JP2006125305A - Variable displacement gas compressor - Google Patents

Variable displacement gas compressor Download PDF

Info

Publication number
JP2006125305A
JP2006125305A JP2004315160A JP2004315160A JP2006125305A JP 2006125305 A JP2006125305 A JP 2006125305A JP 2004315160 A JP2004315160 A JP 2004315160A JP 2004315160 A JP2004315160 A JP 2004315160A JP 2006125305 A JP2006125305 A JP 2006125305A
Authority
JP
Japan
Prior art keywords
opening
compression
compression chamber
chamber
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004315160A
Other languages
Japanese (ja)
Inventor
Hideki Sakai
秀樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Compressor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Compressor Inc filed Critical Calsonic Compressor Inc
Priority to JP2004315160A priority Critical patent/JP2006125305A/en
Publication of JP2006125305A publication Critical patent/JP2006125305A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable displacement gas compressor in which reduction in compression efficiency is prevented, and energy loss is inhibited, thus to ensure a smooth operation. <P>SOLUTION: The variable displacement gas compressor comprises a compression mechanism main body 12, leak paths, and valve mechanisms. The compressor main body 12 is provided with a compression chamber 16a, the volume of which is increased/decreased by slide movement of sliding bodies 22. The leak path communicates with the compression chamber 16a via an opening 33a made on the wall surface of the compression chamber 16a on which the sliding bodies 22 perform slide movements to allow a compressed gas to leak from the compression chamber 16a in the compression operation of the compressor main body 12. Each of the valve mechanisms opens/closes the opening 33a so as to change the volume of discharge of the compressed gas. In the valve mechanism, a valve element is provided for opening/closing the opening 33a in the outside of the compression chamber 16a, and a filler member is provided on the tip end opposing to the opening 33a of the valve element. The filler member is made of a material wearing out by sliding of the sliding body 22. The filler member fills up the recess formed of the opening and the tip end of the valve element at the position where the opening 33a of the valve element is closed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば冷房装置の冷媒ガスの圧縮に用いられる気体圧縮機に関し、特に、圧縮した冷媒ガスの吐出容量を変更し得る容量可変型気体圧縮機に関する。   The present invention relates to a gas compressor used for compressing a refrigerant gas of a cooling device, for example, and more particularly to a variable capacity gas compressor capable of changing a discharge capacity of a compressed refrigerant gas.

気体圧縮機構本体は、駆動回転される回転軸の回転に伴って回転する摺動体の摺動運動により容積を増減する圧縮室を有し、該圧縮室の容積の増大に伴い該圧縮室に気体を吸入し、その容積の減少に伴い吸入した気体を圧縮し、吐出する。容量可変型気体圧縮機では、前記摺動体が摺動する前記圧縮室の壁面に開放する開口を経てこの圧縮室に連通するリーク通路が設けられ、また、このリーク通路の前記圧縮室への前記開口を開閉する弁機構が設けられている。圧縮機構本体の圧縮行程中に前記開口が開放されていると、前記圧縮室からリーク通路を経て圧縮気体の漏れが許されることから、弁機構による前記開口の開閉動作により、吐出容量の切り換えが可能となる(例えば、特許文献1参照。)。   The main body of the gas compression mechanism has a compression chamber whose volume is increased / decreased by the sliding movement of the sliding body that rotates with the rotation of the rotating shaft that is driven to rotate, and the gas is supplied to the compression chamber as the volume of the compression chamber increases. , And the compressed gas is discharged as the volume decreases. In the capacity variable type gas compressor, a leak passage communicating with the compression chamber is provided through an opening opened on a wall surface of the compression chamber on which the sliding body slides, and the leak passage to the compression chamber is provided. A valve mechanism for opening and closing the opening is provided. If the opening is opened during the compression stroke of the compression mechanism main body, the compressed gas is allowed to leak from the compression chamber through the leak passage. (For example, refer to Patent Document 1).

図5には、この従来例として、ベーンロータリー式気体圧縮機1に設けられたリーク通路2と、該リーク通路に設けられ、このリーク通路2の開口2aを開閉する弁機構3が示されている。ベーンからなる摺動体4が摺動するシリンダ室5は、ベーン4により複数の圧縮室5a、5bに区画され、各圧縮室5a、5bの容積はベーン4の摺動に伴って増減する。ベーン4の摺動方向が符号A1が付された矢印で示されるとき、ベーン4の摺動に伴ってその摺動方向A1側に位置する圧縮室5aの容積が減少するが、この容積が減少する圧縮行程中にリーク通路2の一端である開口2aが閉鎖されていると、リーク通路2を経る圧縮室5aからの圧縮気体のリークが阻止されることから、気体圧縮機1は通常の吐出量での通常運転を保持する。他方、開口2aが開放されていると、ベーン4の摺動位置が開口2aを通過するまで開口2aから圧縮気体のリークが許され、これによって気体圧縮機1の吐出容量が減少する。従って、図5に示す開口2aの閉鎖位置と該開口の開放位置との間で、弁機構3の弁体3aの作動を制御することにより、開口2aが閉鎖された通常の吐出容量での通常運転と、開口2aが開放された小容量運転との間で切り換え運転が可能となる。   FIG. 5 shows a leak passage 2 provided in the vane rotary type gas compressor 1 and a valve mechanism 3 provided in the leak passage for opening and closing the opening 2a of the leak passage 2 as this conventional example. Yes. A cylinder chamber 5 in which a sliding body 4 made of a vane slides is divided into a plurality of compression chambers 5 a and 5 b by the vane 4, and the volume of each compression chamber 5 a and 5 b increases and decreases as the vane 4 slides. When the sliding direction of the vane 4 is indicated by an arrow labeled A1, the volume of the compression chamber 5a located on the sliding direction A1 side decreases with the sliding of the vane 4, but this volume decreases. When the opening 2a, which is one end of the leak passage 2, is closed during the compression stroke, the leakage of compressed gas from the compression chamber 5a through the leak passage 2 is prevented. Keep normal operation in quantity. On the other hand, if the opening 2a is opened, the leakage of compressed gas is allowed from the opening 2a until the sliding position of the vane 4 passes through the opening 2a, thereby reducing the discharge capacity of the gas compressor 1. Accordingly, by controlling the operation of the valve body 3a of the valve mechanism 3 between the closed position of the opening 2a shown in FIG. 5 and the open position of the opening, the normal discharge capacity at the normal discharge capacity in which the opening 2a is closed. A switching operation can be performed between the operation and the small capacity operation in which the opening 2a is opened.

