JP2006124597A - Heat-radiating material and heat radiator using the same - Google Patents

Heat-radiating material and heat radiator using the same Download PDF

Info

Publication number
JP2006124597A
JP2006124597A JP2004317621A JP2004317621A JP2006124597A JP 2006124597 A JP2006124597 A JP 2006124597A JP 2004317621 A JP2004317621 A JP 2004317621A JP 2004317621 A JP2004317621 A JP 2004317621A JP 2006124597 A JP2006124597 A JP 2006124597A
Authority
JP
Japan
Prior art keywords
heat
resin
parts
zirconium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004317621A
Other languages
Japanese (ja)
Inventor
Kazuhiko Onishi
和彦 大西
Kimisuke Noura
公介 野浦
Masaaki Saiga
政昭 雑賀
Yoichiro Yamamoto
陽一郎 山本
Toshio Fujibayashi
俊生 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2004317621A priority Critical patent/JP2006124597A/en
Publication of JP2006124597A publication Critical patent/JP2006124597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-radiating material which contains the powder of a specific metal compound in a resin component, and to provide a heat radiator obtained from the heat-radiating material to form a coating film having excellent heat radiability. <P>SOLUTION: This heat-radiating material is characterized by containing the powder of one or more metal compounds selected from hydrotalcite compounds, zirconium silicate and zirconium carbide in a resin component. And, the heat radiator is characterized by coating the surface of a substrate with the heat-radiating material containing the powder of one or more metal compounds selected from hydrotalcite compounds, zirconium silicate and zirconium carbide in a resin component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

樹脂成分に、特定の金属化合物粉末を含有してなる放熱材料及びその放熱材料を用いて得られる放熱体に関する。   The present invention relates to a heat dissipating material containing a specific metal compound powder in a resin component and a heat dissipating member obtained by using the heat dissipating material.

従来、駆動装置、半導体装置、集積回路などの電子機器で発生した熱を除去する方法として、珪酸ナトリウムや珪酸カルシウムを含有する塗膜及びこのものに金属酸化物を含有させた塗膜を使用してなる放熱体が知られている(特許文献1)。   Conventionally, as a method for removing heat generated in electronic devices such as driving devices, semiconductor devices, integrated circuits, etc., a coating film containing sodium silicate or calcium silicate and a coating film containing a metal oxide added thereto are used. A heat radiator is known (Patent Document 1).

特開平15−309383号公報Japanese Patent Laid-Open No. 15-309383

特許文献1に記載の放熱体は、具体的には珪酸ナトリウムや珪酸カルシウムの水溶液に必要に応じて酸化珪素や酸化アルミニウム等の金属酸化物粉末を分散させてなる懸濁液を被塗物に塗装し、被膜形成させたものである。   Specifically, the radiator disclosed in Patent Document 1 is a suspension in which a metal oxide powder such as silicon oxide or aluminum oxide is dispersed in an aqueous solution of sodium silicate or calcium silicate as necessary. Painted and coated.

しかしながら、珪酸ナトリウムや珪酸カルシウムを含有する被膜では充分な放熱効果が得られず、また該被膜に酸化珪素や酸化アルミニウム等の金属酸化物粉末を含有させても充分な放熱効果が得られない。   However, a film containing sodium silicate or calcium silicate cannot provide a sufficient heat dissipation effect, and even if a metal oxide powder such as silicon oxide or aluminum oxide is contained in the film, a sufficient heat dissipation effect cannot be obtained.

本発明は、放熱性に優れた放熱材料及びその放熱体を提供することを目的とする。     An object of this invention is to provide the heat radiating material excellent in heat dissipation, and its heat radiator.

本発明に係わる放熱材料は、樹脂成分に、ハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムから選ばれる少なくとも1種の金属化合物粉末を含有してなることを特徴とする。 The heat dissipating material according to the present invention is characterized in that the resin component contains at least one metal compound powder selected from hydrotalcite compounds, zirconium silicate and zirconium carbide.

本発明に係わる放熱体は、基材表面がハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムから選ばれる少なくとも1種の金属化合物粉末を含有してなる放熱材料によって被覆されていることを特徴とする。   The heat dissipating body according to the present invention is characterized in that the surface of the base material is covered with a heat dissipating material containing at least one metal compound powder selected from hydrotalcite compounds, zirconium silicate and zirconium carbide. To do.

