JP2006126026A - Apparatus for inspecting disconnection of wire of circuit board - Google Patents

Apparatus for inspecting disconnection of wire of circuit board Download PDF

Info

Publication number
JP2006126026A
JP2006126026A JP2004315375A JP2004315375A JP2006126026A JP 2006126026 A JP2006126026 A JP 2006126026A JP 2004315375 A JP2004315375 A JP 2004315375A JP 2004315375 A JP2004315375 A JP 2004315375A JP 2006126026 A JP2006126026 A JP 2006126026A
Authority
JP
Japan
Prior art keywords
circuit pattern
electro
voltage
circuit
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004315375A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yanagisawa
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004315375A priority Critical patent/JP2006126026A/en
Publication of JP2006126026A publication Critical patent/JP2006126026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric field distribution detecting device of a circuit pattern for detecting and inspecting a wire disconnection defect of the circuit pattern having a resistance that does not result in complete disconnection. <P>SOLUTION: The electric field distribution detecting device 100 of the circuit pattern comprises an electric optical element 10 that is disposed near a circuit board 70 having the circuit pattern 71 and has a polarization surface varying according to the variation of double refractive index by the electrical field, a signal source 20 for applying alternating voltage to the circuit pattern 71 through a coil 21, a light source 30 for radiating light to the electric optical element 10, a two-dimensional photo detector 40 for detecting intensity distribution of the reflected light of the electric optical element 10, an image processing device 50, and a controller 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は回路基板の電気的不良個所を検査するための装置に関し、詳しくは回路パターンの特定パッドにプローブを接触して、検査対象とするパッドの電圧を電気光学効果を応用して画像検出し、断線欠陥を検査する配線回路基板の断線検査装置に関する。   The present invention relates to an apparatus for inspecting an electrical defect portion of a circuit board. Specifically, the probe is brought into contact with a specific pad of a circuit pattern, and the voltage of the pad to be inspected is detected by applying an electro-optic effect. The present invention relates to a disconnection inspection apparatus for a printed circuit board for inspecting disconnection defects.

回路基板の断線、短絡などを検査する方法としては、従来、スプリングプローブで専用治具を形成し、パッドへ一括接触して電気検査する方法がとられてきた。しかし、パッド数の増加によって高価なスプリングプローブが多数必要となり、専用治具のコストが高騰している。
また、パッド間隔の高密度化によって、物理的に接触性を確保することが難しいことや、尖鋭なスプリングプローブを接触させることによるパッドの損傷も問題となっている。
そこで、高密度なパッド間隔に対応して検査する方法が必要となってきており、電気光学効果を応用して電圧分布を画像検出して断線検査や短絡検査をする方法がある。
As a method for inspecting a circuit board for disconnection, short circuit, etc., conventionally, a method has been employed in which a dedicated jig is formed with a spring probe and the pads are collectively contacted to perform electrical inspection. However, an increase in the number of pads necessitates a large number of expensive spring probes, and the cost of dedicated jigs is rising.
In addition, due to the high density of the pad spacing, it is difficult to physically ensure contact, and pad damage due to contact with a sharp spring probe is also a problem.
Therefore, an inspection method corresponding to a high-density pad interval has become necessary, and there is a method of performing a disconnection inspection or a short-circuit inspection by detecting an image of a voltage distribution by applying an electro-optic effect.

電気光学効果を応用して電気検査する方法では、回路パターンに電圧を印加し、回路パターンの電圧から発生する電界を画像検出して、導通すべき個所や絶縁すべき個所に電圧が発生しているか否かで断線検査と短絡検査する。   In the electrical inspection method using the electro-optic effect, a voltage is applied to a circuit pattern, an electric field generated from the voltage of the circuit pattern is detected, and a voltage is generated at a place to be conducted or insulated. Check for disconnection and short circuit depending on whether or not they are present.