ところで、弁体3aは、その円滑かつ確実な開閉動作を可能とするために、金属材料のような硬質材料で形成されている。このような硬質材料で形成された弁体3aが開口2aの閉鎖位置でその先端を開口2aからシリンダ室5の壁面すなわち圧縮室の壁面6より突出させると、シリンダ室5内に侵入した弁体3aの先端と、壁面6を摺動する摺動体であるベーン4との間に干渉が生じ、気体圧縮機1の円滑な作動が妨げられる。そのため、弁体3aの製造誤差をも考慮して、弁体3aの先端が、その閉鎖位置で、シリンダ室5内に侵入しないように、壁面6から間隔dをおいて保持されるように形成されている。
特開2001−280281号公報(第2−5頁、図5)
By the way, the valve body 3a is formed of a hard material such as a metal material in order to enable its smooth and reliable opening and closing operation. When the valve body 3a formed of such a hard material protrudes from the opening 2a from the wall surface of the cylinder chamber 5, that is, the wall surface 6 of the compression chamber, at the closed position of the opening 2a, the valve body that has entered the cylinder chamber 5 Interference occurs between the tip of 3a and the vane 4 which is a sliding body that slides on the wall surface 6, and the smooth operation of the gas compressor 1 is hindered. Therefore, considering the manufacturing error of the valve body 3a, the tip of the valve body 3a is formed to be held at a distance d from the wall surface 6 so as not to enter the cylinder chamber 5 at the closed position. Has been.
JP 2001-280281 A (Page 2-5, FIG. 5)

そのため、弁体3aが閉鎖位置に保持される通常運転時では、壁面6の開口2aの部位に、該開口と閉鎖位置にある弁体3aの先端とにより、間隔dに一致した深さの凹所7が形成される。この凹所7の口径φがベーン4の板厚tを越える場合、仮想線で示すように、ベーン4が凹所7の部位を通過するとき、図5に矢印A2で示すように、凹所7を経て、ベーン4で区画された圧縮行程の圧縮室5aから該圧縮室に隣り合う吸入行程の圧縮室5bへ向けて圧縮気体が漏れ出る。この凹所7を経る圧縮気体の漏れは、通常運転時における圧縮効率の低下を生じさせる。   Therefore, in the normal operation in which the valve body 3a is held in the closed position, a recess having a depth corresponding to the interval d is formed in the opening 2a portion of the wall surface 6 by the opening and the tip of the valve body 3a in the closed position. A place 7 is formed. When the diameter φ of the recess 7 exceeds the thickness t of the vane 4, as indicated by an imaginary line, when the vane 4 passes through the portion of the recess 7, as shown by an arrow A 2 in FIG. 7, the compressed gas leaks from the compression chamber 5 a of the compression stroke divided by the vanes 4 toward the compression chamber 5 b of the suction stroke adjacent to the compression chamber. The leakage of the compressed gas that passes through the recess 7 causes a reduction in compression efficiency during normal operation.

矢印A2で示す圧縮気体の流れを防止するために、凹所7の口径φをベーン4の板厚tよりも小さくすること、またはベーン4の板厚tを凹所7の口径φよりも大きくすることが考えられる。しかしながら、前者は、小容量運転時にリーク通路2を流れる気体流の抵抗による圧力損失の増大によってベーン4の運動抵抗が高められ、また後者はベーン4の摺動抵抗の増大によって同様にベーン4の運動抵抗が高められることから、いずれにしても気体圧縮機1の円滑な作動が損なわれ、エネルギー損失が生じる。   In order to prevent the flow of compressed gas indicated by the arrow A2, the diameter φ of the recess 7 is made smaller than the plate thickness t of the vane 4, or the plate thickness t of the vane 4 is made larger than the diameter φ of the recess 7. It is possible to do. However, in the former, the movement resistance of the vane 4 is increased by an increase in pressure loss due to the resistance of the gas flow flowing through the leak passage 2 during the small capacity operation, and the latter is similarly caused by an increase in the sliding resistance of the vane 4. Since the movement resistance is increased, the smooth operation of the gas compressor 1 is impaired in any case, resulting in energy loss.

そこで、本発明の目的は、容量可変型気体圧縮機の通常運転時における圧縮効率の低下およびエネルギー損失を防止し、その円滑な作動を確保することにある。   Therefore, an object of the present invention is to prevent a reduction in compression efficiency and energy loss during normal operation of a variable capacity gas compressor, and to ensure smooth operation thereof.

本発明は、基本的に、リーク通路の開口を開閉する弁体の先端にベーンのような摺動体によって磨耗可能な材料からなる充填部材を設け、この充填部材によって弁体の開口閉鎖位置で開口と弁体先端との間で形成される凹所を充填することを特徴とする。   In the present invention, basically, a filling member made of a material that can be worn by a sliding body such as a vane is provided at the tip of a valve body that opens and closes the opening of the leak passage, and the filling member opens at a position where the opening of the valve body is closed. And a recess formed between the tip of the valve body and the valve body tip.

すなわち、本発明は、駆動回転される回転軸の回転に伴って回転する摺動体の摺動運動により容積を増減する圧縮室を有し、該圧縮室の容積の増大に伴い該圧縮室に気体を吸入し、その容積の減少に伴い吸入した気体を圧縮し、吐出する圧縮機構本体と、該圧縮機構本体の圧縮行程中に前記圧縮室からの圧縮気体の漏れを許すべく前記摺動体が摺動する前記圧縮室の壁面に開放する開口を経て前記圧縮室に連通するリーク通路と、圧縮気体の吐出容量の切換のために前記開口を開閉する弁機構とを備える容量可変型気体圧縮機であって、前記弁機構は前記圧縮室の外方で前記開口を開閉すべく前記開口に近づく方向および該開口から離れる方向へ移動可能の弁体を有し、該弁体の前記開口に向き合う先端には、前記摺動体の摺動によって摩耗可能な材料からなり前記弁体の前記開口の閉鎖位置で該開口と前記弁体の前記先端とにより形成される凹所を充填する充填部材が設けられていることを特徴とする。   That is, the present invention has a compression chamber whose volume is increased or decreased by the sliding motion of the sliding body that rotates with the rotation of the rotating shaft that is driven to rotate, and gas is supplied to the compression chamber as the volume of the compression chamber increases. A compression mechanism main body that compresses and discharges the gas that has been sucked in as its volume decreases, and the sliding body slides to permit leakage of the compressed gas from the compression chamber during the compression stroke of the compression mechanism main body. A variable capacity gas compressor comprising a leak passage communicating with the compression chamber through an opening opened on a wall surface of the moving compression chamber, and a valve mechanism for opening and closing the opening for switching the discharge capacity of the compressed gas. The valve mechanism has a valve body that is movable in a direction approaching the opening and in a direction away from the opening to open and close the opening outside the compression chamber, and a tip that faces the opening of the valve body There is wear due to sliding of the sliding body Wherein the filling member for filling a recess formed by said distal end of said valve body and opening in the closed position of the opening of the valve body consists capacity material is provided.

