JP2006125937A - Method of detecting metal particle - Google Patents

Method of detecting metal particle Download PDF

Info

Publication number
JP2006125937A
JP2006125937A JP2004312729A JP2004312729A JP2006125937A JP 2006125937 A JP2006125937 A JP 2006125937A JP 2004312729 A JP2004312729 A JP 2004312729A JP 2004312729 A JP2004312729 A JP 2004312729A JP 2006125937 A JP2006125937 A JP 2006125937A
Authority
JP
Japan
Prior art keywords
metal foreign
epoxy resin
resin composition
foreign matter
tablet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312729A
Other languages
Japanese (ja)
Other versions
JP4198105B2 (en
Inventor
Takuya Eto
拓也 恵藤
Kazuhiro Ikemura
和弘 池村
Tatsuo Hiroshima
龍夫 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Marktec Corp
Original Assignee
Nitto Denko Corp
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Marktec Corp filed Critical Nitto Denko Corp
Priority to JP2004312729A priority Critical patent/JP4198105B2/en
Publication of JP2006125937A publication Critical patent/JP2006125937A/en
Application granted granted Critical
Publication of JP4198105B2 publication Critical patent/JP4198105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting metal particles for detecting conductive metal particles which has not been removed by a conventional method of removing the conductive metal particles using a magnet. <P>SOLUTION: A body under inspection made of an epoxy resin composition T for semiconductor sealing is positioned in magnetic flux generated by a magnetizing coil 1. When the metal particles exist in the body, the metal particles is brought to an induction-heated state by the magnetic flux. Then, temperature distribution in the body is measured by an infrared camera 2, etc., thereby detecting the metal particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体封止用エポキシ樹脂組成物の製造過程で混入する金属異物を検出する金属異物検出方法に関するものである。   The present invention relates to a metallic foreign matter detection method for detecting metallic foreign matter mixed in the process of manufacturing an epoxy resin composition for semiconductor encapsulation.

従来の半導体装置は、金属リードフレーム上に素子(半導体チップ)が実装され、外部との導通を図るために、上記素子と上記リードフレームのインナーリードとが、金属のワイヤーをボンディングすることにより、接続されている。さらに、上記素子およびリードフレームは、半導体封止用エポキシ樹脂組成物で封止されている。   In a conventional semiconductor device, an element (semiconductor chip) is mounted on a metal lead frame, and the element and the inner lead of the lead frame are bonded to each other by bonding a metal wire in order to conduct electricity to the outside. It is connected. Furthermore, the element and the lead frame are sealed with an epoxy resin composition for semiconductor sealing.

そして、最近は、電化製品や携帯電話等の高性能化が進んできており、半導体装置においても、小型化,薄型化,高性能化が要請されている。これを実現するために、TSOP(シン・スモール・アウトライン・パッケージ)やQFP(クワッド・フラット・パッケージ)等の半導体装置の形態が開発されてきている。また、リードフレームタイプの半導体装置は、外部リードの数に限界があるため、リードでの導通に代わって、ボールやランドで導通を図るBGA(ボール・グリッド・アレイ)やLGA(ランド・グリッド・アレイ)等の開発も進んできている。   Recently, the performance of electrical appliances and mobile phones has been improved, and the semiconductor devices are also required to be smaller, thinner and higher performance. In order to realize this, forms of semiconductor devices such as TSOP (Thin Small Outline Package) and QFP (Quad Flat Package) have been developed. Lead frame type semiconductor devices have a limit to the number of external leads. Instead of conducting with leads, BGA (ball grid array) or LGA (land grid array) that conducts with balls or lands. Development of array) is also progressing.

このように、小型高性能化が進んでくると、半導体装置内部の金属ワイヤーのピッチが狭くなり、最新の半導体装置では、金属ワイヤーのピッチが100μm弱のものもある。   As described above, as the miniaturization and performance increase, the pitch of the metal wires inside the semiconductor device becomes narrower, and some of the latest semiconductor devices have a metal wire pitch of less than 100 μm.

一方、上記半導体封止用エポキシ樹脂組成物の製造には、一般的に、混合,溶融混練,粉砕の工程があり、各工程では、上記半導体封止用エポキシ樹脂組成物の形成材料と製造装置との摩擦や衝突が起こる。このため、上記半導体封止用エポキシ樹脂組成物には、上記製造装置起因の導電性金属異物が混入する。   On the other hand, the production of the epoxy resin composition for semiconductor encapsulation generally includes mixing, melt-kneading, and pulverization processes. In each process, a forming material and a production apparatus for the epoxy resin composition for semiconductor encapsulation are used. There will be friction and collision. For this reason, the conductive metal foreign substance resulting from the said manufacturing apparatus mixes in the said epoxy resin composition for semiconductor sealing.

このような導電性金属異物が混入した半導体封止用エポキシ樹脂組成物を用いて、上記素子等を封止すると、上記のような狭ピッチの半導体装置では、上記導電性金属異物が金属ワイヤー間等に挟まり、ショートを引き起こすおそれがある。   When the above-described element is encapsulated using such an epoxy resin composition for semiconductor encapsulation mixed with such conductive metal foreign matter, the conductive metal foreign matter is between metal wires in the above-mentioned narrow pitch semiconductor device. There is a risk of being short-circuited.