従来、回路パターンの電圧分布を電気光学効果を用いて検査する方法としては、電気光学センサを用いて非接触で、特定の位置の電界強度を検出し、回路基板の半田接続状態を検査する方法が提案されている(例えば、特許文献1参照。)。
しかし、この方法では、電気光学センサの先端部分の電界しか検出できず、回路パターンの電圧分布を求めるには電気光学センサを移動させていく必要がある。そのため、検査対象となる複数の個所の電圧を計測するには時間がかかるという問題がある。
Conventionally, as a method of inspecting a voltage distribution of a circuit pattern using an electro-optic effect, a method of inspecting a solder connection state of a circuit board by detecting an electric field intensity at a specific position in a non-contact manner using an electro-optic sensor. Has been proposed (see, for example, Patent Document 1).
However, in this method, only the electric field at the tip portion of the electro-optic sensor can be detected, and the electro-optic sensor needs to be moved to obtain the voltage distribution of the circuit pattern. Therefore, there is a problem that it takes time to measure voltages at a plurality of locations to be inspected.

電圧分布を非接触で計測し、液晶ディスプレイの透明導電膜の欠陥を電気検査する方法が提案されている(例えば、特許文献2参照。)。
これは、平行な光束を回路基板近傍に配置した電気光学素子に照射し、その反射光から回路パターンの電圧分布を二次元で検出するものである。
ここで、電気光学素子の容量結合のインピーダンスは高いため、その前段に断線欠陥となる抵抗値が直列に加わった場合、断線欠陥の抵抗値が高くないと、容量結合に加わる電圧値の変化が乏しく、断線欠陥の判定が難しい。そこで、特許文献2では、断線欠陥の抵抗値R、電気光学素子部に発生する容量結合Cとで形成されるRC積分回路に対し、ステップ電圧を印加したときの過渡電圧を、印加後の検出タイミングを調整して検出している。
There has been proposed a method in which a voltage distribution is measured in a non-contact manner and a defect of a transparent conductive film of a liquid crystal display is electrically inspected (for example, see Patent Document 2).
This irradiates an electro-optical element arranged in the vicinity of a circuit board with a parallel light beam, and detects the voltage distribution of the circuit pattern in two dimensions from the reflected light.
Here, since the impedance of the capacitive coupling of the electro-optic element is high, when a resistance value that causes a disconnection defect is added in series to the preceding stage, if the resistance value of the disconnection defect is not high, the voltage value applied to the capacitive coupling changes. It is scarce and it is difficult to judge disconnection defects. Therefore, in Patent Document 2, a transient voltage when a step voltage is applied to an RC integrating circuit formed by the resistance value R of the disconnection defect and the capacitive coupling C generated in the electro-optic element portion is detected after the application. It is detected by adjusting the timing.

ところが、ステップ電圧を印加した場合、形成されるRC積分回路の時定数によってタイミングを調整する必要がある。また、ステップ電圧印加後の検出タイミングを遅くしていった場合、発明者の実験では、電気光学素子の誘電体反射膜の面方向に電荷が拡散してしまい、電圧分布が著しく劣化してしまう。
そこで、発明者は交流電圧を印加することでその問題を解消し、μmオーダの電圧分布分解能を得るという提案をしている(例えば、特許文献3参照。)。
However, when the step voltage is applied, it is necessary to adjust the timing according to the time constant of the formed RC integration circuit. Further, when the detection timing after application of the step voltage is delayed, in the inventor's experiment, charges are diffused in the surface direction of the dielectric reflecting film of the electro-optic element, and the voltage distribution is significantly deteriorated. .
Therefore, the inventor has proposed that an AC voltage be applied to solve the problem and obtain a voltage distribution resolution of the order of μm (see, for example, Patent Document 3).

電気光学素子の電気光学材料に液晶を用いた場合、液晶では印加された交流電圧の周波数に対する電気光学効果の応答速度はmsecオーダと遅い。電気光学材料に電気光学結晶を用いると電気光学結晶の応答速度は誘電体の分極する速度となり速いが、電気光学効果の感度が低い。発明者は電気光学結晶を用いた場合に光学的な位相補償を施して感度を
高めている。このとき電気光学変調が非対称変調となるため、2次元光検出器の検出時間より短い周期の交流電圧では正負の極性で反射光強度が増減して検出時間中に相殺されるところを、パルス光を各極性に同期して検出することで、感度を高めて検出している(例えば、特許文献3参照。)。
When liquid crystal is used as the electro-optic material of the electro-optic element, the response speed of the electro-optic effect with respect to the frequency of the applied AC voltage is slow in the order of msec. When an electro-optic crystal is used as the electro-optic material, the response speed of the electro-optic crystal is fast because the dielectric is polarized, but the sensitivity of the electro-optic effect is low. The inventor increases the sensitivity by applying optical phase compensation when an electro-optic crystal is used. At this time, since electro-optic modulation becomes asymmetrical modulation, the pulsed light is used when the reflected light intensity increases or decreases with the positive and negative polarity and cancels out during the detection time when the AC voltage has a period shorter than the detection time of the two-dimensional photodetector. Is detected in synchronization with each polarity, thereby increasing the sensitivity (see, for example, Patent Document 3).