本発明に係る容量可変型気体圧縮機では、弁体の先端に設けられる充填部材は摺動体の摺動により摩耗可能な材料で構成されていることから、例え弁体の先端に設けられた充填部材が圧縮室の壁面から該圧縮室内に突出して形成されていても、例えば馴らし運転あるいは試運転等での摺動体の摺動によって、充填部材の圧縮室内に突出する過剰分は圧縮室の壁面にほぼ一致する形状に摩耗を受ける。このため、予め製造誤差を見込んで充填部材を例え圧縮室の壁面から突出するように形成しても、必要に応じた馴らし運転あるいは試運転によって、弁体の閉鎖位置で該弁体の先端に設けられた充填部材の先端面を圧縮室の壁面に一致させることができることから、その後の通常運転、すなわち、通常の吐出容量運転においては、弁体の閉鎖位置で該弁体と摺動体との干渉を招くことなく前記開口に関連する前記凹所を前記充填部材により確実に充填することができる。これにより、ベーンの板厚の増大やリーク通路の開口径の減少を図ることなく、確実に通常運転時における前記凹所に関連した隣り合う圧縮室間での圧縮気体の漏れ出しを防止することができ、この圧縮気体の漏れ出しに起因する通常運転時における圧縮効率の低下およびエネルギー損失を防止し、円滑な作動を確保することが可能となる。   In the variable capacity type gas compressor according to the present invention, the filling member provided at the tip of the valve body is made of a material that can be worn by sliding of the sliding body. Even if the member is formed to protrude from the wall surface of the compression chamber into the compression chamber, for example, the excess portion protruding into the compression chamber of the filling member due to sliding of the sliding body in the acclimation operation or the trial operation or the like will be applied to the wall surface of the compression chamber. Wear almost identical shape. For this reason, even if the filling member is formed so as to protrude from the wall surface of the compression chamber in anticipation of manufacturing errors, it is provided at the tip of the valve body at the closed position of the valve body by a habituation operation or a trial operation as necessary. Since the front end surface of the filled member can be made to coincide with the wall surface of the compression chamber, in the subsequent normal operation, that is, in the normal discharge capacity operation, the valve body and the sliding body interfere with each other at the closed position of the valve body. The recess associated with the opening can be surely filled by the filling member without incurring the above. This reliably prevents leakage of compressed gas between adjacent compression chambers related to the recess during normal operation without increasing the vane plate thickness or reducing the opening diameter of the leak passage. It is possible to prevent a decrease in compression efficiency and energy loss during normal operation due to the leakage of the compressed gas, and to ensure a smooth operation.

本発明に係る前記圧縮機は、前記圧縮室のためのシリンダ室を規定するシリンダと、前記シリンダ室内に回転可能に配置されるロータとを有し、該ロータの回転に伴って前記ベーンが前記シリンダ室の壁面を摺動すべく前記ベーンがロータに保持され、該ベーンによって前記シリンダ室内がその周方向へ区画されて前記圧縮室が形成されるベーンロータリー式気体圧縮機構を有する気体圧縮機に適用することができる。このベーンロータリー式気体圧縮機では、前記圧縮機構本体の前記摺動体は前記シリンダ室内に配置され該シリンダ室の壁面を摺動するベーンである。   The compressor according to the present invention includes a cylinder that defines a cylinder chamber for the compression chamber, and a rotor that is rotatably disposed in the cylinder chamber, and the vane is moved along with the rotation of the rotor. A gas compressor having a vane rotary type gas compression mechanism in which the vane is held by a rotor to slide on a wall surface of a cylinder chamber, and the cylinder chamber is partitioned in the circumferential direction by the vane to form the compression chamber. Can be applied. In this vane rotary type gas compressor, the sliding body of the compression mechanism main body is a vane that is disposed in the cylinder chamber and slides on the wall surface of the cylinder chamber.

前記弁体の前記開口に向き合う端部に、閉鎖位置に前記開口に嵌合する先端部を形成することができ、この先端部に前記充填部材を固着することができる。   A tip portion that fits into the opening can be formed at a closed position at an end portion of the valve body facing the opening, and the filling member can be fixed to the tip portion.

前記充填部材を樹脂材料で形成することができ、また、弾性を有するゴム材料で形成することができる。   The filling member can be formed of a resin material, or can be formed of a rubber material having elasticity.

本発明によれば、例え充填部材がリーク通路の開口から圧縮室の壁面から圧縮室内に突出しても、例えば馴らし運転、試運転等で、ベーンのような摺動体によって過剰分が摩耗を受けることから、弁体がリーク通路の開口から圧縮室内に突出することによる種々の不具合を招くことなく、充填部材によって弁体の閉鎖位置でのリーク通路の開口の凹所を確実に充填することができる。従って、リーク通路の開口を適正に開閉することができるので、通常運転時における従来のような前記開口の凹所に関連した隣り合う圧縮室間での圧縮気体の漏れ出しを防止することができ、この漏れ出しに起因する通常運転時における圧縮効率の低下およびエネルギー損失を防止し、円滑な作動を確保することができる。   According to the present invention, even if the filling member protrudes from the opening of the leak passage into the compression chamber from the wall of the compression chamber, the excess portion is subjected to wear by the sliding body such as the vane in the acclimation operation, the trial operation, etc. The recess of the opening of the leak passage at the closed position of the valve body can be reliably filled by the filling member without causing various problems due to the valve body protruding into the compression chamber from the opening of the leak passage. Therefore, since the opening of the leak passage can be properly opened and closed, it is possible to prevent leakage of compressed gas between adjacent compression chambers related to the recess of the opening as in the conventional case during normal operation. Further, it is possible to prevent a reduction in compression efficiency and energy loss during normal operation due to this leakage, and to ensure a smooth operation.

本発明を図示の実施例に沿って以下に詳細に説明する。   The present invention will be described in detail below with reference to illustrated embodiments.

本発明に係る気体圧縮機は、例えば自動車に搭載される空気調和装置に用いられ、図示しないが、この空気調和装置の構成要素である従来よく知られた凝縮器、膨張弁および蒸発器等と共に、冷却サイクルのための冷媒循環経路を構成する。   The gas compressor according to the present invention is used in, for example, an air conditioner mounted on an automobile, and although not shown, together with conventionally well-known condensers, expansion valves, evaporators, and the like that are components of the air conditioner The refrigerant circulation path for the cooling cycle is configured.

本発明に係る気体圧縮機10は、図1に示すように、全体に円筒状のハウジング11と、該ハウジング内に収容された圧縮機構本体12とを備える。図示の例では、ハウジング11は、一端開放のハウジング本体11aおよび該ハウジング本体の開放端を閉鎖するフロントハウジング部材11bを有する。フロントハウジング部材11bには前記蒸発器に接続される吸入ポート13が形成されており、ハウジング本体11aには前記凝縮器に接続される吐出ポート14が形成されている。   As shown in FIG. 1, the gas compressor 10 according to the present invention includes a cylindrical housing 11 as a whole and a compression mechanism main body 12 accommodated in the housing. In the illustrated example, the housing 11 includes a housing body 11a that is open at one end and a front housing member 11b that closes the open end of the housing body. The front housing member 11b is formed with a suction port 13 connected to the evaporator, and the housing body 11a is formed with a discharge port 14 connected to the condenser.

圧縮機構本体12は、従来よく知られた同芯型のベーンロータリー式の圧縮機構である。ベーンロータリー式の圧縮機構本体12は、シリンダ15を備える。図示の例では、シリンダ15は、両端開放のシリンダ部材15aと、該シリンダ部材の各開放端を気密的に閉鎖する一対の端壁部材であるフロントサイドブロック15bおよびリアサイドブロック15cとで構成されている。このシリンダ15により、図2に示すような楕円の横断面形状を有するシリンダ室16が規定されている。   The compression mechanism main body 12 is a well-known concentric vane rotary type compression mechanism. The vane rotary type compression mechanism main body 12 includes a cylinder 15. In the illustrated example, the cylinder 15 includes a cylinder member 15a that is open at both ends, and a front side block 15b and a rear side block 15c that are a pair of end wall members that hermetically close the open ends of the cylinder member. Yes. The cylinder 15 defines a cylinder chamber 16 having an elliptical cross-sectional shape as shown in FIG.