そこで、上記導電性金属異物の混入を低減するために、上記半導体封止用エポキシ樹脂組成物の製造工程において、例えば、マグネットを用いて上記導電性金属異物の除去を行う方法が提案されている(例えば、特許文献1参照)。
特開平9−173890号公報
In order to reduce the contamination of the conductive metal foreign matter, a method for removing the conductive metal foreign matter using, for example, a magnet in the manufacturing process of the semiconductor sealing epoxy resin composition has been proposed. (For example, refer to Patent Document 1).
JP-A-9-173890

しかしながら、上記マグネットを用いた除去方法では、大きなサイズの導電性金属異物や強磁性の導電性金属異物の除去は可能だが、微細な(直径約100μm以下)導電性金属異物や弱磁性の導電性金属異物の除去は充分に行うことはできない。したがって、前記最新の狭ピッチの半導体装置には、依然として、ショートを引き起こすおそれがある。   However, the removal method using the magnet described above can remove large-sized conductive metal foreign matter and ferromagnetic conductive metal foreign matter, but fine (about 100 μm or less in diameter) conductive metal foreign matter and weak magnetic conductivity. It is not possible to sufficiently remove the metallic foreign matter. Therefore, the latest narrow pitch semiconductor device may still cause a short circuit.

また、半導体封止用エポキシ樹脂組成物に電磁波吸収効果等をもたせるために磁性酸化物を含有させる場合があるが、その磁性酸化物を含有させた半導体封止用エポキシ樹脂組成物に対しては、その磁性酸化物もマグネットに付いてしまうため、従来のマグネットを用いた導電性金属異物の除去方法が使用できない。このため、特に大きなサイズの導電性金属異物や強磁性の導電性金属異物であっても、半導体封止用エポキシ樹脂組成物に含有されたままとなる。   Moreover, in order to give an electromagnetic wave absorption effect or the like to the epoxy resin composition for semiconductor encapsulation, a magnetic oxide may be included, but for an epoxy resin composition for semiconductor encapsulation containing the magnetic oxide, Since the magnetic oxide is also attached to the magnet, a conventional method for removing conductive metal foreign matter using a magnet cannot be used. For this reason, even a conductive metal foreign matter having a particularly large size or a ferromagnetic conductive metal foreign matter remains contained in the epoxy resin composition for semiconductor encapsulation.

本発明は、このような事情に鑑みなされたもので、従来のマグネットを用いた導電性金属異物の除去方法では検出できなかった導電性金属異物を検出することができる金属異物検出方法の提供をその目的とする。   The present invention has been made in view of such circumstances, and provides a metal foreign object detection method capable of detecting a conductive metal foreign object that could not be detected by a conventional method of removing a conductive metal foreign object using a magnet. For that purpose.

上記の目的を達成するため、本発明の金属異物検出方法は、磁化器が発生する磁束中に、半導体封止用エポキシ樹脂組成物からなる被検査体を位置させ、その被検査体中に金属異物が存在したときに、上記磁束によって、その金属異物を誘導加熱状態にし、ついで、その被検査体の温度分布を測定することにより、上記金属異物を検出するという構成をとる。   In order to achieve the above object, the metal foreign matter detection method according to the present invention positions an object to be inspected made of an epoxy resin composition for semiconductor encapsulation in a magnetic flux generated by a magnetizer, and a metal in the object to be inspected. When a foreign object is present, the metal foreign object is inductively heated by the magnetic flux, and then the temperature distribution of the inspection object is measured to detect the metal foreign object.

本発明の金属異物検出方法によれば、磁化器が発生する磁束中に、半導体封止用エポキシ樹脂組成物からなる被検査体を位置させるため、その被検査体中に金属異物が存在すれば、その金属異物を、誘導加熱により、発熱させることができる。そして、その被検査体の温度分布を赤外線カメラ等で測定すると、上記金属異物の存在部分が局所的に高温となっているため、上記金属異物を検出することができる。しかも、この検出は、従来のマグネットを用いた方法では検出できなかった小さいものや磁性酸化物に対しても可能となっている。   According to the metal foreign object detection method of the present invention, since the object to be inspected made of the epoxy resin composition for semiconductor encapsulation is positioned in the magnetic flux generated by the magnetizer, if there is a metal foreign object in the object to be inspected. The foreign metal can be heated by induction heating. And if the temperature distribution of the to-be-inspected object is measured with an infrared camera etc., since the presence part of the said metal foreign material becomes high temperature locally, the said metal foreign material can be detected. In addition, this detection is possible even for small objects and magnetic oxides that could not be detected by the conventional method using a magnet.

特に、上記半導体封止用エポキシ樹脂組成物が磁性酸化物を含有する場合には、その磁性酸化物が半導体回路等から発生する電磁波を吸収し、電磁波に敏感な他の素子(半導体チップ)への悪影響が抑制され、さらに、外部からの電磁波も吸収し、素子(半導体チップ)の誤作動も起きにくくするという効果を奏する。   In particular, when the semiconductor sealing epoxy resin composition contains a magnetic oxide, the magnetic oxide absorbs an electromagnetic wave generated from a semiconductor circuit or the like, and to another element (semiconductor chip) sensitive to the electromagnetic wave. In addition, the electromagnetic wave from the outside is absorbed and the malfunction of the element (semiconductor chip) is less likely to occur.