従来の電気光学効果を応用した回路基板の電気検査方法としては、回路基板の一点の電圧を電界強度として検出する方法がある。この方法では、回路基板の多くの箇所で電界を検出するには、電気光学素子をスキャンする必要があり、検査の速度が遅くなり、また、スキャンするための位置決め機構が必要となって装置構造が複雑となるなどの問題を有している。
特開平9−72947号公報 特開平5−256794号公報 特開2002−286812号公報
As a conventional method for inspecting a circuit board using the electro-optic effect, there is a method of detecting a voltage at one point of the circuit board as an electric field strength. In this method, in order to detect an electric field in many places on a circuit board, it is necessary to scan the electro-optical element, the inspection speed becomes slow, and a positioning mechanism for scanning is required, so that the device structure Has problems such as becoming complicated.
Japanese Patent Laid-Open No. 9-72947 JP-A-5-256794 JP 2002-286812 A

本発明は、上記問題点を解決するためになされたものであり、電気光学効果を応用した方法で高集積化された回路パターンの電圧分布を検出し、入力インピーダンスの高い電気光学素子での検出において、完全な断線に至らない抵抗値をもつ回路パターンの欠陥を検出し、検査するための回路パターンの電界分布検出装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and detects the voltage distribution of a highly integrated circuit pattern by a method applying the electro-optic effect, and detects it with an electro-optic element having a high input impedance. An object of the present invention is to provide a circuit pattern electric field distribution detection device for detecting and inspecting a defect in a circuit pattern having a resistance value that does not lead to complete disconnection.

本発明に於いて上記課題を達成するために、まず請求項1においては、回路パターンが形成された回路基板の近傍に設けられ、電界による複屈折率の変化に応じて偏光面が変化する電気光学素子と、前記回路パターンにコイルを通して交流電圧を印加する電圧印加装置と、前記電気光学素子へ光を照射する光源と、前記電気光学素子の反射光の強度分布を検出する2次元光検出器と、画像処理装置と、制御装置を具備することを特徴とする回路パターンの電界分布検出装置としたものである。   In order to achieve the above object in the present invention, first, in claim 1, an electric circuit is provided in the vicinity of a circuit board on which a circuit pattern is formed, and the plane of polarization changes according to a change in birefringence due to an electric field. An optical element, a voltage applying device that applies an AC voltage to the circuit pattern through a coil, a light source that irradiates light to the electro-optical element, and a two-dimensional photodetector that detects an intensity distribution of reflected light of the electro-optical element And a circuit pattern electric field distribution detecting device comprising an image processing device and a control device.

また、請求項2においては、前記交流電圧の周波数が、前記回路パターンと前記電気光学素子に発生する容量結合Cと前記電気光学素子の抵抗R、前記コイルのインダクタンスLからなるRLC直列回路の共振周波数であることを特徴とする請求項1記載の回路パターンの電界分布検出装置としたものである。   According to a second aspect of the present invention, the frequency of the AC voltage is a resonance of an RLC series circuit including the circuit pattern, the capacitive coupling C generated in the electro-optic element, the resistance R of the electro-optic element, and the inductance L of the coil. The circuit pattern electric field distribution detection device according to claim 1, wherein the frequency distribution is a frequency.

さらにまた、請求項3においては、前記RLC直列回路のQ値が1/√2より高いことを特徴とする請求項1または2に記載の回路パターンの電界分布検出装置としたものである。   The circuit pattern electric field distribution detecting apparatus according to claim 1 or 2, wherein the RLC series circuit has a Q value higher than 1 / √2.

本発明の装置によれば、電気光学効果を応用した方法で、回路パターンの電圧分布を空間分解能よく、電気光学効果の感度を高め、また入力インピーダンスの高い電気光学素子において断線抵抗に対する感度を高めて検出できる。
この電圧分布を解析することにより、高集積化された回路基板の回路パターンの断線の電気検査を実現できる。
また、本発明によれば、回路パターン上に電気光学素子を配置し、CCDカメラのような2次元の光検出器で、回路パターンの電圧分布から発生する電界強度分布を2次元の光強度分布として検出できる。そのため、検出した電界強度分布と、良品の電界強度分布を比
較、判定することにより、早い検査速度で、簡易な位置決め系で回路パターンの電気検査が可能となる。。
According to the apparatus of the present invention, the voltage distribution of the circuit pattern is improved in spatial resolution, the sensitivity of the electro-optic effect is increased, and the sensitivity to disconnection resistance is increased in an electro-optic element having a high input impedance. Can be detected.
By analyzing this voltage distribution, it is possible to realize an electrical inspection of the disconnection of the circuit pattern of the highly integrated circuit board.
According to the present invention, an electro-optic element is arranged on a circuit pattern, and a two-dimensional photodetector such as a CCD camera is used to convert an electric field intensity distribution generated from the voltage distribution of the circuit pattern into a two-dimensional light intensity distribution. Can be detected as Therefore, by comparing and determining the detected electric field intensity distribution and the non-defective electric field intensity distribution, it is possible to perform an electric inspection of the circuit pattern with a simple positioning system at a high inspection speed. .

以下に図面を用いて本発明の実施の形態につき説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の回路パターンの電界分布検出装置の一実施例を示す模式構成概略図である。   FIG. 1 is a schematic configuration schematic diagram showing an embodiment of a circuit pattern electric field distribution detection apparatus according to the present invention.

回路パターンの電界分布検出装置100は、回路パターン71が形成された回路基板70の近傍に設けられ、電界による複屈折率の変化に応じて偏光面が変化する電気光学素子10と、回路パターン71にコイル21を通して交流電圧を印加する信号源20と、電気光学素子10へ光を照射する光源30と、電気光学素子10の反射光の強度分布を検出する2次元光検出器40と、画像処理装置50と、制御装置60とから構成されている。   The circuit pattern electric field distribution detection device 100 is provided in the vicinity of the circuit board 70 on which the circuit pattern 71 is formed, and the circuit pattern 71 includes the electro-optic element 10 whose polarization plane changes according to the change in the birefringence due to the electric field. A signal source 20 for applying an alternating voltage through the coil 21, a light source 30 for irradiating light to the electro-optic element 10, a two-dimensional photodetector 40 for detecting the intensity distribution of the reflected light of the electro-optic element 10, and image processing The apparatus 50 and the control apparatus 60 are comprised.

本発明の回路パターンの電界分布検出装置を用いて回路基板の回路パターンの断線を検査する方法について述べる。
まず、回路基板70の検出対象となる回路パターン71の近傍に電気光学素子10を配置する。電気光学素子10は回路基板70に接触させてもよいし、20μm程度の距離で非接触としてもよい。
A method for inspecting a circuit board for disconnection of a circuit pattern using the circuit pattern electric field distribution detection apparatus of the present invention will be described.
First, the electro-optical element 10 is disposed in the vicinity of the circuit pattern 71 to be detected on the circuit board 70. The electro-optical element 10 may be brought into contact with the circuit board 70 or may be non-contact at a distance of about 20 μm.

電気光学素子10は電気光学材料11の一方の面に透明導電膜12を、他方の面に誘電体反射膜13を形成したものである。電気光学材料11としては、縦電界に感度を示すBi12SiO20などを用いる。電気光学材料11の厚みは10〜500μm程度が望ましい。電気光学素子10の入射面に透明導電膜12を設けることで、回路基板70の回路パターン71から発生する電界の範囲を電気光学材料11の厚さ内に制御できる。電気光学素子10の回路基板70側に誘電体反射膜13を設けることで、光源30から入射した光の反射率を高めることができる。 The electro-optic element 10 is obtained by forming a transparent conductive film 12 on one surface of an electro-optic material 11 and a dielectric reflecting film 13 on the other surface. As the electro-optic material 11, Bi 12 SiO 20 or the like that shows sensitivity to a longitudinal electric field is used. The thickness of the electro-optic material 11 is desirably about 10 to 500 μm. By providing the transparent conductive film 12 on the incident surface of the electro-optic element 10, the range of the electric field generated from the circuit pattern 71 of the circuit board 70 can be controlled within the thickness of the electro-optic material 11. By providing the dielectric reflection film 13 on the circuit substrate 70 side of the electro-optic element 10, the reflectance of light incident from the light source 30 can be increased.