シリンダ室16内には、回転軸17aを有する円柱状のロータ17が収容されている。ロータ17の回転軸17aは、図1に示すように、その中心軸線をシリンダ室16のそれに一致させて配置され、フロントサイドブロック15bおよびリアサイドブロック15cに形成された各滑り軸受面18a、18bで回転可能に支承されている。   In the cylinder chamber 16, a columnar rotor 17 having a rotating shaft 17a is accommodated. As shown in FIG. 1, the rotation shaft 17a of the rotor 17 is arranged with its center axis aligned with that of the cylinder chamber 16, and is formed by sliding bearing surfaces 18a and 18b formed on the front side block 15b and the rear side block 15c. It is supported so that it can rotate.

回転軸17aは、フロントサイドブロック15bを貫通して該フロントサイドブロックの外方へ伸長する。この回転軸17aには、その伸長端に設けられた従来よく知られた電磁クラッチ19を経て、車両のエンジンの回転力が伝達可能であり、電磁クラッチ19の電磁石装置19aへの通電により、回転軸17aと一体にロータ17が一方向へ駆動回転される。回転軸17aには、電磁クラッチ19への潤滑油の漏れを防止するための従来と同様な環状シール機構20が設けられている。   The rotating shaft 17a extends through the front side block 15b to the outside of the front side block. The rotational force of the engine of the vehicle can be transmitted to the rotary shaft 17a through a conventionally well-known electromagnetic clutch 19 provided at the extended end thereof. The rotor 17 is driven and rotated in one direction integrally with the shaft 17a. The rotary shaft 17 a is provided with an annular seal mechanism 20 similar to the conventional one for preventing leakage of lubricating oil to the electromagnetic clutch 19.

ロータ17には、図2に示すように、複数のベーン溝21が形成されている。各ベーン溝21はロータ17の軸線方向へ伸びかつそれぞれが該ロータの外周面に開放する。各ベーン溝21内には、例えば金属製のベーン22が摺動可能にかつロータ17の周方向へ突出可能に収容されている。各ベーン22は、各ベーン溝21の底部に形成された背圧室21aに供給される潤滑油の圧力を受けることにより、ロータ17の回転に伴いシリンダ室16の壁面を摺動する。   A plurality of vane grooves 21 are formed in the rotor 17 as shown in FIG. Each vane groove 21 extends in the axial direction of the rotor 17 and opens to the outer peripheral surface of the rotor. In each vane groove 21, for example, a metal vane 22 is accommodated so as to be slidable and projectable in the circumferential direction of the rotor 17. Each vane 22 slides on the wall surface of the cylinder chamber 16 as the rotor 17 rotates by receiving the pressure of the lubricating oil supplied to the back pressure chamber 21 a formed at the bottom of each vane groove 21.

シリンダ室16は、ロータ17に保持されたベーン22によってロータ17の周方向へ区画され、これにより、各圧縮室16aに分割されている。図示の例では、5枚のベーンにより5つの圧縮室16aが形成されている。各圧縮室16aは、従来よく知られているように、ロータ17の回転に伴なう吸入行程および圧縮行程でそれぞれ容積の増大および減少を繰り返す。   The cylinder chamber 16 is partitioned in the circumferential direction of the rotor 17 by the vanes 22 held by the rotor 17, and is thereby divided into the compression chambers 16a. In the illustrated example, five compression chambers 16a are formed by five vanes. As is well known in the art, each compression chamber 16a repeatedly increases and decreases in volume in the suction stroke and the compression stroke accompanying the rotation of the rotor 17.

シリンダ室16の両短径部近傍には、各圧縮室16aに冷媒を吸入するための一対の吸入口23が開放する。また、シリンダ室16の両短径部近傍には、各圧縮室16aで圧縮された冷媒を該圧縮室から吐出するための一対の吐出口24が開放する。シリンダ室16の短径から見て、ロータ17の回転方向(図2では時計方向)の側へ偏倚した位置にはシリンダ室16の径方向に整列して各吸入口23が配置され、ロータ17の回転方向と逆方向(図2では反時計方向)の側へ偏倚した位置には各吐出口24がシリンダ室16の径方向に整列して配置されている。各吐出口24には、圧縮室16aから排出される冷媒の逆流を阻止する従来よく知られた逆止弁25aおよび該逆止弁の過大な変形を阻止する弁サポート25bが設けられている。   In the vicinity of both short diameter portions of the cylinder chamber 16, a pair of suction ports 23 for sucking the refrigerant into the compression chambers 16 a are opened. A pair of discharge ports 24 for discharging the refrigerant compressed in the compression chambers 16a from the compression chambers are opened in the vicinity of both short diameter portions of the cylinder chamber 16. When viewed from the short diameter of the cylinder chamber 16, the respective suction ports 23 are arranged in the radial direction of the cylinder chamber 16 at positions displaced toward the rotation direction of the rotor 17 (clockwise in FIG. 2). Each discharge port 24 is arranged in alignment with the radial direction of the cylinder chamber 16 at a position deviated toward the direction opposite to the rotation direction (counterclockwise in FIG. 2). Each discharge port 24 is provided with a conventionally well-known check valve 25a for preventing the reverse flow of the refrigerant discharged from the compression chamber 16a and a valve support 25b for preventing excessive deformation of the check valve.

各吐出口24は、逆止弁25aを経て、図1に示すように、リアサイドブロック15cに設けられた油分離器26に連通する。また、吸入口23は、フロントハウジング部材11bとフロントサイドブロック15bとの間に形成された吸入室27に連通する。   As shown in FIG. 1, each discharge port 24 communicates with an oil separator 26 provided in the rear side block 15c via a check valve 25a. The suction port 23 communicates with a suction chamber 27 formed between the front housing member 11b and the front side block 15b.

本発明に係る気体圧縮機10では、前記エンジンの回転力が電磁クラッチ19を経て回転軸17aに伝えられると、該回転軸と一体にロータ17が回転する。ロータ17が回転すると、ロータ17の回転に伴ってこれに保持された各ベーン22がシリンダ室16を摺動する。ベーン22の摺動によって容積を増大する圧縮室16aには吸引力が作用する。従って、吸引力が作用する吸入行程の圧縮室16aには、ハウジング11の吸入ポート13に接続された前記蒸発器からの冷媒が吸入ポート13、吸入室27および吸入口23を経て吸入される。   In the gas compressor 10 according to the present invention, when the rotational force of the engine is transmitted to the rotary shaft 17a via the electromagnetic clutch 19, the rotor 17 rotates integrally with the rotary shaft. When the rotor 17 rotates, each vane 22 held by the rotor 17 slides in the cylinder chamber 16 as the rotor 17 rotates. A suction force acts on the compression chamber 16a whose volume is increased by sliding of the vane 22. Accordingly, the refrigerant from the evaporator connected to the suction port 13 of the housing 11 is sucked into the compression chamber 16 a in the suction stroke where the suction force acts through the suction port 13, the suction chamber 27 and the suction port 23.