そして、上記磁性酸化物が含有されていると、上記誘導加熱した際には、その磁性酸化物も金属異物も発熱するが、両者の温度上昇率が異なるため、上記磁性酸化物と金属異物とを分離することができる。   When the magnetic oxide is contained, when the induction heating is performed, both the magnetic oxide and the metal foreign matter generate heat, but the temperature rise rate of both is different. Can be separated.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の金属異物検出方法の一実施の形態を示している。この金属異物検出方法は、タブレット状の半導体封止用エポキシ樹脂組成物Tを、磁化器1が発生する磁束中に通すことにより行われる。そして、上記半導体封止用エポキシ樹脂組成物T中に金属異物が存在すると、その金属異物は、上記磁束により、誘導加熱状態になって発熱する。このため、その半導体封止用エポキシ樹脂組成物Tの温度分布を赤外線カメラ2で測定すると、上記金属異物の存在部分が局所的に高温となっている。このため、上記金属異物を検出することができる。そして、その高温部分を示した上記金属異物を取り除く。   FIG. 1 shows an embodiment of the metal foreign object detection method of the present invention. This metallic foreign matter detection method is performed by passing the tablet-shaped epoxy resin composition T for semiconductor encapsulation into the magnetic flux generated by the magnetizer 1. And when a metal foreign material exists in the said epoxy resin composition T for semiconductor sealing, the metal foreign material will be in an induction heating state with the said magnetic flux, and will generate | occur | produce heat. For this reason, when the temperature distribution of the epoxy resin composition T for semiconductor encapsulation is measured by the infrared camera 2, the portion where the metal foreign matter is present is locally high. For this reason, the said metal foreign material can be detected. And the said metal foreign material which showed the high temperature part is removed.

このような金属異物検出方法では、従来のマグネットを用いた方法では困難であった直径100μm以下の金属異物やマグネットに付かないステンレス等の金属異物(磁性酸化物等)でも検出することができるようになる。ただし、上記金属異物検出方法でも、直径20μm未満のものは、小さ過ぎて、現状では、検出困難となっているが、最新の半導体装置における金属ワイヤーのピッチが100μm弱であることを考慮すると、それで充分である。   With such a metal foreign object detection method, it is possible to detect even a metal foreign object having a diameter of 100 μm or less and a metal foreign object (magnetic oxide, etc.) such as stainless steel not attached to the magnet, which has been difficult with a conventional method using a magnet. become. However, even in the above metal foreign matter detection method, those having a diameter of less than 20 μm are too small and currently difficult to detect, but considering that the pitch of metal wires in the latest semiconductor devices is less than 100 μm, That's enough.

より詳しく説明すると、上記磁化器1は、対向し合う2つの磁極11a,11bと、これら両磁極11a,11bを接続するヨーク12と、このヨーク12の中間部に設けられたコイル13とを備えており、そのコイル13は、磁化電源回路14に接続されている。そして、その磁化電源回路14からコイル13に高周波電流(25〜70kHz)が供給されると、コイル13は、高周波磁束を発生する。この高周波磁束は、ヨーク12,一方の磁極11a,他方の磁極11b,ヨーク12の磁路を還流する。   More specifically, the magnetizer 1 includes two magnetic poles 11a and 11b that face each other, a yoke 12 that connects both the magnetic poles 11a and 11b, and a coil 13 that is provided at an intermediate portion of the yoke 12. The coil 13 is connected to the magnetization power supply circuit 14. When a high frequency current (25 to 70 kHz) is supplied from the magnetization power supply circuit 14 to the coil 13, the coil 13 generates a high frequency magnetic flux. This high-frequency magnetic flux returns to the magnetic path of the yoke 12, the one magnetic pole 11 a, the other magnetic pole 11 b, and the yoke 12.

また、上記両磁極11a,11bの間には、半導体封止用エポキシ樹脂組成物Tを載置するためのコンベア3が設けられており、そのコンベア3は、両磁極11a,11bの間の磁束と直向する方向に移動するようになっている。そして、上記コンベア3の移動により、その上に載置された半導体封止用エポキシ樹脂組成物Tが順次、両磁極11a,11bの間の磁束の中を通るようになっている。   Further, a conveyor 3 for placing the semiconductor sealing epoxy resin composition T is provided between the magnetic poles 11a and 11b. The conveyor 3 is a magnetic flux between the magnetic poles 11a and 11b. It is designed to move in the direction that faces directly. And by the movement of the said conveyor 3, the epoxy resin composition T for semiconductor sealing mounted on it passes through the magnetic flux between both magnetic poles 11a and 11b one by one.

上記赤外線カメラ2は、両磁極11a,11bの間の上方に設けられており、磁束の中を通る半導体封止用エポキシ樹脂組成物Tの温度分布を測定できるようになっている。また、赤外線カメラ2は、撮影制御回路21を経て、モニタ22と異物検出回路23とに接続されている。赤外線カメラ2は、撮影制御回路21により制御され、半導体封止用エポキシ樹脂組成物Tから放射される赤外線を捕えて電気信号に変換する。そして、上記撮影制御回路21は、その電気信号をモニタ22と異物検出回路23と送る。モニタ22は、その電気信号に基づいて温度分布画像を画面に表示し、その温度分布画像から金属異物の有無とその存在位置とが視認できる。さらに、上記異物検出回路23は、測定した半導体封止用エポキシ樹脂組成物Tからの電気信号と、金属異物が存在しない半導体封止用エポキシ樹脂組成物Tからの電気信号(予めインプットしておく)とを比較して、金属異物の有無を判定し、金属異物が存在するときは、異物検出信号を発信する。   The infrared camera 2 is provided above between the magnetic poles 11a and 11b, and can measure the temperature distribution of the epoxy resin composition T for semiconductor encapsulation passing through the magnetic flux. The infrared camera 2 is connected to a monitor 22 and a foreign object detection circuit 23 via an imaging control circuit 21. The infrared camera 2 is controlled by the imaging control circuit 21 and captures infrared rays emitted from the semiconductor sealing epoxy resin composition T and converts them into electrical signals. The photographing control circuit 21 sends the electrical signal to the monitor 22 and the foreign object detection circuit 23. The monitor 22 displays a temperature distribution image on the screen based on the electrical signal, and the presence / absence of a metal foreign object and its presence position can be visually recognized from the temperature distribution image. Further, the foreign matter detection circuit 23 receives the measured electrical signal from the semiconductor sealing epoxy resin composition T and the electrical signal from the semiconductor sealing epoxy resin composition T in which no metallic foreign matter is present (input in advance). ) To determine the presence or absence of a metal foreign object, and when a metal foreign object exists, a foreign object detection signal is transmitted.