回路基板70の一方の面(電気光学素子との接触面)に回路パターン71が、他方の面にパッド電極72が形成されており、回路パターン71とパッド電極72は電気的に接続されている。
次に、回路基板70のパッド電極72にプローブ23を接触させて、信号源20からコイル21を通して回路パターン71へ交流電圧を印加する。スキャナ装置22ではプローブ23への給電をON/OFFできるようになっている。
A circuit pattern 71 is formed on one surface of the circuit board 70 (contact surface with the electro-optical element), and a pad electrode 72 is formed on the other surface. The circuit pattern 71 and the pad electrode 72 are electrically connected. .
Next, the probe 23 is brought into contact with the pad electrode 72 of the circuit board 70, and an AC voltage is applied from the signal source 20 to the circuit pattern 71 through the coil 21. In the scanner device 22, power supply to the probe 23 can be turned on / off.

一方、光源30から発せられた光は偏光子31で偏光され、ビームスプリッタ32で光路を変えて電気光学素子10へ照射される。電気光学素子10へ入射した入射光は、誘電体反射膜13で反射されて、2次元光検出器に40に入射する。透明導電膜12はグランドに接地されている。光源30にはハロゲン光源やLED光源などを用いる。   On the other hand, the light emitted from the light source 30 is polarized by the polarizer 31 and is irradiated to the electro-optic element 10 by changing the optical path by the beam splitter 32. Incident light that has entered the electro-optic element 10 is reflected by the dielectric reflecting film 13 and enters the two-dimensional photodetector 40. The transparent conductive film 12 is grounded. As the light source 30, a halogen light source or an LED light source is used.

信号源20から電圧を印加したとき、回路基板70の回路パターン71と透明導電膜12との間に、回路パターン71の電圧分布から発生する電界分布が生じ、電気光学材料11は電界分布によって屈折率が変化する。交流電圧を印加することで、電気光学素子10の面方向に生ずる電荷の拡散を抑圧することができる。電気光学素子10からの反射光は、回路パターン71の電圧分布に応じて偏光状態が変化する。   When a voltage is applied from the signal source 20, an electric field distribution generated from the voltage distribution of the circuit pattern 71 is generated between the circuit pattern 71 of the circuit board 70 and the transparent conductive film 12, and the electro-optic material 11 is refracted by the electric field distribution. The rate changes. By applying an AC voltage, it is possible to suppress the diffusion of charges generated in the surface direction of the electro-optic element 10. The reflected light from the electro-optical element 10 changes its polarization state according to the voltage distribution of the circuit pattern 71.

検光子34を偏光子31と直交させることによって、電界によって偏光状態の変化した反射光を、電圧分布に応じた光の強度分布とする。このとき、1/4波長板33で位相補償して線形化を図ってもよい。
2次元光検出器40には、エリアCCDなどを用いる。信号源20から周期的零和電圧を印加時、非印加時の反射光を2次元光検出器40で検出し、画像処理装置50で検出した各画像の差分をとることで、2次元電圧分布を求めることができる。
回路パターンの電界分布検出装置全体の動作、制御は制御装置60で行われる。
By making the analyzer 34 orthogonal to the polarizer 31, the reflected light whose polarization state has been changed by the electric field is made an intensity distribution of light corresponding to the voltage distribution. At this time, phase compensation may be performed by the quarter wavelength plate 33 to achieve linearization.
An area CCD or the like is used for the two-dimensional photodetector 40. A two-dimensional voltage distribution is obtained by detecting reflected light when a periodic zero sum voltage is applied from the signal source 20 with the two-dimensional photodetector 40 and taking a difference between the images detected by the image processing device 50. Can be requested.
The operation and control of the entire circuit pattern electric field distribution detection device are performed by the control device 60.