引き続くロータ17の回転により、吸入行程にある圧縮室16aがその容積を減少させる圧縮行程に移行すると、圧縮室16a内の冷媒が圧縮される。圧縮行程中の圧縮室16a内の冷媒圧力が所定値を越えると、吐出口24から逆止弁25aを経て圧縮室16aから圧縮冷媒が油分離器26へ向けて排出され、図1に示すように、ハウジング11内の圧縮機構本体12の背面側で該圧縮機構のリアサイドブロック15cとハウジング本体11aとの間に形成された高圧室28内の油分離器26に案内され、さらに、該油分離器を経て高圧室28内に吐出される。高圧室28で脈動成分を除去された冷媒は、ハウジング11に形成された吐出ポート14を経て、前記凝縮器に圧送される。   When the rotation of the rotor 17 continues and the compression chamber 16a in the suction stroke shifts to a compression stroke in which the volume is reduced, the refrigerant in the compression chamber 16a is compressed. When the refrigerant pressure in the compression chamber 16a during the compression stroke exceeds a predetermined value, the compressed refrigerant is discharged from the compression chamber 16a toward the oil separator 26 through the check port 25a from the discharge port 24, as shown in FIG. The oil is guided to an oil separator 26 in a high-pressure chamber 28 formed between the rear side block 15c of the compression mechanism and the housing body 11a on the back side of the compression mechanism body 12 in the housing 11, and the oil separation It is discharged into the high-pressure chamber 28 through the container. The refrigerant from which the pulsating component has been removed in the high pressure chamber 28 is pumped to the condenser via the discharge port 14 formed in the housing 11.

油分離器26で冷媒から分離された潤滑油は、高圧室28の吐出圧力により、高圧室28の底部に形成された油貯め29から、従来と同様な油供給路30(図面の簡素化のためにその一部が示されている。)を経て、前記した滑り軸受面18a、18bおよびこれらに関連してフロントサイドブロック15bおよびリアサイドブロック15cの内面に形成された従来よく知られた油貯め用の凹所31a、31bに供給される。油貯め用凹所31a、31bに供給された潤滑油はベーン22の背圧として前記した背圧室21aに供給される。   The lubricating oil separated from the refrigerant by the oil separator 26 is supplied from an oil reservoir 29 formed at the bottom of the high-pressure chamber 28 by the discharge pressure of the high-pressure chamber 28 to the same oil supply path 30 as in the past (for simplifying the drawing). Part of which is shown in the drawings) through the well-known oil reservoirs formed on the sliding bearing surfaces 18a, 18b and on the inner surfaces of the front side block 15b and the rear side block 15c. Are supplied to the recesses 31a and 31b. The lubricating oil supplied to the oil reservoir recesses 31 a and 31 b is supplied to the back pressure chamber 21 a as the back pressure of the vane 22.

本発明に係る前記気体圧縮機10には、ロータ17の回転速度の変更を招くことなく前記した吐出ポート14からの吐出量を変更するために、図1に示すような容量変更手段32が設けられている。   The gas compressor 10 according to the present invention is provided with a capacity changing means 32 as shown in FIG. 1 in order to change the discharge amount from the discharge port 14 without causing the rotation speed of the rotor 17 to change. It has been.

容量変更手段32は、図3に拡大して示すように、フロントサイドブロック15bに形成された一対のリーク通路33(図3には、その一方が示されている。)と、該各リーク通路の連通を断続するための弁機構34とを備える。   As shown in an enlarged view in FIG. 3, the capacity changing means 32 includes a pair of leak passages 33 (one of which is shown in FIG. 3) formed in the front side block 15b, and each leak passage. And a valve mechanism 34 for interrupting communication.

各リーク通路33の一端はシリンダ室16に開放する円形の開放口33aを経てシリンダ室16に連通し、また各リーク通路33の他端は吸入室27に連通する。各リーク通路33の開放口33aは、図2に示すように、圧縮行程にある圧縮室16aに開放すべく、圧縮領域で該圧縮室16aのシリンダ壁に開放する。この開放口33aの口径は、図示の例では、ベーン22の板厚寸法にほぼ等しい。   One end of each leak passage 33 communicates with the cylinder chamber 16 via a circular opening 33 a that opens to the cylinder chamber 16, and the other end of each leak passage 33 communicates with the suction chamber 27. As shown in FIG. 2, the opening 33a of each leak passage 33 opens to the cylinder wall of the compression chamber 16a in the compression region so as to open to the compression chamber 16a in the compression stroke. The diameter of the opening 33a is substantially equal to the thickness of the vane 22 in the illustrated example.

再び図3を参照するに、フロントサイドブロック15bには、リーク通路33に関連して弁機構34の弁体35を収容するための凹所36が形成されている。凹所36は、その開放端を吸入室27に開放し、凹所36の閉鎖端である凹所底部に前記開放口33aが形成されている。凹所36には、その開放を閉鎖する一端開放の弁ケース37がその内部空間38を凹所36内に開放させて嵌合されている。弁ケース37の内部空間38には全体に棒状の前記弁体35が開放口33aへ向けておよび該開放口から遠ざかる方向へ移動可能に収容されており、内部空間38は弁体35のための加圧室として機能する。   Referring to FIG. 3 again, the front side block 15 b is formed with a recess 36 for accommodating the valve body 35 of the valve mechanism 34 in association with the leak passage 33. The opening of the recess 36 is opened to the suction chamber 27, and the opening 33 a is formed in the bottom of the recess that is the closed end of the recess 36. The recess 36 is fitted with a valve case 37 that is open at one end and that closes its opening, with its internal space 38 opened into the recess 36. In the internal space 38 of the valve case 37, the rod-shaped valve body 35 is accommodated so as to be movable toward and away from the opening 33a. The internal space 38 is used for the valve body 35. Functions as a pressure chamber.

弁体35の開放口33aに向き合う一端は弁ケース37から突出し、この開放口33aに向き合う弁体35の端部には、図4に拡大して示されているように、開放口33aに嵌合可能の先端部35aが形成されている。圧縮室16aの外方で弁ケース37の内部空間38に収容された弁体35の先端部35aは、図3および図4に示す弁体35の突出位置で、凹所36の前記底壁部に形成された開放口33aに嵌合することにより、開放口33aを閉鎖する。この閉鎖位置では、図4に示すように、先端部35aは開放口33aから圧縮室16a内に突出することはなく、シリンダ壁面15dと先端部35aの先端面との間には、間隔sが保持されている。弁体35の先端部35aの端面には、間隔sにほぼ等しい厚さ寸法sを有しかつ開放口33aの口径にほぼ等しい外径を有する円板状の弾性を有する充填部材39が固着されている。この充填部材39は、該充填部材が開放口33aから突出する場合、その突出面上をベーン22が摺動したときに、このベーン22の摺動によって突出する過剰分が容易に摩耗を受けまたは削り取られるようなゴム材料で形成されている。   One end of the valve body 35 facing the open port 33a protrudes from the valve case 37, and the end of the valve body 35 facing the open port 33a is fitted into the open port 33a as shown in an enlarged view in FIG. A matable tip 35a is formed. The distal end portion 35a of the valve body 35 accommodated in the internal space 38 of the valve case 37 outside the compression chamber 16a is the protruding position of the valve body 35 shown in FIGS. The open port 33a is closed by fitting into the open port 33a formed in the above. In this closed position, as shown in FIG. 4, the distal end portion 35a does not protrude into the compression chamber 16a from the opening 33a, and there is an interval s between the cylinder wall surface 15d and the distal end surface of the distal end portion 35a. Is retained. A disc-like elastic filling member 39 having a thickness dimension s substantially equal to the interval s and an outer diameter substantially equal to the diameter of the opening 33a is fixed to the end face of the tip 35a of the valve body 35. ing. When the filling member 39 protrudes from the opening 33a, when the vane 22 slides on the protruding surface, the excess protruding due to the sliding of the vane 22 is easily worn or It is made of a rubber material that can be scraped off.