つぎに、上記半導体封止用エポキシ樹脂組成物Tについて説明する。   Next, the epoxy resin composition T for semiconductor encapsulation will be described.

上記半導体封止用エポキシ樹脂組成物Tは、特に限定されるものではないが、例えば、エポキシ樹脂(A成分)と、フェノール樹脂(B成分)と、硬化促進剤(C成分)と、無機質充填剤(D成分)とを用いて得られるものであって、通常、粉末状もしくはこれを打錠したタブレット状になっている。   Although the said epoxy resin composition T for semiconductor sealing is not specifically limited, For example, an epoxy resin (A component), a phenol resin (B component), a hardening accelerator (C component), and inorganic filling It is obtained using an agent (component D), and is usually in the form of a powder or a tablet obtained by tableting this.

より詳しく説明すると、上記エポキシ樹脂(A成分)は、特に限定されるものではなく、通常用いられているものでよい。例えば、クレゾールノボラック型、フェノールノボラック型、ビスフェノールA型、ビフェニル型、トリフェニルメタン型、ナフタレン型等があげられる。これらは、単独で使用できるほか、2種以上を併用してもよい。   If it demonstrates in detail, the said epoxy resin (A component) will not be specifically limited, The normally used thing may be used. Examples thereof include a cresol novolak type, a phenol novolak type, a bisphenol A type, a biphenyl type, a triphenylmethane type, and a naphthalene type. These can be used alone or in combination of two or more.

上記フェノール樹脂(B成分)は、上記エポキシ樹脂の硬化剤としての作用を奏するものであり、特に限定されるものではなく、通常用いられているものでよい。例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールA型ノボラック、ナフトールノボラック、フェノールアラルキル樹脂等があげられる。これらは、単独で使用できるほか、2種以上を併用してもよい。   The said phenol resin (B component) has an effect | action as a hardening | curing agent of the said epoxy resin, is not specifically limited, What is usually used may be used. Examples thereof include phenol novolak, cresol novolak, bisphenol A type novolak, naphthol novolak, and phenol aralkyl resin. These can be used alone or in combination of two or more.

上記エポキシ樹脂(A成分)とフェノール樹脂(B成分)との配合割合は、エポキシ樹脂中のエポキシ基1当量あたり、フェノール樹脂中の水酸基が0.5〜2.0当量となるように配合することが好ましい。より好ましくは、0.8〜1.2当量である。   The blending ratio of the epoxy resin (component A) and the phenol resin (component B) is blended so that the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin. It is preferable. More preferably, it is 0.8-1.2 equivalent.

上記硬化促進剤(C成分)も、特に限定されるものではなく、例えば、アミン型やリン型等のものがあげられる。そのうちアミン型とてしは、2−イミダゾール等のイミダゾール類、トリエタノールアミンや1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の三級アミン類等があげられる。また、リン型とてしは、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート等があげられる。これらは、単独で使用できるほか、2種以上を併用してもよい。そして、この硬化促進剤の配合割合は、半導体封止用エポキシ樹脂組成物T全体の0.1〜2.0重量%の割合に設定することが好ましい。さらに、半導体封止用エポキシ樹脂組成物Tの流動性を考慮すると、より好ましくは、0.15〜0.35重量%である。   The curing accelerator (component C) is not particularly limited, and examples thereof include amine type and phosphorus type. Among them, examples of the amine type include imidazoles such as 2-imidazole, and tertiary amines such as triethanolamine and 1,8-diazabicyclo (5,4,0) undecene-7. Examples of the phosphorus type include triphenylphosphine, tetraphenylphosphonium tetraphenylborate and the like. These can be used alone or in combination of two or more. And it is preferable to set the mixture ratio of this hardening accelerator to the ratio of 0.1 to 2.0 weight% of the whole epoxy resin composition T for semiconductor sealing. Furthermore, when considering the fluidity of the epoxy resin composition T for semiconductor encapsulation, the content is more preferably 0.15 to 0.35% by weight.

上記無機質充填剤(D成分)も、特に限定されるものではなく、通常用いられているものでよい。例えば、石英ガラス粉末、シリカ粉末、アルミナ、タルク等があげられる。特に好ましくは、球状溶融シリカ粉末、破砕シリカ粉末があげられる。これらは、単独で使用できるほか、2種以上を併用してもよい。そして、この無機質充填剤の配合割合は、半導体封止用エポキシ樹脂組成物T全体の70〜90重量%の割合に設定することが好ましく、より好ましくは、75〜90重量%である。さらに、上記無機質充填剤の平均粒径は、1〜150μmであることが好ましく、より好ましくは、5〜75μmである。   The inorganic filler (component D) is not particularly limited, and may be a commonly used one. Examples thereof include quartz glass powder, silica powder, alumina, talc and the like. Particularly preferred are spherical fused silica powder and crushed silica powder. These can be used alone or in combination of two or more. And it is preferable to set the mixture ratio of this inorganic filler to the ratio of 70 to 90 weight% of the whole epoxy resin composition T for semiconductor sealing, More preferably, it is 75 to 90 weight%. Furthermore, it is preferable that the average particle diameter of the said inorganic filler is 1-150 micrometers, More preferably, it is 5-75 micrometers.

