JP2006127858A - Radiation-resistant cable - Google Patents

Radiation-resistant cable Download PDF

Info

Publication number
JP2006127858A
JP2006127858A JP2004312841A JP2004312841A JP2006127858A JP 2006127858 A JP2006127858 A JP 2006127858A JP 2004312841 A JP2004312841 A JP 2004312841A JP 2004312841 A JP2004312841 A JP 2004312841A JP 2006127858 A JP2006127858 A JP 2006127858A
Authority
JP
Japan
Prior art keywords
radiation
wire
resistant cable
around
mgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004312841A
Other languages
Japanese (ja)
Inventor
Daiji Nishizawa
代治 西澤
Toshiro Nishidono
敏朗 西殿
Nagayoshi Kogori
永喜 古郡
Tokuo Ogiwara
徳男 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
IHI Corp
Japan Atomic Energy Agency
Original Assignee
Fujikura Ltd
IHI Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, IHI Corp, Japan Atomic Energy Research Institute filed Critical Fujikura Ltd
Priority to JP2004312841A priority Critical patent/JP2006127858A/en
Publication of JP2006127858A publication Critical patent/JP2006127858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation-resistant cable with excellent flexibility and low cost, even if it is a cable with large outer diameter of exceeding ϕ5mm. <P>SOLUTION: The radiation-resistant cable 10, exposed to radioactive rays of 10 MGy or more, has a plurality of wire cores 13 each with an insulation coating 12 of polyether ether ketone around a conductor 11 twisted to form a stranded wire 14, around which 14 an outer covering 19 structured of metal braided wires is fitted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、10MGy以上の放射線に曝される環境下で使用される耐放射線ケーブルに関するものである。   The present invention relates to a radiation-resistant cable used in an environment exposed to radiation of 10 MGy or more.

物質を構成する原子の原子核に、高エネルギーの陽子ビームをぶつけると、原子核が砕けて、中性子、陽子、π中間子、ニュートリノ、ミューオン等の二次粒子が発生する。このような方法で生成した強力な中性子(neutron)ビームを用いて、核変換法により半減期の長い長寿命核を短寿命化して放射性廃棄物を処理したり、タンパク質や酵素の未知の微細構造を解明し医薬品や食品の開発に利用しようとする計画がある。   When a high-energy proton beam strikes the atomic nucleus that constitutes a material, the atomic nucleus breaks, generating secondary particles such as neutrons, protons, pions, neutrinos, and muons. Using a powerful neutron beam generated in this way, the nuclear transmutation method shortens long-lived nuclei with a long half-life to process radioactive waste, and unknown fine structures of proteins and enzymes. There is a plan to elucidate and use it for the development of pharmaceuticals and foods.

この計画の中核施設として、大強度、かつ、高エネルギーの陽子ビームを生成するための陽子加速器がある。この陽子加速器は、通常、線形加速器(リニアック)とシンクロトロンとで構成される。   The core facility of this project is a proton accelerator for generating high-intensity and high-energy proton beams. This proton accelerator is usually composed of a linear accelerator (linac) and a synchrotron.

シンクロトロンにおいては、陽子を加速するために、陽子の通路である管状のビームダクト内を真空状態にする必要がある。この真空排気手段として、真空ポンプ、特に、清浄で高い真空度が得られるターボ分子ポンプ(以下、TMPという)が使用される。TMPは、例えば、図5に示すように、TMP本体51、TMPコントローラ52、TMP中継器53、コネクタボックス部54を備えている。TMPコントローラ52とTMP中継器53、及びTMPコントローラ52とコネクタボックス部54は、それぞれ接続ケーブル55a,55bを介して接続される。また、TMP本体51とTMP中継器53、及びTMP本体51とコネクタボックス部54は、それぞれ接続ケーブル56a,56bを介して接続される。接続ケーブル56a,56bの各線芯群(図示せず)は、それぞれTMP本体51の内部配線における各線芯群58a,58bと電気的に接続される。TMP本体51及び接続ケーブル56a,56bは、遮蔽壁57で囲まれたシンクロトロン主トンネルの内部(図5中の斜線領域)58に布設される。このシンクロトロン主トンネルの内部58は、放射線領域となっている。   In the synchrotron, in order to accelerate protons, it is necessary to make the inside of a tubular beam duct, which is a passage of protons, a vacuum state. As this evacuation means, a vacuum pump, particularly a turbo molecular pump (hereinafter referred to as TMP) that is clean and can obtain a high degree of vacuum is used. For example, as shown in FIG. 5, the TMP includes a TMP main body 51, a TMP controller 52, a TMP repeater 53, and a connector box unit 54. The TMP controller 52 and the TMP repeater 53, and the TMP controller 52 and the connector box unit 54 are connected via connection cables 55a and 55b, respectively. Further, the TMP main body 51 and the TMP repeater 53, and the TMP main body 51 and the connector box section 54 are connected via connection cables 56a and 56b, respectively. Each wire core group (not shown) of the connection cables 56 a and 56 b is electrically connected to each wire core group 58 a and 58 b in the internal wiring of the TMP main body 51. The TMP main body 51 and the connection cables 56a and 56b are installed inside the synchrotron main tunnel (shaded area in FIG. 5) 58 surrounded by the shielding wall 57. The interior 58 of the synchrotron main tunnel is a radiation region.

接続ケーブル55a,55b及び56a,56bは、導体の周りに絶縁体被覆を有する線芯を複数本撚り合わせた撚線部の周りに、良導体の編組で構成される電磁遮蔽層を設け、その電磁遮蔽層の外側に外装(シース)を設けてなるものである。接続ケーブル55a,55bは、高度の放射線に曝されることがないため高い耐放射線性は要求されず、線芯の絶縁体被覆、ケーブルの外装共にポリエチレン系材料(以下、PEという)で構成される。   The connection cables 55a, 55b and 56a, 56b are provided with an electromagnetic shielding layer composed of a braid of a good conductor around a stranded wire portion obtained by twisting a plurality of wire cores having an insulator coating around the conductor. An exterior (sheath) is provided outside the shielding layer. The connection cables 55a and 55b are not required to have high radiation resistance because they are not exposed to high-level radiation, and both the insulation of the wire core and the exterior of the cable are made of a polyethylene-based material (hereinafter referred to as PE). The

これに対して、接続ケーブル56a,56bは、高度の放射線に曝されるため高い耐放射線性が要求される。また、接続ケーブル56a,56bには高難燃性が要求される。例えば、高難燃性として、JIS C 3521(IEEE383)に準拠した垂直トレイ燃焼試験に合格することが要求される。さらに、接続ケーブル56a,56bは、燃焼時におけるハロゲンガスやダイオキシンの発生を防ぐべく、ポリ塩化ビニル(PVC)のようにハロゲン元素を含んでいないこと(ハロゲンフリーであること)が重要である。   On the other hand, the connection cables 56a and 56b are required to have high radiation resistance because they are exposed to high-level radiation. Further, the connection cables 56a and 56b are required to have high flame resistance. For example, high flame retardancy is required to pass a vertical tray combustion test based on JIS C 3521 (IEEE383). Further, it is important that the connection cables 56a and 56b do not contain a halogen element (halogen-free) like polyvinyl chloride (PVC) in order to prevent generation of halogen gas or dioxin during combustion.