従って、充填部材39が固着された弁体35を圧縮機構本体12へ組み付ける時、閉鎖位置で充填部材39が圧縮室16aにたとえ僅かに突出していても、気体圧縮機10の馴らし運転あるいは試運転等でのベーン2の摺動によって、充填部材39の過剰分を除去することができる。これにより、馴らし運転あるいは試運転の後では、開放口33aの閉鎖位置で、充填部材39を圧縮室16aに突出させることなく、開放口33aにおけるシリンダ壁面15dと弁体35の先端部35aの先端面との間の深さsの空所すなわち凹所Sを充填部材39で確実に充填することができる。   Therefore, when the valve body 35 to which the filling member 39 is fixed is assembled to the compression mechanism main body 12, even if the filling member 39 slightly protrudes into the compression chamber 16a in the closed position, the acclimation operation or the trial operation of the gas compressor 10 is performed. The excess of the filling member 39 can be removed by sliding the vane 2 at. Thereby, after the break-in operation or the trial operation, the front end surface of the cylinder wall surface 15d and the front end portion 35a of the valve body 35 in the open port 33a without projecting the filling member 39 into the compression chamber 16a at the closed position of the open port 33a. It is possible to reliably fill the voids, that is, the recesses S, with the filling member 39.

弁体35は、その他端に弁ケース37の内部空間である圧力室38に導入される潤滑油の圧力を閉鎖位置へ向けての作用力として受ける。図3に示す例では、前記した油貯め29(図1参照)内の加圧潤滑油が、シリンダ部材15aに形成された油案内通路40(図1参照)、該油案内通路に連通してフロントサイドブロック15bに形成された連結通路41および弁ケース37の周壁に形成された入り口通路42を経て圧力室38内に案内される。この加圧潤滑油の圧力室38への導入により、弁体35は、開放口33aの閉鎖位置へ向けての作用力を受ける。また、油案内通路40と連結通路41との間には、油貯め29から弁機構34の圧力室38へ向けての圧液流に所定の抵抗値を与えるための流量調整弁43が設けられている。流量調整弁43は、従来よく知られているように、オリフィス43aを有する弁体43bと、該弁体に流量を低減させるばね力を付与するコイル43cとを有し、圧力室38内の圧力が油貯め29内の圧力よりも所定値を超えて低下すると、油案内通路40から連結通路41へ向けての圧液流に作用する抵抗値を増大させる。   The valve body 35 receives the pressure of the lubricating oil introduced into the pressure chamber 38 that is the internal space of the valve case 37 at the other end as an acting force toward the closed position. In the example shown in FIG. 3, the pressurized lubricating oil in the oil reservoir 29 (see FIG. 1) communicates with the oil guide passage 40 (see FIG. 1) formed in the cylinder member 15a and the oil guide passage. It is guided into the pressure chamber 38 through a connecting passage 41 formed in the front side block 15 b and an inlet passage 42 formed in the peripheral wall of the valve case 37. By introducing the pressurized lubricating oil into the pressure chamber 38, the valve body 35 receives an acting force toward the closed position of the opening 33a. A flow rate adjusting valve 43 is provided between the oil guide passage 40 and the connection passage 41 to give a predetermined resistance value to the pressure liquid flow from the oil reservoir 29 toward the pressure chamber 38 of the valve mechanism 34. ing. As is well known in the art, the flow rate adjusting valve 43 includes a valve body 43b having an orifice 43a and a coil 43c that applies a spring force to reduce the flow rate to the valve body. When the pressure drops below the pressure in the oil reservoir 29 by exceeding a predetermined value, the resistance value acting on the pressure fluid flow from the oil guide passage 40 toward the connection passage 41 is increased.

開放口33aの閉鎖位置にある弁体35は、その前記他端に受ける作用力が圧縮室16aから先端部35aに受ける作用力を超える限り、開放口33aの閉鎖位置に確実に保持されるが、圧力室38内の圧力の低減により前記他端に作用する作用力が先端部35aへの作用力よりも小さくなると、弁体35は開放位置へ向けて作動する。   The valve body 35 in the closed position of the opening 33a is securely held in the closed position of the opening 33a as long as the acting force received at the other end exceeds the acting force received from the compression chamber 16a to the tip 35a. When the acting force acting on the other end becomes smaller than the acting force on the distal end portion 35a due to the reduction of the pressure in the pressure chamber 38, the valve body 35 operates toward the open position.

この弁体35の開放作動のために、連結通路41には、該連結通路を吸入室27に短絡するための圧力放出路44が連結され、また圧力放出路44には該圧力放出路の連通を断続するための例えば電磁バルブ装置45が設けられている。   In order to open the valve body 35, a pressure release path 44 for short-circuiting the connection path to the suction chamber 27 is connected to the connection path 41, and the pressure release path 44 is connected to the pressure release path. For example, an electromagnetic valve device 45 for intermittently connecting is provided.

電磁バルブ装置45が圧力放出路44の連通を遮断する閉鎖位置に保持されると、前記したとおり、油貯め29内の加圧潤滑油が流量調整弁43を経て圧力室38内に導入されることにより、弁体35が開放口33aの閉鎖位置に保持される。開放口33aの閉鎖状態では、弁体35の先端部35aに設けられた充填部材39が開放口33aのシリンダ壁面15dと弁体35の先端部35aの先端面との間の前記凹所Sを充填することから、図5に矢印A2で示したような隣り合う圧縮室16a間での開放口33aによる凹所Sを経る圧縮ガスの漏れが確実に防止される。従って、圧縮機構本体12は漏れによる損失を招くことなく、その最大吐出量で動作する。   When the electromagnetic valve device 45 is held at the closed position where the communication of the pressure release path 44 is blocked, the pressurized lubricating oil in the oil reservoir 29 is introduced into the pressure chamber 38 via the flow rate adjusting valve 43 as described above. As a result, the valve body 35 is held in the closed position of the opening 33a. In the closed state of the opening 33a, the filling member 39 provided at the distal end portion 35a of the valve body 35 defines the recess S between the cylinder wall surface 15d of the opening 33a and the distal end surface of the distal end portion 35a of the valve body 35. Since filling is performed, leakage of the compressed gas through the recess S due to the opening 33a between the adjacent compression chambers 16a as shown by the arrow A2 in FIG. 5 is reliably prevented. Therefore, the compression mechanism main body 12 operates at the maximum discharge amount without incurring loss due to leakage.