本発明においては、上記A〜D成分に加えて、電磁波吸収効果や電磁波遮蔽(シールド)効果等の観点から、磁性酸化物(E成分)を含有させてもよい。この磁性酸化物も、特に限定されるものではなく、通常用いられているものでよい。例えば、酸化鉄、酸化銅、チタン酸バリウム、フェライト等があげられる。そして、この磁性酸化物の配合割合は、半導体封止用エポキシ樹脂組成物T全体の20〜90重量%の割合に設定することが好ましく、より好ましくは、30〜70重量%である。さらに、上記磁性酸化物の平均粒径は、1〜100μmであることが好ましく、より好ましくは、3〜50μmである。   In the present invention, in addition to the components A to D, a magnetic oxide (E component) may be contained from the viewpoint of an electromagnetic wave absorption effect, an electromagnetic wave shielding (shielding) effect, and the like. This magnetic oxide is not particularly limited, and may be a commonly used one. Examples thereof include iron oxide, copper oxide, barium titanate, and ferrite. And it is preferable to set the mixture ratio of this magnetic oxide to the ratio of 20 to 90 weight% of the whole epoxy resin composition T for semiconductor sealing, More preferably, it is 30 to 70 weight%. Furthermore, the average particle diameter of the magnetic oxide is preferably 1 to 100 μm, and more preferably 3 to 50 μm.

なお、上記磁性酸化物(E成分)が含有されていると、その磁性酸化物も誘導加熱により発熱するが、磁性酸化物と金属異物とは、温度上昇率が異なる(金属異物の方が高い)ため、それらを区別して検出することができ、金属異物の方を除去することができる。   If the magnetic oxide (E component) is contained, the magnetic oxide also generates heat by induction heating, but the temperature rise rate is different between the magnetic oxide and the metal foreign material (the metal foreign material is higher). Therefore, they can be distinguished and detected, and the metal foreign matter can be removed.

また、本発明では、上記A〜E成分に加えて、必要に応じて、ブロム化エポキシ樹脂等のハロゲン系難燃剤、三酸化アンチモン等の難燃助剤、β−(3,4−エポキシシンクロヘキシル)エチルトリメトキシシランやγ−グリシドキシプロピルトリメトキシシラン等のシランカップリング剤、カルナバワックス等の離型剤等の他の添加剤が適宜用いられる。   In the present invention, in addition to the above components A to E, a halogen-based flame retardant such as brominated epoxy resin, a flame retardant aid such as antimony trioxide, β- (3,4-epoxy synchro, etc. Other additives such as a silane coupling agent such as hexyl) ethyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane, and a release agent such as carnauba wax are appropriately used.

そして、本発明における半導体封止用エポキシ樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A〜D成分、場合によりE成分および必要に応じて他の添加剤を配合した後、ミキシングロール機等の混練機にかけ加熱状態で溶融混練し、これを室温に冷却した後、公知の手段によって粉砕し、必要に応じて打錠するという一連の工程により製造することができる。   And the epoxy resin composition for semiconductor sealing in this invention can be manufactured as follows, for example. That is, after blending the above-mentioned components A to D, optionally E component and other additives as necessary, it is melted and kneaded in a heated state in a kneading machine such as a mixing roll machine, cooled to room temperature, and then publicly known. It can be produced by a series of steps of pulverizing by the above means and tableting as necessary.

なお、上記実施の形態では、温度分布の測定に赤外線カメラ2を用いたが、それに代えて、放射温度計やサーモグラフィー等を用いてもよい。また、半導体封止用エポキシ樹脂組成物Tをタブレット状に形成したものに対して金属異物検出を行ったが、タブレット状に形成する前の粉末状のものに対して行ってもよい。   In the above embodiment, the infrared camera 2 is used for measuring the temperature distribution, but instead, a radiation thermometer, a thermography, or the like may be used. Moreover, although the metal foreign material detection was performed with respect to what formed the epoxy resin composition T for semiconductor sealing in the tablet shape, you may perform with respect to the powdery thing before forming in a tablet shape.

つぎに、実施例について従来例と併せて説明する。そこで、まず、検査対象となる下記タブレット1〜8を作製した。   Next, examples will be described together with conventional examples. Therefore, first, the following tablets 1 to 8 to be inspected were produced.

〔タブレット1〕
下記のエポキシ樹脂、フェノール樹脂、硬化促進剤、無機質充填剤、離型剤および金属異物を準備した。
[Tablet 1]
The following epoxy resin, phenol resin, curing accelerator, inorganic filler, mold release agent and metallic foreign matter were prepared.