従来、ハイドロタルサイト類化合物は、金属素材に対する防食性や付着性に優れた効果を発揮する塗料用添加剤として知られている。
しかしながら、本発明は、樹脂中にハイドロタルサイト類化合物を分散させた樹脂分散体が樹脂成分とハイドロタルサイト類化合物成分とが相俟って優れた熱(遠赤外線)吸収性を発揮すると共に該樹脂分散体から放出される熱(遠赤外線)放射性が優れるといった、従来では知られていない効果を発揮するものである。
また、上記特許文献1に記載されるように従来、酸化ジルコニウム等の金属酸化物は吸熱材料として使用されることは良く知られている。
しかしながら、本発明は、従来の金属酸化物とは異なるケイ酸ジルコニウム及び炭化ジルコニウムの金属化合物粉末成分を使用することにより、該酸化ジルコニウム粉末と比較して格段に優れた吸熱効果及び放熱効果を発揮するものである。
Conventionally, hydrotalcite-type compounds are known as paint additives that exhibit excellent effects on corrosion resistance and adhesion to metal materials.
However, according to the present invention, the resin dispersion in which the hydrotalcite compound is dispersed in the resin exhibits excellent heat (far infrared) absorption in combination with the resin component and the hydrotalcite compound component. An effect that has not been conventionally known, such as excellent heat (far-infrared) radiation emitted from the resin dispersion, is exhibited.
In addition, as described in Patent Document 1, it has been well known that metal oxides such as zirconium oxide are conventionally used as an endothermic material.
However, the present invention uses a metal compound powder component of zirconium silicate and zirconium carbide that is different from the conventional metal oxide, and thereby exhibits a heat absorption effect and a heat dissipation effect that are significantly superior to the zirconium oxide powder. To do.

本発明は、樹脂成分に、ハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムの金属化合物粉末を含有してなる放熱材料である。
樹脂成分としては、従来から公知の樹脂、例えば、成形材料、塗料、接着剤、印刷インキなどの分野で使用されている熱可塑性樹脂や硬化性樹脂を使用することができる。
The present invention is a heat dissipating material comprising a resin component containing a hydrotalcite compound compound, zirconium silicate and zirconium carbide metal compound powder.
As the resin component, conventionally known resins such as thermoplastic resins and curable resins used in the fields of molding materials, paints, adhesives, printing inks and the like can be used.

熱可塑性樹脂としては、例えば、ポリエステル系樹脂、アクリル系樹脂、ビニル系樹脂、シリコン系樹脂、フッ素系樹脂、エポキシ系樹脂、ウレタン系樹脂などが挙げられる。
硬化性樹脂の硬化系としては、例えば、熱硬化性、活性エネルギー線(紫外線、赤外線、可視光線、放射線など)硬化性、常温硬化性などが包含される。具体的には、例えば、(ブロック化されてもよい)ポリイソシアネート硬化性樹脂組成物、アミノ硬化性樹脂組成物、酸(無水酸も含む)エポキシ硬化性樹脂組成物、塩基(アミン化合物、アミド化合物、ポリチオール化合物など)エポキシ硬化性樹脂組成物、加水分解性官能基(アルコキシシリル基など)含有樹脂、カチオン又はアニオン重合硬化性樹脂組成物、酸化重合硬化性樹脂などが挙げられる。
また、樹脂の形態は、固形樹脂、固形分100重量%の液状樹脂及び溶媒(水や有機溶剤)に溶解もしくは分散した溶液型等の何れの形態であっても構わない。
上記樹脂成分に配合されるハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムの金属化合物粉末について、以下に説明する。
Examples of the thermoplastic resin include polyester resin, acrylic resin, vinyl resin, silicon resin, fluorine resin, epoxy resin, and urethane resin.
Examples of the curing system of the curable resin include thermosetting, active energy ray (ultraviolet, infrared, visible light, radiation, etc.) curing, room temperature curing, and the like. Specifically, for example, polyisocyanate curable resin composition (which may be blocked), amino curable resin composition, acid (including acid anhydride) epoxy curable resin composition, base (amine compound, amide) Compound, polythiol compound, etc.) epoxy curable resin composition, hydrolyzable functional group (alkoxysilyl group etc.)-Containing resin, cationic or anionic polymerization curable resin composition, oxidation polymerization curable resin and the like.
The form of the resin may be any form such as a solid resin, a liquid resin having a solid content of 100% by weight, and a solution type dissolved or dispersed in a solvent (water or organic solvent).
The hydrotalcite compound, zirconium silicate and zirconium carbide metal compound powder blended in the resin component will be described below.