上記したように、本発明の回路パターンの電界分布検出装置100では、回路基板70の回路パターン71にコイル21を通して、交流電圧を印加することで回路パターン71から発生する電圧分布の空間分解能を高めて電気光学素子10にて検出できる。交流電圧を印加し、さらに周波数を高めることで回路パターン71から発生する電界強度分布の空間分解能を高めて、2次元光検出器40で多点同時に、画像として検出することができる。   As described above, in the circuit pattern electric field distribution detection apparatus 100 of the present invention, the spatial resolution of the voltage distribution generated from the circuit pattern 71 is increased by applying an alternating voltage to the circuit pattern 71 of the circuit board 70 through the coil 21. And can be detected by the electro-optic element 10. By applying an AC voltage and further increasing the frequency, the spatial resolution of the electric field strength distribution generated from the circuit pattern 71 can be increased, and the two-dimensional photodetector 40 can detect images as multiple points simultaneously.

請求項2に係る発明では、回路基板70の回路パターン71にコイル21を通して印加する交流電圧の周波数が、回路パターン71と電気光学素子10と間に発生する容量結合Cと電気光学素子10の抵抗R、コイル21のインダクタンスLからなるRLC直列回路の共振周波数になっている。
これは、印加する交流電圧の周波数を、回路パターン71から電気光学素子10に発生する容量結合Cと、電気光学素子10の透明導電膜12に発生するR、コイル21のインダクタンスLによって構成されるRLC直列回路の共振周波数とすることで、容量結合Cに発生する電圧を高めることができるようにしたもので、結果として回路基板70の断線欠陥検出精度を向上させることができる。
In the invention according to claim 2, the frequency of the AC voltage applied through the coil 21 to the circuit pattern 71 of the circuit board 70 is the capacitive coupling C generated between the circuit pattern 71 and the electro-optical element 10 and the resistance of the electro-optical element 10. The resonance frequency of the RLC series circuit including R and the inductance L of the coil 21 is obtained.
This is constituted by the capacitive coupling C generated from the circuit pattern 71 to the electro-optical element 10, the R generated in the transparent conductive film 12 of the electro-optical element 10, and the inductance L of the coil 21. By using the resonance frequency of the RLC series circuit, the voltage generated in the capacitive coupling C can be increased. As a result, the disconnection defect detection accuracy of the circuit board 70 can be improved.

回路基板70に、断線欠陥が発生した場合の検査方法について説明する。
図2(a)に示すように回路基板70に、断線に至らない断線欠陥73が生じたとする。このとき信号源20、コイル21のインダクタンスL21、断線欠陥73の抵抗R73、透明導電膜の抵抗R12、電気光学素子10に発生する容量結合C10がグランドに直列に接続され、図2(b)に示すような等価回路になる。等価回路はRLC直列接続の共振回路となり、このとき、容量結合C10に生じる電圧を電界強度分布として検出することになる。
An inspection method when a disconnection defect occurs in the circuit board 70 will be described.
As shown in FIG. 2A, it is assumed that a disconnection defect 73 that does not lead to disconnection occurs in the circuit board 70. At this time, the signal source 20, an inductance L 21 of the coil 21, the resistance R 73 of the disconnection defect 73, the resistance R 12 of the transparent conductive film, capacitive coupling C 10 generated in the electro-optical element 10 are connected in series to the ground, FIG. 2 An equivalent circuit as shown in FIG. Equivalent circuit becomes a resonant circuit of the RLC series, this time will detect a voltage generated in the capacitive coupling C 10 as the electric field intensity distribution.

等価回路において、容量結合C10を測定した場合の、印加電圧の周波数に対する特性はローパスフィルタとなって振幅特性は図2(c)示すグラフのようになり、共振周波数f0のとき、交流電圧に対する振幅強度が最も大きくなる。RLC共振回路においてQ値はR成分に反比例して振幅強度に影響を及ぼし、コイル21を挿入しない場合に比較して、断線欠陥の抵抗R73の影響が電界強度に大きく表れる。 In the equivalent circuit, when the capacitive coupling C 10 is measured, the characteristic with respect to the frequency of the applied voltage is a low-pass filter, and the amplitude characteristic is as shown in the graph of FIG. 2C. When the resonance frequency is f 0 , the AC voltage The amplitude intensity with respect to becomes the largest. In the RLC resonance circuit, the Q value affects the amplitude strength in inverse proportion to the R component, and the influence of the resistance R 73 of the disconnection defect appears greatly in the electric field strength as compared with the case where the coil 21 is not inserted.