〔エポキシ樹脂〕
下記の一般式(a)で表されるビフェニル型エポキシ樹脂(エポキシ当量192、融点100℃)。

Figure 2006125937
〔Epoxy resin〕
A biphenyl type epoxy resin represented by the following general formula (a) (epoxy equivalent 192, melting point 100 ° C.).
Figure 2006125937

〔フェノール樹脂〕
下記の一般式(b)で表されるフェノールアラルキル樹脂(水酸基当量170、融点83℃)。

Figure 2006125937
[Phenolic resin]
A phenol aralkyl resin represented by the following general formula (b) (hydroxyl equivalent: 170, melting point: 83 ° C.).
Figure 2006125937

〔硬化促進剤〕
トリフェニルホスフィン(TPP)。
[Curing accelerator]
Triphenylphosphine (TPP).

〔無機質充填剤a〕
平均粒径30μmの球状溶融シリカ。
〔無機質充填剤b〕
平均粒径1μmの球状溶融シリカ。
[Inorganic filler a]
Spherical fused silica with an average particle size of 30 μm.
[Inorganic filler b]
Spherical fused silica with an average particle size of 1 μm.

〔離型剤〕
カルナバワックス。
〔Release agent〕
Carnauba wax.

〔金属異物〕
粒径50μmの鉄粉。
[Metal foreign matter]
Iron powder with a particle size of 50 μm.

〔タブレット1の作製〕
エポキシ樹脂100重量部に対して、フェノール樹脂89重量部、硬化促進剤3重量部、平均粒径30μmの球状溶融シリカ(無機質充填剤a)700重量部、平均粒径1μmの球状溶融シリカ(無機質充填剤b)100重量部、離型剤3重量部の割合で同時に配合し、ミキシングロール機(温度100℃)で3分間溶融混練した。ついで、この溶融物を室温(25℃)に冷却した後、粉砕することにより、粉末状の半導体封止用エポキシ樹脂組成物を得た。そして、それを打錠してタブレット状(直径25mm、厚み30mm)に加工した。この際、まず、半量の半導体封止用エポキシ樹脂組成物を軽く打錠し、針を用いて上記金属異物を上記半量打錠したタブレットの上面中央に1個載置した後、その上から残りの半量を加えて打錠し、金属異物入りのタブレット1を得た。
[Preparation of tablet 1]
For 100 parts by weight of epoxy resin, 89 parts by weight of phenol resin, 3 parts by weight of curing accelerator, 700 parts by weight of spherical fused silica (inorganic filler a) with an average particle size of 30 μm, spherical fused silica with an average particle size of 1 μm (inorganic) Filler b) 100 parts by weight and 3 parts by weight of release agent were blended at the same time, and melt kneaded for 3 minutes with a mixing roll machine (temperature 100 ° C.). Next, the melt was cooled to room temperature (25 ° C.) and then pulverized to obtain a powdery epoxy resin composition for semiconductor encapsulation. And it was tableted and processed into a tablet shape (diameter 25 mm, thickness 30 mm). At this time, first, a half amount of the epoxy resin composition for encapsulating a semiconductor was lightly tableted, and one metal foreign substance was placed on the center of the upper surface of the tablet on which the half amount was tableted using a needle. The tablet 1 containing a metal foreign matter was obtained.

〔タブレット2〕
上記タブレット1において、金属異物を粒径50μmのステンレス粉とした。それ以外は、上記タブレット1と同様にした。
[Tablet 2]
In the tablet 1, the metal foreign matter was stainless powder having a particle size of 50 μm. Other than that, it was the same as the tablet 1 described above.

〔タブレット3〕
上記タブレット1において、金属異物を粒径20μmの鉄粉とした。それ以外は、上記タブレット1と同様にした。
[Tablet 3]
In the tablet 1, the metal foreign matter was iron powder having a particle size of 20 μm. Other than that, it was the same as the tablet 1 described above.

〔タブレット4〕
上記タブレット1において、金属異物を粒径20μmのステンレス粉とした。それ以外は、上記タブレット1と同様にした。
[Tablet 4]
In the tablet 1, the metal foreign matter was stainless powder having a particle size of 20 μm. Other than that, it was the same as the tablet 1 described above.

〔タブレット5〕
上記タブレット1の作製において、磁性酸化物(平均粒径30μmのNi−Zn系粉砕フェライト)を400重量部配合した。また、平均粒径30μmの球状溶融シリカ(無機質充填剤a)の配合を370重量部、平均粒径1μmの球状溶融シリカ(無機質充填剤b)の配合を30重量部に変えた。それ以外は、上記タブレット1と同様にした。
[Tablet 5]
In preparation of the tablet 1, 400 parts by weight of a magnetic oxide (Ni—Zn-based pulverized ferrite having an average particle diameter of 30 μm) was blended. Further, the blend of spherical fused silica (inorganic filler a) having an average particle size of 30 μm was changed to 370 parts by weight, and the blend of spherical fused silica having an average particle diameter of 1 μm (inorganic filler b) was changed to 30 parts by weight. Other than that, it was the same as the tablet 1 described above.

〔タブレット6〕
上記タブレット5において、金属異物を粒径50μmのステンレス粉とした。それ以外は、上記タブレット5と同様にした。
[Tablet 6]
In the tablet 5, the metal foreign matter was stainless steel powder having a particle size of 50 μm. Other than that, it was the same as the tablet 5 described above.

〔タブレット7〕
上記タブレット5において、金属異物を粒径20μmの鉄粉とした。それ以外は、上記タブレット5と同様にした。
[Tablet 7]
In the tablet 5, the metal foreign matter was iron powder having a particle size of 20 μm. Other than that, it was the same as the tablet 5 described above.