ハイドロタルサイト類化合物:
該ハイドロタルサイト類化合物としては、特に
一般式(1)式で表されるものが好ましい。
一般式(1)
Hydrotalcite compounds:
As the hydrotalcite compound, those represented by the general formula (1) are particularly preferable.
General formula (1)

〔M2+1-x M3+x (OH)2 〕x+〔An-x/n ・mHO〕x- (1)
(式中、M2+は二価金属、M3+は三価金属、An-はn価アニオンであり、xは0<x<0.33の範囲にある。)
上記(1)式において、二価金属M2+としては、例えば、Mg2+、Zn2+、Ni2+など、三価金属M3+としては、例えば、Al3+、Fe3+、Cr3+など、n価アニオンAn-としては、例えば、Cl- 、NO3 - 、CO32- 、サリチル酸、しゅう酸、クエン酸などが挙げられる。このハイドロタルサイト類化合物としては、例えば、Mg6 Al2 (OH)16CO3 ・4HOで表され天然鉱物として産出されるハイドロタルサイト、Mg4.3 Al2 (OH)12.6CO3 ・3.5H2 Oで表されるハイドロタルサイト類似物などが代表的に利用できる。
該ハイドロタルサイト類化合物は、特に平均粒子径は0.1〜30μm、好ましくは3μm以下の微粉末のものを使用するのが好ましい。該ハイドロタルサイト類化合物は、屈折率が1.49〜1.51で一般の塗料用樹脂の屈折率と近く、クリヤ−塗膜の作製が可能となる。
[M2 + 1-x M3 + x (OH) 2 ] x + [An -x / n · mH 2 O] x- (1)
(In the formula, M2 + is a divalent metal, M3 + is a trivalent metal, An- is an n-valent anion, and x is in the range of 0 <x <0.33.)
In the above formula (1), the divalent metal M2 + includes, for example, Mg2 + , Zn2 + , Ni2 +, and the trivalent metal M3 + includes, for example, an nvalent anion such as Al3 + , Fe3 + , Cr3 +, etc. the @ n-, for example, Cl -, NO3 -, CO3 2-, salicylic, oxalic acid, and citric acid. As this hydrotalcite compound, for example, hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O and produced as a natural mineral, Mg 4.3 Al 2 (OH) 12.6 A hydrotalcite analog represented by CO 3 .3.5H 2 O can be typically used.
As the hydrotalcite compound, it is particularly preferable to use a fine powder having an average particle size of 0.1 to 30 μm, preferably 3 μm or less. The hydrotalcite compound has a refractive index of 1.49 to 1.51 and is close to the refractive index of a general coating resin, and a clear coating film can be produced.

該ハイドロタルサイト類化合物の市販品としては、例えば、(「DHT−7A」協和化学工業社製、Mg4.3 Al2 (OH)12.6CO3 ・3.5H2 O)、
などが挙げられる。
As a commercial item of this hydrotalcite compound, for example, (“DHT-7A” manufactured by Kyowa Chemical Industry Co., Ltd., Mg 4.3 Al 2 (OH) 12.6 CO 3 .3.5H 2 O),
Etc.

該ハイドロタルサイト類化合物の配合割合は、0.5〜120重量部、好ましくは1〜80重量部である。   The compounding ratio of the hydrotalcite compound is 0.5 to 120 parts by weight, preferably 1 to 80 parts by weight.

配合割合が0.5重量部未満になると放熱効果が劣り、一方120重量部を越えると塗膜の仕上がり外観が劣る。     When the blending ratio is less than 0.5 parts by weight, the heat dissipation effect is inferior, while when it exceeds 120 parts by weight, the finished appearance of the coating film is inferior.

ケイ酸ジルコニウム:
ケイ酸ジルコニウムは、ZrSiOで表される化合物であって、特に200メッシュパス、好ましくは350メッシュパスの微粉末のものを使用することが好ましい。
該ケイ酸ジルコニウムの市販品としては、例えば、ジルコンフラワー200メッシュ(粒度分布:10μm以下で45%min、20μm以下で60%min、40μm以下で80%min、74μm以下で95%min)、ジルコンフラワー350メッシュ(粒度分布:10μm以下で50%min、20μm以下で75%min、30μm以下で85%min、44μm以下で95%min)等が挙げられる。
該ケイ酸ジルコニウムの配合割合は、樹脂100重量部に対して0.5〜120重量部、好ましくは1〜80重量部である。
Zirconium silicate:
Zirconium silicate is a compound represented by ZrSiO 4, and it is particularly preferable to use a fine powder of 200 mesh pass, preferably 350 mesh pass.
Commercially available products of the zirconium silicate include, for example, zircon flour 200 mesh (particle size distribution: 45% min at 10 μm or less, 60% min at 20 μm or less, 80% min at 40 μm or less, 95% min at 74 μm or less), zircon Flower 350 mesh (particle size distribution: 50% min at 10 μm or less, 75% min at 20 μm or less, 85% min at 30 μm or less, 95% min at 44 μm or less).
The blending ratio of the zirconium silicate is 0.5 to 120 parts by weight, preferably 1 to 80 parts by weight with respect to 100 parts by weight of the resin.