耐放射線性及び耐熱性(難燃性)に優れた同軸ケーブルとして、絶縁体被覆をポリイミドの押出被覆で構成し、シース(外装)をポリイミド又はポリエーテルエーテルケトン(以下、PEEKという)の押出被覆で構成する耐熱・耐放射線性ケーブルが提案されている(例えば、特許文献1参照)。また、耐熱性(難燃性)に優れた同軸ケーブルとして、導体上に、PEEKで構成される絶縁体被覆を設けた絶縁電線がある(例えば、特許文献2参照)。   As a coaxial cable with excellent radiation resistance and heat resistance (flame resistance), the insulation coating is composed of polyimide extrusion coating, and the sheath (exterior) is extrusion coating of polyimide or polyetheretherketone (hereinafter referred to as PEEK) There has been proposed a heat- and radiation-resistant cable composed of (see, for example, Patent Document 1). Moreover, as a coaxial cable excellent in heat resistance (flame resistance), there is an insulated wire in which an insulator coating made of PEEK is provided on a conductor (see, for example, Patent Document 2).

特開平7−130219号公報JP-A-7-130219 特開平5−225832号公報JP-A-5-225832

ところで、外径がφ5mmを超えるような大径のケーブルにおいては、ポリイミドやPEEKの押出被覆でシースを形成することが非常に難しいという問題があった。この場合、ポリイミド(又はPEEK)製のテープ材を巻回すことでシースを形成することが可能であるものの、可撓性が劣化し、しかも高コストになるという問題があった。   By the way, in the case of a large-diameter cable whose outer diameter exceeds φ5 mm, there is a problem that it is very difficult to form a sheath by extrusion coating of polyimide or PEEK. In this case, although a sheath can be formed by winding a tape material made of polyimide (or PEEK), there is a problem that flexibility is deteriorated and cost is increased.

以上の事情を考慮して創案された本発明の目的は、外径がφ5mmを超えるような大径のケーブルであっても、可撓性が良好で、安価な耐放射線ケーブルを提供することにある。   The object of the present invention created in view of the above circumstances is to provide a radiation-resistant cable that has good flexibility and is inexpensive even for a large-diameter cable having an outer diameter exceeding 5 mm. is there.

上記目的を達成すべく本発明に係る耐放射線ケーブルは、10MGy以上の放射線に曝されるケーブルであって、導体の周りにポリエーテルエーテルケトンの絶縁体被覆を有する線芯を形成し、その線芯の周りに金属製の編組線で構成される外装(シース)を設けたものである。   In order to achieve the above object, the radiation-resistant cable according to the present invention is a cable that is exposed to radiation of 10 MGy or more, and forms a wire core having a polyether ether ketone insulator coating around a conductor, and the wire A sheath (sheath) composed of a metal braided wire is provided around the core.

また、本発明に係る耐放射線ケーブルは、10MGy以上の放射線に曝されるケーブルであって、導体の周りにポリエーテルエーテルケトンの絶縁体被覆を有する線芯を複数本撚り合わせて撚線部を形成し、その撚線部の周りに金属製の編組線で構成される外装(シース)を設けたものである。   The radiation-resistant cable according to the present invention is a cable that is exposed to radiation of 10 MGy or more, and a plurality of wire cores having a polyether ether ketone insulator coating are twisted around a conductor to form a stranded portion. The outer sheath (sheath) formed of a metal braided wire is provided around the stranded portion.

さらに、本発明に係る耐放射線ケーブルは、10MGy以上の放射線に曝されるケーブルであって、導体の周りにポリエーテルエーテルケトンの絶縁体被覆を有する線芯を撚り合わせて対撚線を形成し、少なくとも1本の対撚線を用いて複種類の撚線ユニットを形成し、各撚線ユニットを束ねて撚線部を形成し、その撚線部の周りに金属製の編組線で構成される外装(シース)を設けたものである。   Furthermore, the radiation-resistant cable according to the present invention is a cable exposed to radiation of 10 MGy or more, and forms a twisted pair by twisting a wire core having a polyether ether ketone insulator coating around a conductor. , A plurality of types of twisted wire units are formed using at least one pair of twisted wires, each twisted wire unit is bundled to form a twisted wire portion, and a metal braided wire is formed around the twisted wire portion. The exterior (sheath) is provided.

ここで、外装(シース)は、ステンレス鋼製の編組線で構成することが好ましい。   Here, the exterior (sheath) is preferably composed of a braided wire made of stainless steel.

また、絶縁体被覆を構成するポリエーテルエーテルケトンの比重が1.28以上であることが好ましい。   Further, the specific gravity of the polyether ether ketone constituting the insulator coating is preferably 1.28 or more.

さらに、外装の内側及び/又は撚線部内に、ポリイミド系材料の介在物を設けることが好ましく、より好ましい介在物はアラミド繊維である。   Furthermore, it is preferable to provide an inclusion of a polyimide-based material inside the exterior and / or in the stranded portion, and a more preferable inclusion is an aramid fiber.

また、外装(シース)の周りに、ポリイミド系材料、例えばポリイミドテープ等、又はポリエーテルエーテルケトン系材料、例えばポリエーテルエーテルケトンテープ等で構成される絶縁保護層を設けてもよい。   Moreover, you may provide the insulation protective layer comprised with a polyimide-type material, for example, a polyimide tape etc., or a polyether ether ketone-type material, for example, a polyether ether ketone tape, around the exterior (sheath).

本発明によれば、耐放射線性、高難燃性、及びハロゲンフリーを満足し、かつ、可撓性の良好な耐放射線ケーブルを得ることができるという優れた効果を発揮する。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding effect that a radiation resistant cable which satisfies radiation resistance, high flame retardance, and halogen-free, and has favorable flexibility can be obtained.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係る耐放射線ケーブルの横断面図を図1に示す。   FIG. 1 shows a cross-sectional view of a radiation-resistant cable according to a preferred embodiment of the present invention.

図1に示すように、本実施の形態に係る耐放射線ケーブル10は、10MGy以上、好ましくは10〜30MGy未満、より好ましくは10〜20MGyの放射線に曝されるケーブルである。具体的な構成は、導体11の周りにPEEKの絶縁体被覆12を有する線芯13を形成し、その線芯13の周りに良導体の編組で構成される電磁遮蔽層17を設け、その電磁遮蔽層17の周りに金属製の編組線で構成される外装(シース)19を設けたものである。   As shown in FIG. 1, the radiation resistant cable 10 according to the present embodiment is a cable that is exposed to radiation of 10 MGy or more, preferably less than 10 to 30 MGy, more preferably 10 to 20 MGy. Specifically, a wire core 13 having a PEEK insulator coating 12 is formed around the conductor 11, an electromagnetic shielding layer 17 composed of a braid of a good conductor is provided around the wire core 13, and the electromagnetic shielding is performed. An outer sheath (sheath) 19 composed of a metal braided wire is provided around the layer 17.

より具体的には、耐放射線ケーブル10は、線芯13を複数本(図1中では3本)撚り合わせてなる撚線本体をポリイミドテープ15で固定した撚線部14を有し、その撚線部14の周りに、順に電磁遮蔽層17、ポリイミドテープで構成される絶縁層18、外装19を設けたものである。また、撚線部14の内側(撚線本体とポリイミドテープ15との空隙)には、ポリイミド系材料の介在物16が設けられる。   More specifically, the radiation resistant cable 10 has a stranded wire portion 14 in which a stranded wire body formed by twisting a plurality of wire cores 13 (three in FIG. 1) is fixed with a polyimide tape 15, and the twisted wire portion 14. An electromagnetic shielding layer 17, an insulating layer 18 made of polyimide tape, and an exterior 19 are provided around the wire portion 14 in this order. Moreover, the inclusion 16 of a polyimide-type material is provided inside the stranded portion 14 (the gap between the stranded wire body and the polyimide tape 15).

外装19は、シースであって、電磁遮蔽層ではなく、頑強で、耐食性に優れるステンレス鋼製の編組線で構成されることが好ましい。ステンレス鋼としては、好ましくはSUS316(JIS規格)が、より好ましくは原子力用SUS316材(いわゆるSUS316NG材)が挙げられる。   The sheath 19 is a sheath and is preferably not a magnetic shielding layer but a braided wire made of stainless steel that is robust and excellent in corrosion resistance. As the stainless steel, SUS316 (JIS standard) is preferable, and SUS316 material for nuclear power (so-called SUS316NG material) is more preferable.

また外装19の周りには、必要に応じ、適宜ポリイミドテープやPEEKテープを巻回し、外装19を絶縁、保護する絶縁保護層を設けるようにしてもよい。外装19、すなわち金属(ステンレス鋼)製編組線は経時劣化等により、表面がささくれ立つおそれがある。しかし、この絶縁保護層を設けることにより、耐放射線ケーブル10のハンドリング時における安全性をより高めることができると共に、外装19から周囲に不要なアース電流が漏洩するのを防止することができる。   In addition, an insulation protective layer for insulating and protecting the exterior 19 may be provided around the exterior 19 by appropriately winding a polyimide tape or a PEEK tape as necessary. The exterior 19, that is, a braided wire made of metal (stainless steel), may have a surface that rises due to deterioration over time. However, by providing this insulating protective layer, safety during handling of the radiation-resistant cable 10 can be further increased, and unnecessary earth current can be prevented from leaking from the exterior 19 to the surroundings.

絶縁体被覆12を構成するPEEKは、以下に示す化学式(1)で表される。   The PEEK constituting the insulator coating 12 is represented by the following chemical formula (1).

Figure 2006127858
Figure 2006127858

PEEKの比重は結晶化度が高いほど大きくなり、その強度も結晶化度と共に大きくなる。PEEK製の絶縁体被覆12に要求される結晶化度は特に規定するものではないが、比重1.28以上(上限は1.401)が特に好ましい。ここで言う“比重”は、温度23℃で測定した時の比重d23を指している。 The specific gravity of PEEK increases as the crystallinity increases, and the strength increases with the crystallinity. The crystallinity required for the insulator coating 12 made of PEEK is not particularly specified, but a specific gravity of 1.28 or more (upper limit is 1.401) is particularly preferable. The “specific gravity” here refers to the specific gravity d 23 measured at a temperature of 23 ° C.

介在物16を構成する材料としては、ポリイミド系材料の他に、例えばアラミド繊維が挙げられる。可撓性にも優れるアラミド繊維の介在物16を設けることで、耐放射線性ケーブル全体の可撓性を更に高めることができる。   Examples of the material constituting the inclusions 16 include aramid fibers in addition to polyimide materials. By providing the inclusions 16 of aramid fibers that are excellent in flexibility, the flexibility of the entire radiation-resistant cable can be further increased.

電磁遮蔽層17を構成する良導体としては特に限定するものではなく、ケーブルの遮蔽層として通常用いられているものが適用可能であり、例えばSnめっき軟銅線などが挙げられる。   The good conductor constituting the electromagnetic shielding layer 17 is not particularly limited, and those normally used as a shielding layer for cables can be applied, and examples thereof include Sn-plated annealed copper wire.

導体11は、単線材又は撚線材のいずれであってもよい。導体11の構成材としては、特に限定するものではなく、電力供給線又は信号供給線用の導体として通常用いられているものが適用可能であり、Niめっき軟銅線、Agめっき軟銅線、Snめっき軟銅線などが挙げられる。   The conductor 11 may be either a single wire material or a stranded wire material. The constituent material of the conductor 11 is not particularly limited, and those normally used as a conductor for a power supply line or a signal supply line can be applied. Ni-plated annealed copper wire, Ag-plated annealed copper wire, Sn-plated wire An annealed copper wire etc. are mentioned.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

PEEKは、耐熱性に優れたハロゲンフリーの材料であると共に、耐放射線性にも優れた材料である。ここで、PEEKと同じような特性を有する材料に、ポリイミドがある。ところが、本実施の形態に係る耐放射線ケーブル10においては、導体11の周りに設ける絶縁体被覆12の構成材として、ポリイミドではなくPEEKを採用している。その理由を以下に述べる。   PEEK is a halogen-free material with excellent heat resistance and a material with excellent radiation resistance. Here, polyimide is a material having the same characteristics as PEEK. However, in the radiation resistant cable 10 according to the present embodiment, PEEK is used instead of polyimide as a constituent material of the insulator coating 12 provided around the conductor 11. The reason is described below.

PEEKの吸収線量と引張強度、吸収線量と伸びとの関係を図3に、ポリイミドの吸収線量と引張強度、吸収線量と伸びとの関係を図4に示す(参考文献:「リザルツ オブ ラディエーション テスツ アット クライアジェニック テンパラチャ オン サム セレクテッド オーガニック マテリアルズ フォー ザ LHC(Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC)」,ヨーロピアン オーガニゼーション フォー ニュークリア リサーチ(EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH(CERN)),1996年7月4日,96-05,p.16-18)。   Fig. 3 shows the relationship between the absorbed dose and tensile strength of PEEK, and the absorbed dose and elongation. Fig. 4 shows the relationship between absorbed dose and tensile strength of polyimide, and absorbed dose and elongation (Reference: Results of Radiation Tests. At Cryogenic Temparacha on Some Selected Organic Materials for the LHC (European Organization for Nuclear Research (CERN)), 1996 July 4, 1996, 96-05, p.16-18).

図4に示すように、ポリイミドは、室温、吸収線量が0〜50MGyの範囲の時、引張強度(図4中では黒丸印を結んだ線41)が約130〜180MPa、伸び(図4中では■印を結んだ線42)が約9〜30%である。また、ポリイミドは、77K、吸収線量が0〜120MGyの範囲の時、引張強度(図4中では○印を結んだ線43)が約170〜280MPa、伸び(図4中では□印を結んだ線44)が約5〜10強%である。   As shown in FIG. 4, the polyimide has a tensile strength (line 41 with a black circle in FIG. 4) of about 130 to 180 MPa and elongation (in FIG. 4) when the absorbed dose ranges from 0 to 50 MGy at room temperature. (3) The line 42) connecting the marks is about 9 to 30%. Polyimide has a tensile strength (line 43 with a circle in FIG. 4) of about 170 to 280 MPa and elongation (marked with a square in FIG. 4) when the absorbed dose is in the range of 77K and 0 to 120MGy. Line 44) is about 5 to 10%.

また、図3に示すように、PEEKは、室温、吸収線量が0〜50MGyの範囲の時、引張強度(図3中では黒丸印を結んだ線31)が約40〜100MPa、伸び(図3中では■印を結んだ線32)が約0.8〜160%である。また、PEEKは、77K、吸収線量が0〜120MGyの範囲の時、引張強度(図3中では○印を結んだ線33)が約130〜180MPa、伸び(図3中では□印を結んだ線34)が約5〜8%である。   Further, as shown in FIG. 3, PEEK has a tensile strength (line 31 connecting black circles in FIG. 3) of about 40 to 100 MPa and elongation (FIG. 3) when the absorbed dose is in the range of 0 to 50 MGy at room temperature. Among them, the line 32) connecting the ■ marks is about 0.8 to 160%. PEEK has a tensile strength (line 33 with a circle in FIG. 3) of about 130 to 180 MPa and elongation (marked with a □ in FIG. 3) when the absorbed dose is in the range of 77K and 0 to 120MGy. Line 34) is about 5-8%.

図3,図4からわかるように、77K、吸収線量が0〜120MGyの範囲において、ポリイミド及びPEEKの引張強度、伸びはそれぞれ略同じである。ところが、室温、吸収線量が0〜20MGyの範囲においては、ポリイミドの方がPEEKよりも引張強度が高く、逆に、伸びはPEEKの方がポリイミドよりも大きくなっている。つまり、室温、かつ、吸収線量0〜20MGyの使用環境下では、PEEK絶縁体被覆の方がポリイミド絶縁体被覆よりも伸びが良好であり、PEEKの伸びは約20〜160%である。よって、PEEK絶縁体被覆を有する電線は、ポリイミド絶縁体被覆を有する電線と比べ、屈曲を伴う布設、取り廻し時におけるハンドリング性が良好となる。   As can be seen from FIGS. 3 and 4, the tensile strength and elongation of polyimide and PEEK are substantially the same in the range of 77 K and absorbed dose in the range of 0 to 120 MGy. However, in the range of room temperature and absorbed dose in the range of 0 to 20 MGy, the tensile strength of polyimide is higher than that of PEEK, and conversely, the elongation of PEEK is larger than that of polyimide. That is, at room temperature and in an environment where the absorbed dose is 0 to 20 MGy, the PEEK insulator coating has a better elongation than the polyimide insulator coating, and the PEEK elongation is about 20 to 160%. Therefore, an electric wire having a PEEK insulator coating has better handling properties when being laid and routed than a wire having a polyimide insulator coating.

また、絶縁電線の曲率部において、絶縁体被覆の伸びが大きい方が、屈曲時に絶縁層に割れやヒビなどが生じにくく、耐屈曲性が良好となる。放射線照射後の絶縁電線に要求される伸び率の規定はないが、UL1581規格ではETFE絶縁電線に対して加熱後の伸び率75%以上を要求しており、また、伸び率が50%以上であれば外径の2倍程度に線材を丸めても計算上割れが生じないとされている。さらに、絶縁電線の製造工程において、通常の押出加工を用いて導体に樹脂製の絶縁体被覆を被せる際、少なくとも50%程度の伸び率が必要とされる。ここで、PEEKの放射線照射後の耐屈曲性(伸び)は、PEEKの比重によって変化するものであり、比重1.28以上のPEEKを用いることで大きく向上する。比重1.28以上のPEEKが好ましいのは、引張強度、カットスルー強度、及びAC絶縁破壊電圧のいずれの特性もが、比重1.28の時に大きく変化し、各特性が大幅に向上するためである。よって、比重1.28以上のPEEKを用いることで、耐放射線性、耐屈曲性、及び難燃性が更に向上する。具体的には、比重が1.28未満のPEEKの場合、図3に示したように、吸収線量10〜20MGyの範囲で、伸び率が約50%未満となってしまうが、比重が1.28以上のPEEKを用いた場合、吸収線量30MGy以下の範囲で、50%以上の伸び率を確保することができる。   Moreover, in the curvature part of an insulated wire, when the elongation of the insulator coating is larger, the insulating layer is less likely to be cracked or cracked when bent, and the bending resistance is improved. Although there is no provision for the elongation required for insulated wires after irradiation, the UL1581 standard requires ETFE insulated wires to have an elongation of 75% or more after heating, and the elongation is 50% or more. If there is, it is said that no cracking will occur even if the wire is rounded to about twice the outer diameter. Furthermore, in the process of manufacturing an insulated wire, when a conductor is covered with a resin insulator coating using a normal extrusion process, an elongation of at least about 50% is required. Here, the bending resistance (elongation) after irradiation of PEEK varies depending on the specific gravity of PEEK, and is greatly improved by using PEEK having a specific gravity of 1.28 or more. The reason why PEEK having a specific gravity of 1.28 or more is preferable is that the properties of tensile strength, cut-through strength, and AC breakdown voltage change greatly when the specific gravity is 1.28, and each characteristic is greatly improved. Therefore, by using PEEK having a specific gravity of 1.28 or more, radiation resistance, flex resistance, and flame retardancy are further improved. Specifically, in the case of a PEEK with a specific gravity of less than 1.28, as shown in FIG. 3, the elongation is less than about 50% in the range of absorbed dose of 10 to 20MGy, but the PEEK with a specific gravity of 1.28 or more. When is used, an elongation rate of 50% or more can be secured in the range of absorbed dose of 30 MGy or less.

以上より、本実施の形態に係る耐放射線ケーブル10では、絶縁体被覆12をPEEK、好ましくは比重が1.28以上のPEEKで構成している。   As described above, in the radiation-resistant cable 10 according to the present embodiment, the insulator coating 12 is made of PEEK, preferably PEEK having a specific gravity of 1.28 or more.

また、本実施の形態に係る耐放射線ケーブル10によれば、外装(シース)19の構成材を金属としていることから、吸収線量10MGy以上を超えるような高度の放射線環境下においても、耐放射線性が良好である。例えば、外装19の構成材をステンレス鋼とすることで、耐放射線性及び耐食性に優れたケーブルシースを得ることができる。また、外装19をフレキシブルな金属製の編組線で形成していることから、外径がφ5mmを超えるような大径の耐放射線ケーブル10であっても、その可撓性は良好であり、屈曲を伴う布設、取り廻し時におけるハンドリング性は良好である。さらに、外装19により絶縁体被覆12の放射線被曝量を軽減することもできる。   Further, according to the radiation resistant cable 10 according to the present embodiment, since the constituent material of the sheath (sheath) 19 is made of metal, the radiation resistance can be achieved even in a high radiation environment exceeding the absorbed dose of 10 MGy or more. Is good. For example, the cable sheath excellent in radiation resistance and corrosion resistance can be obtained by using stainless steel as the constituent material of the outer casing 19. Further, since the exterior 19 is formed of a flexible metal braided wire, even if the radiation resistant cable 10 has a large diameter such that the outer diameter exceeds 5 mm, its flexibility is good and it is bent. The handling is good when laying and handling. Furthermore, the radiation exposure amount of the insulator coating 12 can be reduced by the exterior 19.

以上より、本実施の形態に係る耐放射線ケーブル10は、絶縁体被覆12をPEEKで構成し、外装19を金属製の編組線で構成したことで、吸収線量が10MGy以上の高度の放射線環境下において、線芯の耐放射線性及び耐屈曲性が高く、高難燃性、ハロゲンフリーが満足され、かつ、ケーブル全体の可撓性も良好となる。   As described above, in the radiation resistant cable 10 according to the present embodiment, the insulation coating 12 is made of PEEK, and the exterior 19 is made of a metal braided wire, so that the absorbed dose is 10 MGy or more in a high radiation environment. , The radiation resistance and bending resistance of the wire core are high, high flame retardancy and halogen-free are satisfied, and the flexibility of the entire cable is good.

本実施の形態に係る耐放射線ケーブル10は、シンクロトロンのターボ分子ポンプ用接続ケーブルとして好適であるが、適用範囲は特にこれに限定するものではない。例えば、吸収線量が10MGy以上の高度の放射線に曝されるケーブル、その他の加速器(例えば、リニアック)、原子力機器、放射線を用いる医療機器などのパワーケーブル、信号ケーブルなどにも適用可能である。また、難燃性及びハロゲンフリーが要求される大径の耐屈曲ケーブルなどにも適用可能である。   The radiation resistant cable 10 according to the present embodiment is suitable as a connection cable for a synchrotron turbomolecular pump, but the application range is not particularly limited thereto. For example, the present invention can also be applied to cables exposed to high-level radiation having an absorbed dose of 10 MGy or more, other accelerators (for example, linac), nuclear power equipment, power cables such as medical equipment using radiation, and signal cables. It can also be applied to a large-diameter bending-resistant cable that requires flame resistance and halogen-free.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の他の好適一実施の形態に係る耐放射線ケーブルの横断面図を図2に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については説明を省略する。   A cross-sectional view of a radiation resistant cable according to another preferred embodiment of the present invention is shown in FIG. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 1, and description is abbreviate | omitted about these members.

図2に示すように、本実施の形態に係る耐放射線ケーブル20は、複種類(図2中では4種類)の撚線ユニット23a〜23dを束ねてなるものをポリイミドテープ27で固定して撚線部24を形成し、その撚線部24の周りに、順に電磁遮蔽層17、ポリイミド系材料のテープで構成される絶縁層18、外装(シース)19を設けたものである。   As shown in FIG. 2, the radiation resistant cable 20 according to the present embodiment is formed by bundling multiple types (four types in FIG. 2) of twisted wire units 23 a to 23 d with a polyimide tape 27. A wire portion 24 is formed, and an electromagnetic shielding layer 17, an insulating layer 18 composed of a polyimide-based material tape, and an outer sheath (sheath) 19 are sequentially provided around the stranded wire portion 24.

撚線部24は、撚線ユニット23a,23b,23cで構成される内層撚線部24aと、撚線ユニット23dで構成される外層撚線部24bとを有する。   The stranded wire portion 24 includes an inner layer stranded wire portion 24a composed of stranded wire units 23a, 23b, and 23c, and an outer layer stranded wire portion 24b composed of a stranded wire unit 23d.

内層撚線部24aは、一対の撚線ユニット23a、一対の撚線ユニット23b、及び1本の撚線ユニット23cを撚り合わせてなるユニット群をポリイミドテープ26で固定し、このユニット群とポリイミドテープ26との空隙にポリイミド系材料の介在物16を設けてなる。   The inner layer stranded wire portion 24a fixes a unit group formed by twisting together a pair of stranded wire units 23a, a pair of stranded wire units 23b, and one stranded wire unit 23c with a polyimide tape 26, and this unit group and the polyimide tape The inclusions 16 of the polyimide material are provided in the gaps with respect to H.26.

外層撚線部24bは、内層撚線部24aの周りに同心撚りされた12本の撚線ユニット23dの群の周りに、ポリイミドテープで構成される絶縁層27を設け、これらの撚線ユニット23dの群と絶縁層27との空隙にポリイミド系材料の介在物16を設けてなる。   The outer layer stranded wire portion 24b is provided with an insulating layer 27 made of polyimide tape around a group of twelve stranded wire units 23d concentrically stranded around the inner layer stranded wire portion 24a. The inclusion 16 of polyimide material is provided in the gap between the group of the above and the insulating layer 27.

各撚線ユニット23aは、図1に示した線芯13を2本撚り合わせてなる対撚線29を4本撚り合わせたユニット本体部の周りに、順にポリイミドテープで構成される絶縁層25、電磁遮蔽層17を設けたものである。このユニット本体部と絶縁層25との空隙には、ポリイミド系材料の介在物16が設けられる。   Each twisted wire unit 23a has an insulating layer 25 composed of polyimide tape in order around a unit main body portion in which four twisted wires 29 obtained by twisting two wire cores 13 shown in FIG. An electromagnetic shielding layer 17 is provided. In the gap between the unit main body and the insulating layer 25, an inclusion 16 made of a polyimide material is provided.

各撚線ユニット23bは、対撚線29を2本撚り合わせたユニット本体部の周りに、順に絶縁層25、電磁遮蔽層17を設けたものである。このユニット本体部と絶縁層25との空隙には、ポリイミド系材料の介在物16が設けられる。   Each stranded wire unit 23b is provided with an insulating layer 25 and an electromagnetic shielding layer 17 in order around a unit main body portion in which two twisted wires 29 are twisted together. In the gap between the unit main body and the insulating layer 25, an inclusion 16 made of a polyimide material is provided.