〔タブレット8〕
上記タブレット5において、金属異物を粒径20μmのステンレス粉とした。それ以外は、上記タブレット5と同様にした。
[Tablet 8]
In the tablet 5, the metal foreign matter was stainless powder having a particle size of 20 μm. Other than that, it was the same as the tablet 5 described above.

〔金属異物の検出〕
上記タブレット1〜8に対して、図1に示す装置を用いて本発明の金属異物検出方法により金属異物の検出を行った。すなわち、各タブレット1〜8を周波数70kHzで駆動される磁化器のヨーク間に6秒間位置するようにした。その結果、全てのタブレット1〜8について、金属異物を検出することができた。
[Detection of foreign metal]
For the tablets 1 to 8, the metal foreign matter was detected by the metal foreign matter detection method of the present invention using the apparatus shown in FIG. That is, each tablet 1-8 was positioned between the yokes of the magnetizer driven at a frequency of 70 kHz for 6 seconds. As a result, metallic foreign objects could be detected for all tablets 1-8.

〔従来例〕
上記タブレット1〜8に打錠する前の粉末状の各半導体封止用エポキシ樹脂組成物に上記各金属異物を混入させたものに対して、前記特許文献1に記載の実施例と同様にして、金属異物の回収を行った。その結果、上記金属異物はいずれも回収されなかった。
[Conventional example]
In the same manner as in the example described in Patent Document 1, the powdered epoxy resin composition for semiconductor encapsulation before tableting into the tablets 1 to 8 is mixed with the metal foreign substances. The metal foreign matter was collected. As a result, none of the metal foreign matter was collected.

上記結果より、本発明の金属異物検出方法では、従来のマグネットを用いた方法では検出できなかった金属異物を検出できることがわかる。   From the above results, it can be seen that the metal foreign object detection method of the present invention can detect metal foreign objects that could not be detected by the conventional method using a magnet.

半導体封止用エポキシ樹脂組成物を磁束中に位置させて誘導加熱させることにより、従来検出できなかった小さい金属異物やマグネットに付かない金属異物の検出も可能となり、最新の半導体装置における狭ピッチ(100μm弱)のものに対しても対応できる半導体封止用エポキシ樹脂組成物を得ることができる。   By positioning the epoxy resin composition for semiconductor sealing in the magnetic flux and induction heating, it is possible to detect small metal foreign objects that could not be detected in the past and metal foreign objects that do not attach to the magnet. It is possible to obtain an epoxy resin composition for encapsulating a semiconductor that can cope with those having a thickness of less than 100 μm.

本発明の金属異物検出方法の一実施の形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the metal foreign material detection method of this invention.

符号の説明Explanation of symbols

T 半導体封止用エポキシ樹脂組成物
1 磁化器
2 赤外線カメラ
T Epoxy resin composition for semiconductor encapsulation 1 Magnetizer 2 Infrared camera

Claims (4)

磁化器が発生する磁束中に、半導体封止用エポキシ樹脂組成物からなる被検査体を位置させ、その被検査体中に金属異物が存在したときに、上記磁束によって、その金属異物を誘導加熱状態にし、ついで、その被検査体の温度分布を測定することにより、上記金属異物を検出することを特徴とする金属異物検出方法。   An object to be inspected made of an epoxy resin composition for semiconductor encapsulation is positioned in the magnetic flux generated by the magnetizer, and when the metal foreign object is present in the object to be inspected, the metal foreign object is inductively heated by the magnetic flux. A metal foreign object detection method, wherein the metal foreign object is detected by measuring the temperature distribution of the object to be inspected. 上記半導体封止用エポキシ樹脂組成物が下記(A)〜(D)成分を含有するものである請求項1記載の金属異物検出方法。
(A)エポキシ樹脂。
(B)フェノール樹脂。
(C)硬化促進剤。
(D)無機質充填剤。
The metal foreign matter detection method according to claim 1, wherein the epoxy resin composition for semiconductor encapsulation contains the following components (A) to (D).
(A) Epoxy resin.
(B) Phenolic resin.
(C) A curing accelerator.
(D) Inorganic filler.
上記半導体封止用エポキシ樹脂組成物が上記(A)〜(D)成分に加えて下記(E)成分を含有するものである請求項2記載の金属異物検出方法。
(E)磁性酸化物。
The metal foreign matter detection method according to claim 2, wherein the epoxy resin composition for semiconductor encapsulation contains the following component (E) in addition to the components (A) to (D).
(E) Magnetic oxide.
上記誘導加熱した際における、磁性酸化物の温度上昇率と金属異物の温度上昇率との違いにより、上記磁性酸化物と金属異物とを分離する請求項3記載の金属異物検出方法。   The metal foreign matter detection method according to claim 3, wherein the magnetic oxide and the metal foreign matter are separated based on a difference between a temperature rise rate of the magnetic oxide and a temperature rise rate of the metal foreign matter when the induction heating is performed.
JP2004312729A 2004-10-27 2004-10-27 Metal foreign object detection method Expired - Fee Related JP4198105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312729A JP4198105B2 (en) 2004-10-27 2004-10-27 Metal foreign object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312729A JP4198105B2 (en) 2004-10-27 2004-10-27 Metal foreign object detection method

Publications (2)

Publication Number Publication Date
JP2006125937A true JP2006125937A (en) 2006-05-18
JP4198105B2 JP4198105B2 (en) 2008-12-17

Family

ID=36720829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312729A Expired - Fee Related JP4198105B2 (en) 2004-10-27 2004-10-27 Metal foreign object detection method