請求項3に係る発明では、コイル21のインダクタンスL21、断線欠陥73の抵抗R73、透明導電膜の抵抗R12、電気光学素子10に発生する容量結合C10からなるRLC共振回路において、Q値を1/√2より高めていく。このとき容量結合C10の振幅特性(図3参照)では共振周波数f0において0dBより高くなっていき、容量結合C10に生じる電圧が高くなり印加電圧に対する感度を高めることができる。また、Q値が高くなることで、断線欠陥73の抵抗による振幅の変化も大きくすることができる。 In the invention according to claim 3, in the RLC resonance circuit including the inductance L 21 of the coil 21, the resistance R 73 of the disconnection defect 73, the resistance R 12 of the transparent conductive film, and the capacitive coupling C 10 generated in the electro-optic element 10, Increase the value from 1 / √2. This time will become higher than 0dB in the amplitude characteristic (see FIG. 3), the resonance frequency f 0 of the capacitive coupling C 10, it is possible to increase the sensitivity to the applied voltage increases the voltage generated in the capacitive coupling C 10. Further, since the Q value is increased, the change in amplitude due to the resistance of the disconnection defect 73 can be increased.

本発明の回路パターンの電界分布検出装置の一実施例を示す模式構成図である。It is a schematic block diagram which shows one Example of the electric field distribution detection apparatus of the circuit pattern of this invention. (a)は、回路基板に断線が発生した状態を示す説明図である。(b)は、コイル21のインダクタンスL21、断線欠陥73の抵抗R73、透明導電膜の抵抗R12電気光学素子10に発生する容量結合C10の関係を示す等価回路である。(c)等価回路における容量結合C10の振幅特性を示す説明図である。(A) is explanatory drawing which shows the state which the disconnection generate | occur | produced in the circuit board. (B), the inductance L 21 of the coil 21 is an equivalent circuit showing a relation between the resistor R 73, capacitive coupling C 10 generated in the resistor R 12 electro-optical element 10 of the transparent conductive film of the disconnection defect 73. (C) is an explanatory view showing an amplitude characteristic of the capacitive coupling C 10 in the equivalent circuit. 等価回路における容量結合C10の振幅特性を示す説明図である。It is an explanatory view showing an amplitude characteristic of the capacitive coupling C 10 in the equivalent circuit.

符号の説明Explanation of symbols

10……電気光学素子
11……電気光学材料
12……透明導電膜
13……誘電体反射膜
20……信号源
21……コイル
22……スキャナ装置
23……プローブ
30……光源
31……偏光子
32……ビームスプリッター
33……1/4波長板
34……検光子
40……2次元光検出器
50……画像処理装置
60……制御装置
70……回路基板
71……回路パターン
72……パッド電極
100……回路パターンの電界分布検出装置
DESCRIPTION OF SYMBOLS 10 ... Electro-optic element 11 ... Electro-optic material 12 ... Transparent conductive film 13 ... Dielectric reflective film 20 ... Signal source 21 ... Coil 22 ... Scanner device 23 ... Probe 30 ... Light source 31 ... Polarizer 32 ... Beam splitter 33 ... 1/4 wavelength plate 34 ... Analyzer 40 ... Two-dimensional photodetector 50 ... Image processing device 60 ... Control device 70 ... Circuit board 71 ... Circuit pattern 72 …… Pad electrode 100 …… Electric field distribution detector for circuit pattern

Claims (3)