配合割合が0.5重量部未満になると放熱効果が劣り、一方120重量部を越えると塗膜の仕上がり外観が劣る。     When the blending ratio is less than 0.5 parts by weight, the heat dissipation effect is inferior, while when it exceeds 120 parts by weight, the finished appearance of the coating film is inferior.

炭化ジルコニウム:
炭化ジルコニウムは、ZrCで表される化合物であって、特に平均粒子径は0.1〜30μm、好ましくは3μm以下の微粉末のものを使用するのが好ましい。
該炭化ジルコニウムの市販品としては、例えば、(「ZrC」高純度化学研究所製)、(「ZrC-L」、「ZrC-LF」、「ZrC-O」、「ZrC-F」日本新金属株式会社製)などが挙げられる。
該炭化ジルコニウムの配合割合は、樹脂100重量部に対して0.5〜120重量部、好ましくは1〜80重量部である。
Zirconium carbide:
Zirconium carbide is a compound represented by ZrC, and it is particularly preferable to use a fine powder having an average particle size of 0.1 to 30 μm, preferably 3 μm or less.
Examples of commercial products of the zirconium carbide include (“ZrC” manufactured by High Purity Chemical Research Laboratories), (“ZrC-L”, “ZrC-LF”, “ZrC—O”, “ZrC—F”, Nippon Shin Metal). Etc.).
The blending ratio of the zirconium carbide is 0.5 to 120 parts by weight, preferably 1 to 80 parts by weight with respect to 100 parts by weight of the resin.

配合割合が0.5重量部未満になると放熱効果が劣り、一方120重量部を越えると塗膜の仕上がり外観が劣る。
本発明の放熱材料は、例えば、本発明で使用する樹脂(溶液であってもよい)に、本発明で使用するハイドロタルサイト類化合物、ケイ酸ジルコニウム又は炭化ジルコニウムの金属化合物粉末を固形樹脂の場合には加熱溶融樹脂に混合分散することによって製造できる。
また、予め本発明で使用する樹脂の一部もしくは従来から公知の顔料分散剤を用いて混合分散して顔料ペーストを製造したものを、本発明で使用する(残りの)樹脂に配合して製造することもできる。
When the blending ratio is less than 0.5 parts by weight, the heat dissipation effect is inferior, while when it exceeds 120 parts by weight, the finished appearance of the coating film is inferior.
The heat dissipating material of the present invention includes, for example, a resin (which may be a solution) used in the present invention and a hydrotalcite compound, zirconium silicate or zirconium carbide metal compound powder used in the present invention. In some cases, it can be produced by mixing and dispersing in a heated molten resin.
In addition, a part of the resin used in the present invention or a pigment paste prepared by mixing and dispersing using a conventionally known pigment dispersant is blended with the (remaining) resin used in the present invention. You can also

本発明の放熱材料には、例えば、着色顔料、防錆顔料、体質顔料などの顔料類;塗面調整剤、紫外線安定剤、紫外線吸収剤、硬化触媒などの添加剤などを含有することができる。
本発明の放熱体は、基材表面がハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムの金属化合物粉末を含有してなる本発明の放熱材料によって被覆されているものである。
The heat dissipating material of the present invention can contain, for example, pigments such as color pigments, rust preventive pigments and extender pigments; additives such as coating surface conditioners, UV stabilizers, UV absorbers and curing catalysts. .
In the heat dissipating body of the present invention, the substrate surface is coated with the heat dissipating material of the present invention containing a metal compound powder of a hydrotalcite compound, zirconium silicate and zirconium carbide.

基材としては、例えば、鋼板、各種メッキ鋼板、アルミニウム板、ステンレス鋼板などの金属基材、ガラス、コンクリート、瓦、スレートなどの無機基材、PET、ポリエチレン、ナイロン、ポリ塩化ビニル、アクリル、ABSなどのプラスチック基材を用いることができ、これに予め脱脂処理、洗浄処理、表面処理などを施しておくことができる。
該基材は、部品、製品などの何れのものであっても良い。更に、金属などのシートに本発明の放熱材料の被膜を形成して放熱体を製造した後に、目的とする形の加工することもできる。
Examples of the substrate include metal substrates such as steel plates, various plated steel plates, aluminum plates, and stainless steel plates, inorganic substrates such as glass, concrete, roof tiles, and slate, PET, polyethylene, nylon, polyvinyl chloride, acrylic, and ABS. Such a plastic substrate can be used, and it can be preliminarily subjected to degreasing treatment, cleaning treatment, surface treatment and the like.
The substrate may be any of parts, products and the like. Furthermore, after forming the coating film of the heat dissipation material of the present invention on a sheet of metal or the like to manufacture the heat dissipation body, it is possible to process the target shape.