Country Status (1)

Country Link
JP (1) JP4198105B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128941A (en) * 2006-11-24 2008-06-05 Osaka Univ Foreign matter detection method, and foreign matter detector
DE102008019367A1 (en) * 2008-04-17 2009-10-29 MRB Forschungszentrum für Magnet - Resonanz - Bayern e.V. Object e.g. material, identifying device, has retention mechanism for detecting temperature value of sample, and evaluation mechanism for identifying object by comparing temperature value with pre-determined reference value
JP2010127702A (en) * 2008-11-26 2010-06-10 Kyocera Chemical Corp Automatic detection method of metal powder foreign body in insulating resin composition
KR101229179B1 (en) 2012-05-29 2013-02-04 주식회사 그라스텍 Apparatus for detecting nis in glass
JP2014130075A (en) * 2012-12-28 2014-07-10 Nippon Brake Kogyo Kk Metal foreign material detection apparatus
WO2014136745A1 (en) * 2013-03-04 2014-09-12 宇部興産株式会社 Method for heating fine metal material, and method and device for detecting metal
CN105301093A (en) * 2015-10-21 2016-02-03 北京原力辰超导技术有限公司 Superconducting coil flaw position detecting system
JP2018081071A (en) * 2016-11-07 2018-05-24 株式会社アミック Non-destructive inspection method for metal member
CN112129811A (en) * 2020-09-24 2020-12-25 江苏丁是丁精密科技有限公司 Welding spot detection device of mobile phone camera module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128941A (en) * 2006-11-24 2008-06-05 Osaka Univ Foreign matter detection method, and foreign matter detector
DE102008019367A1 (en) * 2008-04-17 2009-10-29 MRB Forschungszentrum für Magnet - Resonanz - Bayern e.V. Object e.g. material, identifying device, has retention mechanism for detecting temperature value of sample, and evaluation mechanism for identifying object by comparing temperature value with pre-determined reference value
JP2010127702A (en) * 2008-11-26 2010-06-10 Kyocera Chemical Corp Automatic detection method of metal powder foreign body in insulating resin composition
KR101229179B1 (en) 2012-05-29 2013-02-04 주식회사 그라스텍 Apparatus for detecting nis in glass
JP2014130075A (en) * 2012-12-28 2014-07-10 Nippon Brake Kogyo Kk Metal foreign material detection apparatus
WO2014136745A1 (en) * 2013-03-04 2014-09-12 宇部興産株式会社 Method for heating fine metal material, and method and device for detecting metal
JPWO2014136745A1 (en) * 2013-03-04 2017-02-09 宇部興産株式会社 Method for heating minute metal material, method for detecting metal and detection device
CN105301093A (en) * 2015-10-21 2016-02-03 北京原力辰超导技术有限公司 Superconducting coil flaw position detecting system
WO2017067511A1 (en) * 2015-10-21 2017-04-27 北京原力辰超导技术有限公司 Superconducting coil defect location detection system
JP2018081071A (en) * 2016-11-07 2018-05-24 株式会社アミック Non-destructive inspection method for metal member
CN112129811A (en) * 2020-09-24 2020-12-25 江苏丁是丁精密科技有限公司 Welding spot detection device of mobile phone camera module

Also Published As

Publication number Publication date
JP4198105B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4198105B2 (en) Metal foreign object detection method
EP1265280B9 (en) Resin component for encapsulating semiconductor and semiconductor device using it
US7501711B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2010127702A (en) Automatic detection method of metal powder foreign body in insulating resin composition
JP5189606B2 (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device
KR20160091887A (en) Epoxy resin composition, semiconductor sealing agent, and semiconductor device
JP5555639B2 (en) Powder, method for producing the same, and resin composition containing the powder
US6338903B1 (en) Resin composition for semiconductor encapsulation, method and apparatus for producing the composition, as well as semiconductor device using the composition
KR101748888B1 (en) Method of manufacturing semiconductor device
JP2008288297A (en) Semiconductor device and its manufacturing method
JP2017190425A (en) Granular resin composition for semiconductor sealing and semiconductor device
JP2014133830A (en) Epoxy resin composition for semiconductor encapsulation and single-sided encapsulation type semiconductor device
JP2006008956A (en) Resin composition for sealing semiconductor and semiconductor device using the same
JP2000332165A (en) Resin composition for sealing semiconductor and semiconductor device employing it
JP4651004B2 (en) Spherical sintered ferrite particles, resin composition for semiconductor encapsulation using the same, and semiconductor device obtained using the same
JP6263165B2 (en) Metal detection equipment
TW201705399A (en) Method for producing epoxy resin granule for sealing semiconductor, epoxy resin granule for sealing semiconductor, method for producing semiconductor apparatus, and semiconductor apparatus can accomplish excellent productivity and excellent reliability
JP7002866B2 (en) Resin composition for encapsulating powdered and granular semiconductors and semiconductor devices
JP2016056379A (en) Epoxy resin composition for electronic component encapsulation and electronic component device using the same
JP2007194425A (en) Tablet-shaped semiconductor sealing material, its manufacturing method, and semiconductor device using it
JP2016080614A (en) Method for manufacturing block object
JP2005112880A (en) Epoxy resin composition for sealing semiconductor, method for producing the same and semiconductor device using the same
JP3835953B2 (en) Siliceous powder and resin composition
JP2019151852A (en) Epoxy resin composition for encapsulating electronic component, and electronic component device
JP2009127011A (en) Epoxy resin composition for sealing and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees