cross section

符号の説明Explanation of symbols

1 パリソン
2 金型
3 バルーン成形部分
4 フォースゲージ
5 固定部
6 固定部
7 スライドテーブル
8 拡張流体
9 バルーン
10 固定部
11 固定部
12 レーザー照射装置
13 レーザー光
14 内管
14L 第1のルーメン
15 外管
15L 第2のルーメン
16 バルーン(直管部)
17 接合部
18 X線不透過マーカー
19 バルーンスリーブ部(バルーン近位側)
20 バルーンテーパー部(バルーン近位側)
21 バルーンテーパー部(バルーン遠位側)
22 バルーンスリーブ部(バルーン遠位側)
DESCRIPTION OF SYMBOLS 1 Parison 2 Mold 3 Balloon molding part 4 Force gauge 5 Fixed part 6 Fixed part 7 Slide table 8 Expansion fluid 9 Balloon 10 Fixed part 11 Fixed part 12 Laser irradiation apparatus 13 Laser beam 14 Inner tube 14L First lumen 15 Outer tube 15L Second lumen 16 Balloon (Straight pipe part)
17 Joint 18 Radiopaque marker 19 Balloon sleeve (proximal balloon side)
20 Balloon taper (proximal balloon side)
21 Balloon taper (balloon distal side)
22 Balloon sleeve (balloon distal side)

Claims (2)

パリソンを二軸延伸ブロー成形してカテーテルバルーンを製造する方法であって、バルーンを二軸延伸ブロー成形した後に、バルーンテーパー部、スリーブ部をレーザー光により加熱して延伸し薄肉化することを特徴とするカテーテルバルーンの製造方法。   A method of manufacturing a catheter balloon by biaxial stretching blow molding of a parison, wherein after the balloon is biaxial stretching blow molding, the balloon taper portion and sleeve portion are heated by laser light to be stretched and thinned. A method for producing a catheter balloon. 請求項1の方法で製造したバルーンを搭載したことを特徴とするバルーンカテーテル。   A balloon catheter comprising a balloon manufactured by the method according to claim 1.
JP2004320335A 2004-11-04 2004-11-04 Method for manufacturing catheter balloon Pending JP2006129978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320335A JP2006129978A (en) 2004-11-04 2004-11-04 Method for manufacturing catheter balloon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320335A JP2006129978A (en) 2004-11-04 2004-11-04 Method for manufacturing catheter balloon

Publications (1)

Publication Number Publication Date
JP2006129978A true JP2006129978A (en) 2006-05-25

Family

ID=36724017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320335A Pending JP2006129978A (en) 2004-11-04 2004-11-04 Method for manufacturing catheter balloon

Country Status (1)

Country Link
JP (1) JP2006129978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023270A (en) * 2006-07-25 2008-02-07 Nipro Corp Balloon for catheter and its manufacturing method
WO2011105267A1 (en) * 2010-02-25 2011-09-01 テルモ株式会社 Balloon manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247476A (en) * 1985-04-24 1986-11-04 住友電気工業株式会社 Thrombosis dissolving catheter and its production
JPH04176473A (en) * 1990-11-10 1992-06-24 Terumo Corp Balloon for catheter, manufacture thereof and balloon catheter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247476A (en) * 1985-04-24 1986-11-04 住友電気工業株式会社 Thrombosis dissolving catheter and its production
JPH04176473A (en) * 1990-11-10 1992-06-24 Terumo Corp Balloon for catheter, manufacture thereof and balloon catheter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023270A (en) * 2006-07-25 2008-02-07 Nipro Corp Balloon for catheter and its manufacturing method
WO2011105267A1 (en) * 2010-02-25 2011-09-01 テルモ株式会社 Balloon manufacturing method
JP5502986B2 (en) * 2010-02-25 2014-05-28 テルモ株式会社 Balloon manufacturing method

Similar Documents

Publication Publication Date Title
US5645560A (en) Fixed focal balloon for interactive angioplasty and stent implantation
US7906066B2 (en) Method of making a balloon catheter shaft having high strength and flexibility
US6872215B2 (en) Focalized stent implantation
US6027486A (en) Interactive angioplasty
JP3602147B2 (en) Multi-layer high strength balloon for dilatation catheter
US5843116A (en) Focalized intraluminal balloons
EP2636422B1 (en) Cutting balloon with connector and dilation element
US7753875B2 (en) Preform and balloon having a non-uniform thickness
US20080124495A1 (en) Refoldable balloon and method of making and using the same
US8840743B2 (en) Soft tip balloon catheter
US10413709B2 (en) High-pressure dilatation catheter balloon
JP6259560B2 (en) Balloon for balloon catheter
US20060276820A1 (en) Balloon catheter and method of manufacturing the same
US20090234282A1 (en) Outer Catheter Shaft to Balloon Joint
JP5026278B2 (en) Medical compound balloon
US6712833B1 (en) Method of making a catheter balloon
JP2006129978A (en) Method for manufacturing catheter balloon
JP4713057B2 (en) Catheter balloon and method for manufacturing the same
JPH05305146A (en) Medical balloon catheter
JP2012187147A (en) Molding mold of balloon for balloon catheter and molding method of balloon
JP6184070B2 (en) Method for manufacturing balloon for balloon catheter
JP2003144553A (en) Balloon and balloon catheter
JP2001314512A (en) Balloon having uniform film thickness and balloon catheter
JP2004298356A (en) Balloon for dilation and balloon catheter with the same
JP2005323714A (en) Catheter balloon for medical use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629