他方、電磁バルブ装置45が圧力放出路44の連通を許す開放位置に保持されると、圧力室38内の加圧潤滑油が圧力放出路44を経て吸入室27に案内され、これにより圧力室38内の圧力が解除される。この圧力室38内の圧力解除により、弁体35の前記他端に作用する作用力がその先端部35aへの作用力よりも小さくなると、弁体35は開放位置へ向けて作動し、開放口33aが開放される。流量調整弁43は、圧力室38内の圧力が解除されているとき、油貯め29から吸入室27へ向けて過剰な加圧潤滑油が流れることを防止する。   On the other hand, when the electromagnetic valve device 45 is held at an open position allowing the pressure discharge path 44 to communicate, the pressurized lubricating oil in the pressure chamber 38 is guided to the suction chamber 27 through the pressure discharge path 44, thereby The pressure in 38 is released. When the acting force acting on the other end of the valve body 35 becomes smaller than the acting force on the tip portion 35a due to the pressure release in the pressure chamber 38, the valve body 35 operates toward the open position, and the opening port 33a is opened. The flow rate adjusting valve 43 prevents excessive pressurized lubricating oil from flowing from the oil reservoir 29 toward the suction chamber 27 when the pressure in the pressure chamber 38 is released.

電磁バルブ装置45の前記した開放動作によって弁体35が開放口33aの開放位置に動作されると、ベーン22の摺動に伴う圧縮行程で一部の圧縮ガスはリーク通路33を経て吸入室27に戻され、ベーン22がシリンダ室16の周壁を摺動するに際し、開放口33aの位置を通過して実質的な圧縮行程が開始されることから、圧縮機構本体12による吐出量が低減される。   When the valve body 35 is moved to the opening position of the opening 33 a by the opening operation of the electromagnetic valve device 45, a part of the compressed gas passes through the leak passage 33 through the leakage passage 33 in the compression stroke accompanying the sliding of the vane 22. When the vane 22 slides on the peripheral wall of the cylinder chamber 16, the substantial compression stroke is started by passing through the position of the opening 33a, so that the discharge amount by the compression mechanism main body 12 is reduced. .

従って、電磁バルブ装置45の作動を制御することにより、圧力室38の圧力解除を制御することができ、電磁バルブ装置45の動作を介して弁体35の開閉動作を制御することができる。   Therefore, the pressure release of the pressure chamber 38 can be controlled by controlling the operation of the electromagnetic valve device 45, and the opening / closing operation of the valve body 35 can be controlled via the operation of the electromagnetic valve device 45.

本発明に係る気体圧縮機10では、前記したように、弁体35の先端部35aに設けられる充填部材39は、摺動体であるベーン22の摺動により摩耗可能な材料で構成されていることから、例え弁体35の先端に設けられた充填部材39が圧縮室16aのシリンダ壁面15dから圧縮室16a内に突出して形成されていても、例えば馴らし運転あるいは試運転等でのベーン22の摺動によって、充填部材39の圧縮室16a内に突出する過剰分は圧縮室16aのシリンダ壁面15dにほぼ一致する形状に容易に摩耗を受ける。このため、予め製造誤差を見込んで充填部材39を例え圧縮室16a内に僅かに突出するように形成しても、必要に応じた馴らし運転あるいは試運転によって、開放口33aを閉鎖する弁体35の閉鎖位置で該弁体の先端に設けられた充填部材39の先端面を圧縮室16aのシリンダ壁面15dに一致させることができることから、その後の通常運転においては、弁体35の閉鎖位置で該弁体とベーン22との干渉を招くことなく開放口33aに関連する凹所Sを充填部材39により確実に充填することができる。   In the gas compressor 10 according to the present invention, as described above, the filling member 39 provided at the tip 35a of the valve body 35 is made of a material that can be worn by sliding of the vane 22 that is a sliding body. Thus, even if the filling member 39 provided at the tip of the valve body 35 is formed to protrude from the cylinder wall surface 15d of the compression chamber 16a into the compression chamber 16a, for example, the sliding of the vane 22 in the acclimation operation or the trial operation is performed. As a result, the excess portion of the filling member 39 protruding into the compression chamber 16a is easily worn into a shape substantially coinciding with the cylinder wall surface 15d of the compression chamber 16a. For this reason, even if the filling member 39 is formed so as to slightly protrude into the compression chamber 16a in consideration of manufacturing errors in advance, the valve body 35 that closes the opening 33a by the acclimation operation or the trial operation as necessary. Since the front end surface of the filling member 39 provided at the front end of the valve body in the closed position can coincide with the cylinder wall surface 15d of the compression chamber 16a, the valve body 35 is closed at the closed position in normal operation thereafter. The recess S related to the opening 33 a can be reliably filled by the filling member 39 without causing interference between the body and the vane 22.

従って、ベーン22の板厚の増大やリーク通路33の開放口33aの口径の減少を図ることなく、確実に通常運転時における凹所Sに関連した圧縮気体の漏れ出しを防止することができ、この圧縮気体の漏れ出しに起因する通常運転時における圧縮効率の低下およびエネルギー損失を防止し、円滑な作動を確保することが可能となる。   Accordingly, it is possible to reliably prevent leakage of compressed gas related to the recess S during normal operation without increasing the plate thickness of the vane 22 or decreasing the diameter of the opening 33a of the leak passage 33. It is possible to prevent a decrease in compression efficiency and energy loss during normal operation due to the leakage of the compressed gas, and to ensure a smooth operation.

充填部材39を摩耗可能な弾性を有しない樹脂材料で形成することができる。しかしながら、充填部材39を弾性材料で構成することにより、充填部材39の弾性によるシール効果によって開放口33aをより確実に密閉することができる。   The filling member 39 can be formed of a resin material having no elasticity that can be worn. However, when the filling member 39 is made of an elastic material, the opening 33a can be more reliably sealed by the sealing effect due to the elasticity of the filling member 39.

前記したところでは、楕円の横断面形状を有するシリンダ室が設けられた同芯型のベーンロータリー式容量可変型気体圧縮機の例について本発明を説明したが、本発明は、円形の横断面形状を有するシリンダ室が設けられる偏心型のベーンロータリー式容量可変型気体圧縮機あるいはスクロール式容量可変型気体圧縮機に適用することができる。   In the above description, the present invention has been described with respect to an example of a concentric vane rotary type variable displacement gas compressor provided with a cylinder chamber having an elliptical cross-sectional shape. The present invention can be applied to an eccentric vane rotary type variable capacity gas compressor or a scroll type variable capacity gas compressor provided with a cylinder chamber.

このスクロール式容量可変型気体圧縮機では、充填部材は、固定スクロール部に対して摺動する摺動体である可動スクロールによって摩耗可能の樹脂材料または摩耗可能の弾性を有するゴム材料で構成される。   In this scroll-type variable capacity gas compressor, the filling member is made of a resin material that can be worn by a movable scroll that is a sliding body that slides with respect to the fixed scroll portion, or a rubber material that has wearable elasticity.

本発明に係る容量可変型気体圧縮機を示す縦断面図である。It is a longitudinal section showing a capacity variable type gas compressor concerning the present invention. 図1に示す線II−IIに沿って得られた断面図である。It is sectional drawing obtained along line II-II shown in FIG. 図1に示した容量可変型気体圧縮機の開閉弁機構を拡大して示す断面図である。It is sectional drawing which expands and shows the on-off valve mechanism of the capacity | capacitance variable type gas compressor shown in FIG. 図3に示した開閉弁機構の弁体の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of valve body of the on-off valve mechanism shown in FIG. 従来の開閉弁機構を拡大して示す断面図である。It is sectional drawing which expands and shows the conventional on-off valve mechanism.