本発明の放熱材料を基材に被覆させる方法としては、従来から公知(例えば、塗料、接着剤、印刷インキなどの分野)方法、例えば、刷毛、ローラー、ロールコーター、スピンコーター、カーテンフローコーター、スプレー、静電塗装、浸漬塗装、流し塗り、シルク印刷、電着塗装、シルクスクリーン印刷、凸板印刷などの手段により塗布することができる。
被膜の乾燥(硬化)は、放熱材料の種類に応じて適宜決めれば良い。
被膜の膜厚は、使用される目的に応じて適宜決めれば良いが、通常、約1μm〜約200μm、特に約2μm〜約100μmの範囲内で充分である。
As a method for coating the base material with the heat dissipation material of the present invention, a conventionally known method (for example, the field of paint, adhesive, printing ink, etc.), for example, a brush, a roller, a roll coater, a spin coater, a curtain flow coater, It can be applied by means such as spraying, electrostatic coating, dip coating, flow coating, silk printing, electrodeposition coating, silk screen printing, and convex plate printing.
The drying (curing) of the film may be appropriately determined according to the type of the heat dissipation material.
The film thickness of the coating may be appropriately determined according to the purpose to be used, but is usually sufficient in the range of about 1 μm to about 200 μm, particularly about 2 μm to about 100 μm.

以下、実施例を掲げて本発明を詳細に説明する。なお実施例及び比較例中の「部」及び「%」は重量基準である。また、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. In the examples and comparative examples, “parts” and “%” are based on weight. The present invention is not limited to the examples.

実施例1
マジクロン1026クリヤー(関西ペイント株式会社製、商品名、アクリルメラミン硬化型樹脂塗料)固形分100部に対してハイドロタルサイトZHT-7A粉末の平均粒子径0.6μmを30部配合して実施例1の塗料を製造した。
Example 1
Example 1 by blending 30 parts of an average particle size of 0.6 μm of hydrotalcite ZHT-7A powder to 100 parts of a solid content of Magiclon 1026 Clear (trade name, acrylic melamine curable resin paint, manufactured by Kansai Paint Co., Ltd.) A paint was produced.

得られた塗料を乾燥膜厚20μmになるように70×150mmに切断した厚み3mmのアルミニウム板に塗装し160℃で30分間乾燥をおこなって塗装板を作成した。   The obtained paint was applied to an aluminum plate having a thickness of 3 mm cut to 70 × 150 mm so as to have a dry film thickness of 20 μm, and dried at 160 ° C. for 30 minutes to prepare a coated plate.

得られた塗装板を熱風乾燥機に入れて、160℃に加熱後、26℃の室内で空冷しその冷却速度を評価したところ、無塗装のアルミ板及びハイドロタルサイトZHT-7Aを配合しないマジクロン1026クリヤーの各表面温度に比べて、放熱効果により、冷却開始後10分で6〜8℃速く低下し良好であった。
また、実施例1で得られた塗膜はシワ、フクレ、アワ、光沢低下、剥がれ、ワレ等の欠陥がなく外観は良好であった。また、得られた塗膜は透明であった。
The obtained coated plate was put into a hot air dryer, heated to 160 ° C., air-cooled in a room at 26 ° C., and its cooling rate was evaluated. As a result, Maglon which did not contain uncoated aluminum plate and hydrotalcite ZHT-7A Compared to each surface temperature of 1026 clear, due to the heat dissipation effect, it was good that it rapidly decreased by 6-8 ° C. 10 minutes after the start of cooling.
Moreover, the coating film obtained in Example 1 was free from defects such as wrinkles, blisters, millets, gloss reduction, peeling, cracks, and the like and had a good appearance. Moreover, the obtained coating film was transparent.

実施例2
レタンPG−80クリヤー(関西ペイント株式会社製、商品名、イソシアネ−ト硬化型アクリル樹脂塗料)固形分100部に対して実施例1に記載のハイドロタルサイトZHT-7A粉末を30部(固形分)配合して実施例2の塗料を製造した。
Example 2
30 parts of hydrotalcite ZHT-7A powder described in Example 1 with respect to 100 parts of solid content of solid PG-80 clear (trade name, isocyanate curable acrylic resin paint, manufactured by Kansai Paint Co., Ltd.) ) To prepare the paint of Example 2.