回路パターンが形成された回路基板の近傍に設けられ、電界による複屈折率の変化に応じて偏光面が変化する電気光学素子と、前記回路パターンにコイルを通して交流電圧を印加する信号源と、前記電気光学素子へ光を照射する光源と、前記電気光学素子の反射光の強度分布を検出する2次元光検出器と、画像処理装置と、制御装置を具備することを特徴とする回路パターンの電解分布検出装置。   An electro-optic element that is provided near a circuit board on which a circuit pattern is formed and whose polarization plane changes in accordance with a change in birefringence due to an electric field; a signal source that applies an AC voltage to the circuit pattern through a coil; A circuit pattern electrolysis comprising: a light source that irradiates light to an electro-optic element; a two-dimensional photodetector that detects an intensity distribution of reflected light of the electro-optic element; an image processing device; and a control device. Distribution detector. 前記交流電圧の周波数が、前記回路パターンと前記電気光学素子に発生する容量結合Cと前記電気光学素子の抵抗R、前記コイルのインダクタンスLからなるRLC直列回路の共振周波数であることを特徴とする請求項1記載の回路パターンの電解分布検出装置。   The frequency of the AC voltage is a resonance frequency of an RLC series circuit including a capacitive coupling C generated in the circuit pattern and the electro-optic element, a resistance R of the electro-optic element, and an inductance L of the coil. The circuit pattern electrolytic distribution detection device according to claim 1. 前記RLC直列回路のQ値が1/√2より高いことを特徴とする請求項1または2に記載の回路パターンの電解分布検出装置。   The circuit pattern electrolytic distribution detection device according to claim 1, wherein a Q value of the RLC series circuit is higher than 1 / √2.
JP2004315375A 2004-10-29 2004-10-29 Apparatus for inspecting disconnection of wire of circuit board Pending JP2006126026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315375A JP2006126026A (en) 2004-10-29 2004-10-29 Apparatus for inspecting disconnection of wire of circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315375A JP2006126026A (en) 2004-10-29 2004-10-29 Apparatus for inspecting disconnection of wire of circuit board

Publications (1)

Publication Number Publication Date
JP2006126026A true JP2006126026A (en) 2006-05-18

Family

ID=36720908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315375A Pending JP2006126026A (en) 2004-10-29 2004-10-29 Apparatus for inspecting disconnection of wire of circuit board

Country Status (1)

Country Link
JP (1) JP2006126026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220904A (en) * 2018-11-23 2020-06-02 三星电子株式会社 Method of testing an interconnect substrate and apparatus for performing the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220904A (en) * 2018-11-23 2020-06-02 三星电子株式会社 Method of testing an interconnect substrate and apparatus for performing the method
US11047901B2 (en) 2018-11-23 2021-06-29 Samsung Electronics Co., Ltd. Method of testing an interconnection substrate and apparatus for performing the same
CN111220904B (en) * 2018-11-23 2024-04-19 三星电子株式会社 Method of testing interconnect substrate and apparatus for performing the same

Similar Documents

Publication Publication Date Title
JPH0627428A (en) Device for observing image at large number of position on surface during test and method of observing capacity of ese position
US7474404B2 (en) Voltage sensor capable of contactless voltage measurement
JPH06180353A (en) Voltage-image forming device and method utilizing electric-optic
JPH06213975A (en) Apparatus and method for observation of voltage in many positions on surface of panel under test
US4658148A (en) Inspection method for magnetic head utilizing the Kerr effect
JPH08105926A (en) Wiring pattern inspection device, and wiring pattern inspection method
KR100826505B1 (en) Circuit pattern detecting device and circuit pattern detecting method
JP2014107483A (en) Obirch inspection method and obirch device
JPH0580083A (en) Method and apparatus for testing integrated circuit
TW201243318A (en) Electro optical modulator electro optical sensor and detecting method thereof
JP2006126026A (en) Apparatus for inspecting disconnection of wire of circuit board
JP4003371B2 (en) Circuit board inspection apparatus and circuit board inspection method
KR20200060912A (en) Method of testing an interconnection substrate and apparatus for performing the same
US6894514B2 (en) Circuit pattern detecting apparatus and circuit pattern inspecting method
JP2005172730A (en) Apparatus for inspecting disconnection of wire of circuit board
JP2003185696A (en) Circuit pattern detector, circuit pattern detecting method and circuit pattern inspecting method
JP2002014131A (en) Method and device for inspecting circuit board
JPH0540158A (en) Method and device for positioning probe for measuring electric field of integrated circuit
JP4403701B2 (en) Circuit board inspection equipment
JP3019798B2 (en) Circuit board inspection method
JP2005017024A (en) Inspection apparatus of circuit board
US8106653B2 (en) Optical-magnetic Kerr effect waveform testing
JP2735048B2 (en) Method and apparatus for inspecting solder connection of electronic components
TWI773068B (en) Inspection apparatus and inspection method for inspecting light-emitting diodes
JPH03167490A (en) Apparatus for testing mounted printed circuit board