符号の説明Explanation of symbols

10 気体圧縮機
12 圧縮機構本体
16a 圧縮室
22 (摺動体)ベーン
33 リーク通路
33a (リーク通路の開口)開放口
34 弁機構
35 弁体
35a (弁体の先端)先端部
39 充填部材
S 凹所
DESCRIPTION OF SYMBOLS 10 Gas compressor 12 Compression mechanism main body 16a Compression chamber 22 (Sliding body) Vane 33 Leak passage 33a (Leak passage opening) Opening port 34 Valve mechanism 35 Valve body 35a (Lead end of valve body) Tip 39 Filling member S Recess

Claims (5)

駆動回転される摺動体の摺動運動により容積を増減する圧縮室を有し、該圧縮室の容積の増大に伴い該圧縮室に気体を吸入し、その容積の減少に伴い吸入した気体を圧縮し、吐出する圧縮機構本体と、該圧縮機構本体の圧縮行程中に前記圧縮室からの圧縮気体の漏れを許すべく、前記摺動体が摺動する前記圧縮室の壁面に開放する開口を経て前記圧縮室に連通するリーク通路と、圧縮気体の吐出容量の切換のために前記開口を開閉する弁機構とを備える容量可変型気体圧縮機であって、前記弁機構は前記圧縮室の外方で前記開口を開閉すべく前記開口に近づく方向および該開口から離れる方向へ移動可能の弁体を有し、該弁体の前記開口に向き合う先端には、前記摺動体の摺動によって摩耗可能な材料からなり前記弁体の前記開口の閉鎖位置で該開口と前記弁体の前記先端とにより形成される凹所を充填する充填部材が設けられていることを特徴とする容量可変型気体圧縮機。   It has a compression chamber whose volume is increased or decreased by the sliding movement of the driven rotating body. Gas is sucked into the compression chamber as the volume of the compression chamber increases, and the sucked gas is compressed as the volume decreases. And a compression mechanism main body to be discharged, and an opening opened to a wall surface of the compression chamber on which the sliding body slides to allow leakage of compressed gas from the compression chamber during a compression stroke of the compression mechanism main body. A variable capacity gas compressor comprising a leak passage communicating with a compression chamber and a valve mechanism for opening and closing the opening for switching the discharge capacity of the compressed gas, wherein the valve mechanism is located outside the compression chamber. A material that has a valve body movable in a direction approaching the opening and a direction away from the opening to open and close the opening, and a material that can be worn by sliding of the sliding body at a tip of the valve body facing the opening A closed position of the opening of the valve body Variable displacement gas compressor, wherein a filling member for filling a recess formed by said tip end of the opening the valve body is provided. 前記圧縮機構本体は、前記圧縮室のためのシリンダ室を規定するシリンダと、前記シリンダ室内に回転可能に配置されるロータとを有し、該ロータの回転に伴ってベーンが前記シリンダ室の壁面を摺動すべく前記ベーンがロータに保持され、前記ベーンによって前記シリンダ室内がその周方向へ区画されて前記圧縮室が形成されるベーンロータリー式気体圧縮機構であり、前記圧縮機構本体の前記摺動体が前記シリンダ室内に配置され該シリンダ室の壁面を摺動する前記ベーンである請求項1に記載の容量可変型気体圧縮機。   The compression mechanism main body includes a cylinder that defines a cylinder chamber for the compression chamber, and a rotor that is rotatably disposed in the cylinder chamber, and a vane moves along the wall surface of the cylinder chamber as the rotor rotates. A vane rotary type gas compression mechanism in which the vane is held by a rotor so as to slide, and the cylinder chamber is partitioned in the circumferential direction by the vane to form the compression chamber, and the sliding of the compression mechanism main body The variable capacity gas compressor according to claim 1, wherein the moving body is the vane which is disposed in the cylinder chamber and slides on a wall surface of the cylinder chamber. 前記弁体は、前記開口に向き合う端部に、該開口の閉鎖位置で前記開口に嵌合する先端部を有し、該先端部に前記充填部材が固着されている請求項1または2に記載の容量可変型気体圧縮機。   The said valve body has a front-end | tip part fitted to the said opening in the closed position of this opening in the edge part which faces the said opening, The said filling member is being fixed to this front-end | tip part. Variable capacity gas compressor. 前記充填部材は、樹脂材料からなる請求項3に記載の容量可変型気体圧縮機。   The variable capacity gas compressor according to claim 3, wherein the filling member is made of a resin material. 前記充填部材は弾性を有するゴム材料からなる請求項3に記載の容量可変型気体圧縮機。   4. The variable capacity gas compressor according to claim 3, wherein the filling member is made of a rubber material having elasticity.
JP2004315160A 2004-10-29 2004-10-29 Variable displacement gas compressor Withdrawn JP2006125305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315160A JP2006125305A (en) 2004-10-29 2004-10-29 Variable displacement gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315160A JP2006125305A (en) 2004-10-29 2004-10-29 Variable displacement gas compressor

Publications (1)

Publication Number Publication Date
JP2006125305A true JP2006125305A (en) 2006-05-18

Family

ID=36720287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315160A Withdrawn JP2006125305A (en) 2004-10-29 2004-10-29 Variable displacement gas compressor

Country Status (1)

Country Link
JP (1) JP2006125305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103511254A (en) * 2012-06-19 2014-01-15 株式会社丰田自动织机 Serial vane compressor
CN114754004A (en) * 2022-05-07 2022-07-15 郑州轻工业大学 Sliding groove rotary type air-supplementing and enthalpy-increasing compressor and heat pump system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103511254A (en) * 2012-06-19 2014-01-15 株式会社丰田自动织机 Serial vane compressor
CN114754004A (en) * 2022-05-07 2022-07-15 郑州轻工业大学 Sliding groove rotary type air-supplementing and enthalpy-increasing compressor and heat pump system thereof

Similar Documents

Publication Publication Date Title
US10495086B2 (en) Compressor valve system and assembly
EP0969209B1 (en) Scroll-type variable-capacity compressor
JP6569772B1 (en) Scroll compressor
WO2007050292A1 (en) Scroll compressor
WO2008038638A1 (en) Variable displacement vane pump
JPS6255487A (en) Variable displacement vane type compressor
JP2004092494A (en) Gas compressor
JP6402648B2 (en) Vane type compressor
US4447196A (en) Rotary vane compressor with valve control of undervane pressure
EP0401968B1 (en) A rotary compressor
JP2008031920A (en) Rotary compressor
CN108779772B (en) Variable pump
KR101978737B1 (en) Oil pump of engine
WO2015083369A1 (en) Scroll compressor
JP2006125305A (en) Variable displacement gas compressor
JP2009250155A (en) Variable displacement gas compressor
JP2008133810A (en) Compressor
EP1820935A1 (en) Vane pump housing
US4135865A (en) Rotary vane compressor with outlet check valve for start-up pressure on lubricant system
JPH07119648A (en) Variable displacement type vane pump
JP3752098B2 (en) Gas compressor
JP2020153330A (en) Variable displacement pump
JP2006177278A (en) Variable displacement gas compressor
JP2006046104A (en) Variable displacement type gas compressor
JP4421359B2 (en) Gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071001

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090610

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091202