得られた塗料を乾燥膜厚20μmになるように70×150mmに切断した厚み3mmのアルミニウム板に塗装し80℃で30分間乾燥をおこなって塗装板を作成した。   The obtained paint was applied to an aluminum plate having a thickness of 3 mm cut to 70 × 150 mm so as to have a dry film thickness of 20 μm, and dried at 80 ° C. for 30 minutes to prepare a coated plate.

得られた塗装板を熱風乾燥機に入れて、160℃に加熱後、26℃の室内で空冷しその冷却速度を評価したところ、無塗装のアルミ板及びハイドロタルサイトZHT-7Aを配合しないレタンPG−80クリヤーの各表面温度に比べて、放熱効果により、冷却開始後10分で6〜8℃速く低下し良好であった。
実施例2で得られた塗膜はシワ、フクレ、アワ、光沢低下、剥がれ、ワレ等の欠陥がなく外観は良好であった。また、得られた塗膜は透明であった。
The obtained coated plate was put into a hot air dryer, heated to 160 ° C., air-cooled in a room at 26 ° C., and the cooling rate was evaluated. As a result, the unpainted aluminum plate and the retan containing no hydrotalcite ZHT-7A Compared to each surface temperature of PG-80 clear, due to the heat dissipation effect, it was good that it rapidly decreased 6-8 ° C. 10 minutes after the start of cooling.
The coating film obtained in Example 2 was free from defects such as wrinkles, blisters, millets, gloss reduction, peeling, cracks, and the like, and had a good appearance. Moreover, the obtained coating film was transparent.

実施例3
実施例1に記載のマジクロン1026クリヤー(関西ペイント株式会社製、商品名、アクリルメラミン硬化型樹脂塗料)固形分100部に対してケイ酸ジルコニウム粉末(高純度化学研究所製、ZrSiO4)を30部配合して実施例3の塗料を製造した。
Example 3
30 parts of zirconium silicate powder (manufactured by High-Purity Chemical Laboratory, ZrSiO4) with respect to 100 parts of the solid content of Magiclon 1026 clear (trade name, acrylic melamine curable resin paint, manufactured by Kansai Paint Co., Ltd.) described in Example 1 The paint of Example 3 was produced by blending.

得られた塗料を乾燥膜厚20μmになるように70×150mmに切断した厚み3mmのアルミニウム板に塗装し160℃で30分間乾燥をおこなって塗装板を作成した。   The obtained paint was applied to an aluminum plate having a thickness of 3 mm cut to 70 × 150 mm so as to have a dry film thickness of 20 μm, and dried at 160 ° C. for 30 minutes to prepare a coated plate.

得られた塗装板を熱風乾燥機に入れて、160℃に加熱後、26℃の室内で空冷しその冷却速度を評価したところ、無塗装のアルミ板及びケイ酸ジルコニウムを配合しないマジクロン1026クリヤーの各表面温度に比べて、放熱効果により、冷却開始後10分で6〜8℃速く低下した。
実施例3で得られた塗膜はシワ、フクレ、アワ、光沢低下、剥がれ、ワレ等の欠陥がなく外観は良好であった。
The obtained coated plate was put into a hot air dryer, heated to 160 ° C., air-cooled in a room at 26 ° C., and the cooling rate was evaluated. As a result, the uncoated aluminum plate and the Magiclon 1026 clear containing no zirconium silicate were obtained. Compared to each surface temperature, it decreased rapidly by 6 to 8 ° C. 10 minutes after the start of cooling due to the heat dissipation effect.
The coating film obtained in Example 3 was free from defects such as wrinkles, blisters, millets, gloss reduction, peeling, cracks, and the like, and had a good appearance.

実施例4
実施例2に記載のレタンPG−80クリヤー(関西ペイント株式会社製、商品名、イソシアネ−ト硬化型アクリル樹脂塗料)固形分100部に対して実施例3に記載のケイ酸ジルコニウム粉末を30部配合して実施例4の塗料を製造した。
Example 4
30 parts of the zirconium silicate powder described in Example 3 with respect to 100 parts of the solid content of Retan PG-80 clear (trade name, isocyanate curable acrylic resin paint manufactured by Kansai Paint Co., Ltd.) described in Example 2 The paint of Example 4 was produced by blending.

得られた塗料を乾燥膜厚20μmになるように70×150mmに切断した厚み3mmのアルミニウム板に塗装し80℃で30分間乾燥をおこなって塗装板を作成した。   The obtained paint was applied to an aluminum plate having a thickness of 3 mm cut to 70 × 150 mm so as to have a dry film thickness of 20 μm, and dried at 80 ° C. for 30 minutes to prepare a coated plate.

得られた塗装板を熱風乾燥機に入れて、160℃に加熱後、26℃の室内で空冷しその冷却速度を評価したところ、無塗装のアルミ板及びケイ酸ジルコニウム粉末を配合しないレタンPG−80クリヤーの各表面温度に比べて、放熱効果により、冷却開始後10分で6〜8℃速く低下した。
実施例4で得られた塗膜はシワ、フクレ、アワ、光沢低下、剥がれ、ワレ等の欠陥がなく外観は良好であった。
The obtained coated plate was put into a hot air dryer, heated to 160 ° C., air-cooled in a room at 26 ° C., and the cooling rate was evaluated. Compared with each surface temperature of 80 clear, it decreased rapidly by 6 to 8 ° C. 10 minutes after the start of cooling due to the heat dissipation effect.
The coating film obtained in Example 4 had good appearance without defects such as wrinkles, blisters, millets, gloss reduction, peeling, cracks and the like.

実施例5
実施例1に記載のマジクロン1026クリヤー固形分100部に対して炭化ジルコニウム粉末(高純度化学研究所製、ZrC)を30部配合して実施例5の塗料を製造した。
Example 5
A coating material of Example 5 was produced by blending 30 parts of zirconium carbide powder (manufactured by High-Purity Chemical Laboratory, ZrC) with 100 parts of Magiclone 1026 clear solid content described in Example 1.

得られた塗料を乾燥膜厚20μmになるように70×150mmに切断した厚み3mmのアルミニウム板に塗装し160℃で30分間乾燥をおこなって塗装板を作成した。   The obtained paint was applied to an aluminum plate having a thickness of 3 mm cut to 70 × 150 mm so as to have a dry film thickness of 20 μm, and dried at 160 ° C. for 30 minutes to prepare a coated plate.

得られた塗装板を熱風乾燥機に入れて、160℃に加熱後、26℃の室内で空冷しその冷却速度を評価したところ、無塗装のアルミ板及び炭化ジルコニウムを配合しないマジクロン1026クリヤーの各表面温度に比べて、放熱効果により、冷却開始後10分で5〜7℃速く低下した。
実施例5で得られた塗膜はシワ、フクレ、アワ、光沢低下、剥がれ、ワレ等の欠陥がなく外観は良好であった。
The obtained coated plate was put into a hot air dryer, heated to 160 ° C., air-cooled in a room at 26 ° C., and its cooling rate was evaluated. As a result, each of the uncoated aluminum plate and the Maglon 1026 clear containing no zirconium carbide was found. Compared to the surface temperature, the heat dissipation effect caused a rapid decrease of 5 to 7 ° C. 10 minutes after the start of cooling.
The coating film obtained in Example 5 had no defects such as wrinkles, blisters, millets, gloss reduction, peeling, cracks, and the like, and the appearance was good.

実施例6
実施例2に記載のレタンPG−80クリヤー(関西ペイント株式会社製、商品名、イソシアネ−ト硬化型アクリル樹脂塗料)固形分100部に対して実施例5に記載の炭化ジルコニウム粉末を30部配合して実施例6の塗料を製造した。
Example 6
30 parts of the zirconium carbide powder described in Example 5 is blended with 100 parts of solid content of PG-80 clear (trade name, isocyanate curable acrylic resin paint manufactured by Kansai Paint Co., Ltd.) described in Example 2. Thus, the paint of Example 6 was produced.

得られた塗料を乾燥膜厚20μmになるように70×150mmに切断した厚み3mmのアルミニウム板に塗装し80℃で30分間乾燥をおこなって塗装板を作成した。   The obtained paint was applied to an aluminum plate having a thickness of 3 mm cut to 70 × 150 mm so as to have a dry film thickness of 20 μm, and dried at 80 ° C. for 30 minutes to prepare a coated plate.

得られた塗装板を熱風乾燥機に入れて、160℃に加熱後、26℃の室内で空冷しその冷却速度を評価したところ、無塗装のアルミ板及び炭化ジルコニウムを配合しないレタンPG−80クリヤーの各表面温度に比べて、放熱効果により、冷却開始後10分で5〜7℃速く低下した。
実施例6で得られた塗膜はシワ、フクレ、アワ、光沢低下、剥がれ、ワレ等の欠陥がなく外観は良好であった。
The obtained coated plate was put into a hot air dryer, heated to 160 ° C., air-cooled in a room at 26 ° C., and the cooling rate was evaluated. As a result, the unpainted aluminum plate and the ethane -80 with no zirconium carbide were blended. Compared to each surface temperature, the heat dissipation effect caused a rapid decrease of 5 to 7 ° C. 10 minutes after the start of cooling.
The coating film obtained in Example 6 was free from defects such as wrinkles, blisters, millets, gloss reduction, peeling, cracks and the like, and had a good appearance.

Claims (2)

樹脂成分に、ハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムから選ばれる少なくとも1種の金属化合物粉末を含有してなることを特徴とする放熱材料。 A heat dissipation material comprising a resin component containing at least one metal compound powder selected from hydrotalcite compounds, zirconium silicate and zirconium carbide. 基材表面がハイドロタルサイト類化合物、ケイ酸ジルコニウム及び炭化ジルコニウムから選ばれる少なくとも1種の金属化合物粉末を含有してなる放熱材料によって被覆されていることを特徴とする放熱体。 A heat dissipating body characterized in that the surface of the base material is covered with a heat dissipating material containing at least one metal compound powder selected from hydrotalcite compounds, zirconium silicate and zirconium carbide.
JP2004317621A 2004-11-01 2004-11-01 Heat-radiating material and heat radiator using the same Pending JP2006124597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317621A JP2006124597A (en) 2004-11-01 2004-11-01 Heat-radiating material and heat radiator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317621A JP2006124597A (en) 2004-11-01 2004-11-01 Heat-radiating material and heat radiator using the same

Publications (1)

Publication Number Publication Date
JP2006124597A true JP2006124597A (en) 2006-05-18

Family

ID=36719634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317621A Pending JP2006124597A (en) 2004-11-01 2004-11-01 Heat-radiating material and heat radiator using the same

Country Status (1)

Country Link
JP (1) JP2006124597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111414A1 (en) * 2010-03-09 2011-09-15 合同インキ株式会社 Transparent heat-radiating coating composition
KR20170054842A (en) 2015-11-10 2017-05-18 삼성전기주식회사 Heat radiation member and printed circuit board having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111414A1 (en) * 2010-03-09 2011-09-15 合同インキ株式会社 Transparent heat-radiating coating composition
CN102812098A (en) * 2010-03-09 2012-12-05 合同油墨株式会社 Transparent heat-radiating coating composition
US8822583B2 (en) 2010-03-09 2014-09-02 Godo Printing Ink Mfg. Co., Ltd. Transparent heat radiating coating composition
JP5931719B2 (en) * 2010-03-09 2016-06-08 合同インキ株式会社 Transparent heat radiation coating composition
KR101833561B1 (en) * 2010-03-09 2018-04-13 고도 잉키 가부시키가이샤 Transparent heat-radiating coating composition
KR20170054842A (en) 2015-11-10 2017-05-18 삼성전기주식회사 Heat radiation member and printed circuit board having the same

Similar Documents

Publication Publication Date Title
EP2581420B1 (en) Methods for preparing pigmented fluoropolymer powder coatings
CN108822604A (en) A kind of coating composition, automatically cleaning water nano coating and structural body
US10183275B2 (en) Titanium oxide particle, method for producing titanium oxide particle, and composition for forming photocatalyst
JP5198523B2 (en) Architectural decorative board, and water-based clear paint and water-based printed surface forming paint used in the production thereof
JP4823045B2 (en) Water-based photocatalytic composition
JP2004000940A (en) Method for forming heat insulative coating film
JP5931719B2 (en) Transparent heat radiation coating composition
TWI669355B (en) Method for producing alkaline zinc cyanuric acid powder and method for producing rust preventive pigment composition
CN101857772B (en) Scratch resistance nanometre water-based inorganic-organic polymer paint and application thereof
JP2004346201A (en) Aqueous coating composition, antibacterial member and method for forming coating film
KR20160004341A (en) Aqueous coating material, heat-dissipating member, metallic part and electronic device
CN116004069A (en) Aqueous corrosion resistant coating with surface hydrophobic inorganic particles
CA2449035A1 (en) Process for producing mouldings having an electrically conductive coating, and mouldings with such a coating
KR101858336B1 (en) Lustrous coating material composition, lustrous resin film, and multilayer coating film
JP2004143452A (en) Self-cleaning aqueous coating composition and self- cleaning member
US20170137638A1 (en) Films and coatings containing borosilicate flake glass
JP4203267B2 (en) Heat shielding paint and coating film forming method using the same
JP2005179686A (en) Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP2006124597A (en) Heat-radiating material and heat radiator using the same
CN110475825A (en) Directly act on the coating composition of metal
JP2005296836A (en) Composite material, substrate covered with coated film made of the composite material, and method for producing substrate with coated film
JP2010234366A (en) Decorative building material, and method of manufacturing the same
JP2021001315A (en) Aqueous coating material
JP6038738B2 (en) Bright paint composition, bright paint film and laminated paint film
JP2002338943A (en) Contamination preventing layer, forming method therefor and coating liquid