撚線ユニット(線芯)23cは、図1に示した線芯13と同様の構成であり、導体21の周りにPEEKの絶縁体被覆22を有するものである。また、各撚線ユニット23dは対撚線29で構成されるものである。   The stranded wire unit (wire core) 23 c has the same configuration as the wire core 13 shown in FIG. 1, and has a PEEK insulator coating 22 around the conductor 21. Further, each stranded wire unit 23 d is configured by a twisted wire 29.

本実施の形態では、撚線ユニット23aの線芯数が8本、撚線ユニット23bの線芯数が4本、線芯23cの線芯数が1本、撚線ユニット23dの線芯数が2本の場合について説明を行ったが、線芯数は特にこれに限定するものではなく、必要に応じて適宜選択されるものである。   In the present embodiment, the number of wire cores of the stranded wire unit 23a is 8, the number of wire cores of the stranded wire unit 23b is 4, the number of wire cores of the wire core 23c is 1, and the number of wire cores of the stranded wire unit 23d is 1. The case of two wires has been described, but the number of wire cores is not particularly limited to this, and is appropriately selected as necessary.

また、本実施の形態では、内層撚線部24aが、1対の撚線ユニット23a、1対の撚線ユニット23b、及び1本の線芯23cで、外層撚線部24bが、12本の撚線ユニット23dで構成される場合について説明を行ったが、ユニットの種類数及び各ユニットの本数は特にこれに限定するものではなく、必要に応じて適宜選択されるものである。   In the present embodiment, the inner layer stranded wire portion 24a is a pair of stranded wire units 23a, a pair of stranded wire units 23b, and a single wire core 23c, and the outer layer stranded wire portion 24b is 12 wires. Although the case where it is constituted by the stranded wire unit 23d has been described, the number of types of units and the number of each unit are not particularly limited thereto, and are appropriately selected as necessary.

本実施の形態に係る耐放射線ケーブル20は、図1に示した前実施の形態に係る耐放射線ケーブル10と比べて更に大径であるものの、外装19を金属製の編組線で構成していることから十分な可撓性を有しており、屈曲を伴う布設、取り廻し時のハンドリング性に優れる。   The radiation resistant cable 20 according to the present embodiment has a larger diameter than the radiation resistant cable 10 according to the previous embodiment shown in FIG. 1, but the exterior 19 is formed of a metal braided wire. Therefore, it has sufficient flexibility, and is excellent in handling property at the time of laying and handling with bending.

本実施の形態に係る耐放射線ケーブル20においても、前実施の形態に係る耐放射線ケーブル10と同様の作用効果が得られる。   Also in the radiation resistant cable 20 according to the present embodiment, the same effects as the radiation resistant cable 10 according to the previous embodiment can be obtained.

以上、本発明は上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明について実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

外径がφ0.2mmのNiめっき軟銅線を19本撚り合わせてなる導体の周りに、厚さが0.34mmのPEEK(比重:1.28以上)絶縁体被覆を形成し、外径1.68mmのPEEK絶縁電線(線芯)を製作した(試料11)。   PEEK insulation with an outer diameter of 1.68 mm is formed by forming a PEEK (specific gravity: 1.28 or more) insulator coating around a conductor formed by twisting 19 Ni-plated annealed copper wires with an outer diameter of φ0.2 mm. An electric wire (wire core) was produced (Sample 11).

試料11に対して放射線(γ線)を照射し、耐放射線性の評価を行った。目標吸収線量は10MGy(実際は11.8MGy)、30MGy、50MGy(実際は45.4MGy)の3種類とした。それぞれの吸収線量のγ線を照射した後の試料11について、外観の観察と、耐電圧試験を行った。耐電圧試験は、電気学会技術報告(II部)第139号に準拠して行った。具体的には、試料11をφ34mm(被覆電線外径の20倍)のステンレス鋼製マンドレルに巻き付けた後、1.1kVのAC電圧を5分間流し、絶縁破壊が生じなかったものを良とした。試験電圧は、絶縁体被覆の厚さに応じて決定され、厚さ1mm当たり3.2kV、つまり3.2kV×[0.34mm/1.00mm]=1.1kVとした。   The sample 11 was irradiated with radiation (γ rays) to evaluate the radiation resistance. The target absorbed dose was 10 MGy (actually 11.8 MGy), 30 MGy, and 50 MGy (actually 45.4 MGy). The sample 11 after irradiating each absorbed dose of γ-rays was observed for appearance and withstand voltage test. The withstand voltage test was performed according to IEEJ Technical Report (Part II) No. 139. Specifically, after the sample 11 was wound around a stainless steel mandrel having a diameter of 34 mm (20 times the outer diameter of the covered wire), an AC voltage of 1.1 kV was passed for 5 minutes, and a sample in which dielectric breakdown did not occur was evaluated as good. The test voltage was determined according to the thickness of the insulator coating, and was 3.2 kV per 1 mm thickness, that is, 3.2 kV × [0.34 mm / 1.00 mm] = 1.1 kV.

吸収線量10MGyのγ線を照射した後(以下、10MGy照射後という)の試料11では、表面に亀裂などの損傷は全く観察されなかった。吸収線量30MGy(又は50MGy)のγ線を照射した後(以下、30MGy(又は50MGy)照射後という)の試料11では、表面に幾つかの亀裂が観察された。これは、放射線照射に伴う硬化により、PEEKの伸びが劣化するということを示していると考える。一方、それぞれの吸収線量のγ線を照射した後の試料11において、絶縁破壊は生じなかった。   In the sample 11 after irradiating the absorbed dose of 10MGy (hereinafter referred to as 10MGy irradiation), no damage such as cracks was observed on the surface. In sample 11 after irradiation with gamma rays with an absorbed dose of 30 MGy (or 50 MGy) (hereinafter referred to as after 30 MGy (or 50 MGy) irradiation), some cracks were observed on the surface. This is considered to indicate that the elongation of PEEK deteriorates due to curing accompanying irradiation. On the other hand, the dielectric breakdown did not occur in the sample 11 after irradiating each absorbed dose of γ rays.

つまり試料11は、耐電圧について言えば、10〜50MGyの耐放射線性を有しているということが確認できた。また、試料11は、吸収線量10〜30MGyの範囲であれば、良好な伸び、すなわち良好な耐屈曲性を有しているということが確認できた。   That is, it can be confirmed that the sample 11 has a radiation resistance of 10 to 50 MGy in terms of withstand voltage. In addition, it was confirmed that the sample 11 had good elongation, that is, good bending resistance when the absorbed dose ranged from 10 to 30 MGy.

本実施例においては、比重が1.28以上のPEEK材を用いて絶縁体被覆を構成した線芯について耐放射線性の評価を行ったが、吸収線量が10〜20MGy程度であれば、比重が1.28未満のPEEK材を用いて絶縁体被覆を構成した線芯であっても十分な耐放射線性及び耐屈曲性を有している。   In this example, the radiation resistance was evaluated for the wire core comprising the insulator coating using a PEEK material having a specific gravity of 1.28 or more. If the absorbed dose is about 10 to 20 MGy, the specific gravity is less than 1.28. Even a wire core in which an insulator coating is formed using the PEEK material has sufficient radiation resistance and bending resistance.

本発明の好適一実施の形態に係る耐放射線ケーブルの横断面図である。1 is a cross-sectional view of a radiation resistant cable according to a preferred embodiment of the present invention. 本発明の他の好適一実施の形態に係る耐放射線ケーブルの横断面図である。It is a cross-sectional view of a radiation resistant cable according to another preferred embodiment of the present invention. PEEKの吸収線量と引張強度、吸収線量と伸びとの関係を示す図である。It is a figure which shows the relationship between absorbed dose and tensile strength of PEEK, absorbed dose, and elongation. ポリイミドの吸収線量と引張強度、吸収線量と伸びとの関係を示す図である。It is a figure which shows the relationship between the absorbed dose and tensile strength of a polyimide, and an absorbed dose and elongation. シンクロトロンにおけるターボ分子ポンプの配置図である。It is a layout view of a turbo molecular pump in a synchrotron.

符号の説明Explanation of symbols

10 耐放射線ケーブル
11 導体
12 絶縁体被覆
13 線芯
14 撚線部
19 外装
DESCRIPTION OF SYMBOLS 10 Radiation resistant cable 11 Conductor 12 Insulator coating 13 Wire core 14 Stranded wire part 19 Exterior

Claims (9)

10MGy以上の放射線に曝されるケーブルであって、導体の周りにポリエーテルエーテルケトンの絶縁体被覆を有する線芯を形成し、その線芯の周りに金属製の編組線で構成される外装を設けたことを特徴とする耐放射線ケーブル。   A cable that is exposed to radiation of 10 MGy or more, and a wire core having a polyether ether ketone insulator coating is formed around a conductor, and an outer sheath composed of a metal braided wire is formed around the wire core. A radiation resistant cable characterized by being provided. 10MGy以上の放射線に曝されるケーブルであって、導体の周りにポリエーテルエーテルケトンの絶縁体被覆を有する線芯を複数本撚り合わせて撚線部を形成し、その撚線部の周りに金属製の編組線で構成される外装を設けたことを特徴とする耐放射線ケーブル。   A cable that is exposed to radiation of 10 MGy or more, and a twisted wire portion is formed by twisting a plurality of wire cores having a polyether ether ketone insulator coating around a conductor, and a metal is formed around the twisted wire portion. A radiation-resistant cable, characterized in that an exterior composed of a braided wire made of metal is provided. 10MGy以上の放射線に曝されるケーブルであって、導体の周りにポリエーテルエーテルケトンの絶縁体被覆を有する線芯を撚り合わせて対撚線を形成し、少なくとも1本の対撚線を用いて複種類の撚線ユニットを形成し、各撚線ユニットを束ねて撚線部を形成し、その撚線部の周りに金属製の編組線で構成される外装を設けたことを特徴とする耐放射線ケーブル。   A cable that is exposed to radiation of 10 MGy or more, and a twisted wire is formed by twisting a wire core having a polyether ether ketone insulator coating around a conductor, and at least one twisted wire is used. Two or more types of stranded wire units are formed, each stranded wire unit is bundled to form a stranded wire portion, and an exterior made of a metal braided wire is provided around the stranded wire portion. Radiation cable. 上記外装が、ステンレス鋼製の編組線で構成される請求項1から3いずれかに記載の耐放射線ケーブル。   The radiation-resistant cable according to any one of claims 1 to 3, wherein the outer sheath is made of a braided wire made of stainless steel. 上記絶縁体被覆を構成するポリエーテルエーテルケトンの比重が1.28以上である請求項1から4いずれかに記載の耐放射線ケーブル。   The radiation-resistant cable according to any one of claims 1 to 4, wherein the polyether ether ketone constituting the insulator coating has a specific gravity of 1.28 or more. 上記外装の内側及び/又は上記撚線部内に、ポリイミド系材料の介在物を設けた請求項1から5いずれかに記載の耐放射線ケーブル。   The radiation-resistant cable according to any one of claims 1 to 5, wherein an inclusion of a polyimide-based material is provided inside the outer sheath and / or in the stranded portion. 上記介在物がアラミド繊維である請求項6記載の耐放射線ケーブル。   The radiation-resistant cable according to claim 6, wherein the inclusion is an aramid fiber. 上記外装の周りに、ポリイミド系材料で構成される絶縁保護層を設けた請求項1から7いずれかに記載の耐放射線ケーブル。   The radiation-resistant cable according to any one of claims 1 to 7, wherein an insulation protective layer made of a polyimide-based material is provided around the exterior. 上記外装の周りに、ポリエーテルエーテルケトン系材料で構成される絶縁保護層を設けた請求項1から7いずれかに記載の耐放射線ケーブル。
The radiation resistant cable according to any one of claims 1 to 7, wherein an insulating protective layer made of a polyether ether ketone material is provided around the outer sheath.
JP2004312841A 2004-10-27 2004-10-27 Radiation-resistant cable Pending JP2006127858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312841A JP2006127858A (en) 2004-10-27 2004-10-27 Radiation-resistant cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312841A JP2006127858A (en) 2004-10-27 2004-10-27 Radiation-resistant cable

Publications (1)

Publication Number Publication Date
JP2006127858A true JP2006127858A (en) 2006-05-18

Family

ID=36722375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312841A Pending JP2006127858A (en) 2004-10-27 2004-10-27 Radiation-resistant cable

Country Status (1)

Country Link
JP (1) JP2006127858A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130180755A1 (en) * 2011-12-20 2013-07-18 Ls Cable & System Ltd. Electric cable for nuclear power plant easy to monitor condition and fabrication method thereof
CN103854782A (en) * 2014-02-28 2014-06-11 安徽华联电缆集团有限公司 Environment-friendly medium-voltage fire-resistant power cable
CN104464924A (en) * 2014-12-17 2015-03-25 常州八益电缆股份有限公司 Novel high-dose-irradiation-resistant cable structure used in nuclear power plant containment vessel
CN104505156A (en) * 2014-12-17 2015-04-08 常州八益电缆股份有限公司 Cable used in containment of CAP1400 large pressurized water reactor nuclear power station
KR101597959B1 (en) * 2015-09-23 2016-02-26 가온전선 주식회사 Cable integrated with metal cladding and method for manufacturing the same
CN108281222A (en) * 2018-01-23 2018-07-13 苏州科宝光电科技有限公司 Nuclear magnetic resonance instrumentation cable

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749117A (en) * 1980-09-09 1982-03-20 Fujikura Ltd Heat insulating and radiation resistant cable
JPS57168410A (en) * 1981-04-10 1982-10-16 Japan Atomic Energy Res Inst Radiation resistant and heat resistant cable
JPS57194409A (en) * 1981-05-26 1982-11-30 Fujikura Ltd Heat resistant and radiation resistant cable
JPS63304515A (en) * 1987-06-03 1988-12-12 Hitachi Cable Ltd Insulated electric wire
JPH01103215A (en) * 1987-10-13 1989-04-20 Citizen Watch Co Ltd Working for slender square rod on complex working lathe
JPH02250209A (en) * 1989-03-24 1990-10-08 Fujikura Ltd Insulated electric wire
JPH0371890U (en) * 1989-11-15 1991-07-19
JPH04315701A (en) * 1991-04-12 1992-11-06 Mitsubishi Cable Ind Ltd Radiation resistant cable
JPH05174634A (en) * 1991-12-24 1993-07-13 Fujikura Ltd Radiation-resistant cable
JPH07130219A (en) * 1993-11-04 1995-05-19 Toshiba Corp Heat resistant radiation resistant cable and furnace structure inspecting device for fast breeder reactor using this cable
JP2000156122A (en) * 1998-11-19 2000-06-06 Oki Electric Cable Co Ltd Non-halogen flame resistant communication cable
JP2003031040A (en) * 2001-07-16 2003-01-31 Sumitomo Wiring Syst Ltd Communication cable
JP2004529468A (en) * 2001-04-16 2004-09-24 クローン インク Cable with twisted filler and common sheath

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749117A (en) * 1980-09-09 1982-03-20 Fujikura Ltd Heat insulating and radiation resistant cable
JPS57168410A (en) * 1981-04-10 1982-10-16 Japan Atomic Energy Res Inst Radiation resistant and heat resistant cable
JPS57194409A (en) * 1981-05-26 1982-11-30 Fujikura Ltd Heat resistant and radiation resistant cable
JPS63304515A (en) * 1987-06-03 1988-12-12 Hitachi Cable Ltd Insulated electric wire
JPH01103215A (en) * 1987-10-13 1989-04-20 Citizen Watch Co Ltd Working for slender square rod on complex working lathe
JPH02250209A (en) * 1989-03-24 1990-10-08 Fujikura Ltd Insulated electric wire
JPH0371890U (en) * 1989-11-15 1991-07-19
JPH04315701A (en) * 1991-04-12 1992-11-06 Mitsubishi Cable Ind Ltd Radiation resistant cable
JPH05174634A (en) * 1991-12-24 1993-07-13 Fujikura Ltd Radiation-resistant cable
JPH07130219A (en) * 1993-11-04 1995-05-19 Toshiba Corp Heat resistant radiation resistant cable and furnace structure inspecting device for fast breeder reactor using this cable
JP2000156122A (en) * 1998-11-19 2000-06-06 Oki Electric Cable Co Ltd Non-halogen flame resistant communication cable
JP2004529468A (en) * 2001-04-16 2004-09-24 クローン インク Cable with twisted filler and common sheath
JP2003031040A (en) * 2001-07-16 2003-01-31 Sumitomo Wiring Syst Ltd Communication cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130180755A1 (en) * 2011-12-20 2013-07-18 Ls Cable & System Ltd. Electric cable for nuclear power plant easy to monitor condition and fabrication method thereof
CN103854782A (en) * 2014-02-28 2014-06-11 安徽华联电缆集团有限公司 Environment-friendly medium-voltage fire-resistant power cable
CN104464924A (en) * 2014-12-17 2015-03-25 常州八益电缆股份有限公司 Novel high-dose-irradiation-resistant cable structure used in nuclear power plant containment vessel
CN104505156A (en) * 2014-12-17 2015-04-08 常州八益电缆股份有限公司 Cable used in containment of CAP1400 large pressurized water reactor nuclear power station
KR101597959B1 (en) * 2015-09-23 2016-02-26 가온전선 주식회사 Cable integrated with metal cladding and method for manufacturing the same
CN108281222A (en) * 2018-01-23 2018-07-13 苏州科宝光电科技有限公司 Nuclear magnetic resonance instrumentation cable

Similar Documents

Publication Publication Date Title
ES2362864T3 (en) PROCEDURE FOR THE SCREENING OF THE MAGNETIC FIELD GENERATED BY A LINE OF TRANSMISSION OF ELECTRIC ENERGY AND LINE OF TRANSMISSION OF ELECTRIC ENERGY MAGNETICALLY DISPLAYED.
EP2270565A2 (en) Composite, optical fiber, power and signal tactical cable
JP2018088364A (en) Water-resistant flame-retardant non-halogen sheath high-voltage cable
RU2625166C1 (en) Sealed cable feed-through module
JP2006127858A (en) Radiation-resistant cable
CN104240812B (en) Used in nuclear power station polyether-ether-ketone insulation electrical penetration piece wire
CN201804596U (en) Cable for gas-cooled reactor
RU80277U1 (en) MOUNTING CABLE, POWER, CONTROL FOR EXPLOSIVE AREAS ON FLOATING DRILLING RIGS AND MARINE STATIONARY PLATFORMS (OPTIONS)
CN107103943A (en) Unleaded polyvinyl chloride insulation environment-friendly cable
CN206711629U (en) A kind of resistance to irradiation multicore shielding control composite cable
JPH01156708A (en) Transmission body for optical signal and making thereof
CN104733087A (en) Cable and production method thereof
CN211294690U (en) Nuclear power station special cable capable of resisting nuclear radiation
RU81842U1 (en) CABLE CONTROL, MOUNTING AND POWER FOR EXPLOSIVE AREAS ON FLOATING DRILLING RIGS AND MARINE STATIONARY PLATFORMS
RU85737U1 (en) THERMOELECTRODE CABLE
CN208315275U (en) A kind of low frequency radiation protection used in nuclear power station information transmission cable
RU194080U1 (en) Control cable
CN201812526U (en) Ethylene propylene rubber insulated direct current cable
CN216671252U (en) 1E-level K1-type cable for nuclear power station
CN206412113U (en) A kind of shield type multicore spring electric wire
Tanaka et al. Radiation-Resistant Magnets for J-PARC
CN205984331U (en) Nuclear power medium voltage power cable
CN101964227A (en) Insulated polyether-ether-ketone flexible-jacket power cable for nuclear reactor
CN214476536U (en) Low-temperature-resistant rat-proof and termite-proof pre-branch cable
JPH07130219A (en) Heat resistant radiation resistant cable and furnace structure inspecting device for fast breeder reactor using this cable

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221