JP2006120992A - Method for manufacturing silicon nitride film, and its manufacturing apparatus - Google Patents

Method for manufacturing silicon nitride film, and its manufacturing apparatus Download PDF

Info

Publication number
JP2006120992A
JP2006120992A JP2004309694A JP2004309694A JP2006120992A JP 2006120992 A JP2006120992 A JP 2006120992A JP 2004309694 A JP2004309694 A JP 2004309694A JP 2004309694 A JP2004309694 A JP 2004309694A JP 2006120992 A JP2006120992 A JP 2006120992A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
organic compound
compressive strain
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004309694A
Other languages
Japanese (ja)
Inventor
Mamoru Ota
守 太田
Tetsuya Komoto
徹哉 幸本
Hiroshi Kawaura
廣 川浦
Shinichi Hasegawa
新一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Bui Res Kk
Original Assignee
C Bui Res Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Bui Res Kk filed Critical C Bui Res Kk
Priority to JP2004309694A priority Critical patent/JP2006120992A/en
Publication of JP2006120992A publication Critical patent/JP2006120992A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve electrical characteristics (increase in saturation current I<SB>DS</SB>) of a field-effect MOS transistor using a very simplified technique, and to provide a method and an apparatus for manufacturing a silicon nitride film containing super-compressive strain of at least 1 GPa. <P>SOLUTION: In this manufacturing method, high-density plasma (>5x10E(10)/cm<SP>3</SP>) is generated in a vessel. Organic compound containing silicon and nitrogen is supplied into the atmosphere the degree of vacuum (pressure) of which is at most 100 mTorr, desirably at most 10 mTorr. In a range in which the depositing temperature is 200-700°C and the film thickness is 20-300 nm, the silicon nitride film containing super compressive strain is manufactured wherein super compressive strain contained in a film is at least 1 GPa (1 GPa is included). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、半導体集積回路や単体半導体電子素子(デバイス)を製造する際、超圧縮型歪み応力〔1GPa(ギガパスカル)以上〕を合有するシリコン窒化膜
(SiN)を半導体電子素子(デバイス)上に構成して、半導体電子素子の電気的特性を著しく向上させるシリコン窒化膜(SiN)の製造方法及びその製造装置に関する。
In the present invention, for example, when a semiconductor integrated circuit or a single semiconductor electronic element (device) is manufactured, a silicon nitride film (SiN) having a super compressive strain stress [1 GPa (gigapascal) or more] is added to the semiconductor electronic element (device). The present invention relates to a method for manufacturing a silicon nitride film (SiN) and a manufacturing apparatus for the same, which significantly improve the electrical characteristics of a semiconductor electronic device.

元素周期律表の第4族系半導体電子素子(デバイス)であるシリコン(Si)電子素子(トランジスタ)に焦点を当てて、以下説明を行う。シリコン半導体集積回路は、そこに内在するシリコン(Si)電子素子群に対し、微細化に次ぐ微細化を実施し、発展を図ってきている。しかしながら、今やその微細化は、コストの急増や技術的壁に直面しているのが現状である。そこで、微細化に頼らず、上記シリコン(Si)電子素子群の中で中心的役割を果たすトランジスタの電気的特性を向上させ得る技術が求められている。微細化に頼らず、トランジスタの電気的特性を向上させ得る重要な製造技術の一つが、トランジスタの導通部(電界効果型トランジスタの場合、チャンネルと呼ばれる部分)に歪み応力(Strain)を与える技術である(非特許文献1,2,3,4)。
「Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFETS」、ケー・リム他著、IEEE・トランザクション・エレクトロン・デバイシズ、2000年7月、 Vol.47、 No.7 ケー・リム他著、 2002 シンポジウム・オン・VLSI・テクノロジー、p.98 「激動の時代を迎える半導体プロセスのパラダイムシフト」、長谷川新一著、工業調査会誌「M&E」、2003年5月号、p.140 「A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors」、 ティー・ガーニ他著(インテル)、IEEE・インターナショナル・エレクトロン・デバイシズ・ミーティング、2003年12月
The following description will focus on a silicon (Si) electronic element (transistor) that is a Group 4 semiconductor electronic element (device) in the periodic table. Silicon semiconductor integrated circuits have been developed by miniaturization subsequent to miniaturization of silicon (Si) electronic element groups contained therein. However, the miniaturization is now facing a rapid increase in costs and technical barriers. Therefore, there is a need for a technique that can improve the electrical characteristics of a transistor that plays a central role in the silicon (Si) electronic element group without depending on miniaturization. One important manufacturing technique that can improve the electrical characteristics of a transistor without depending on miniaturization is a technique that applies strain stress to the conduction part of the transistor (in the case of a field effect transistor, a part called a channel). (Non-Patent Documents 1, 2, 3, and 4).
"Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFETS", K. Lim et al., IEEE Transactions Electron Devices, July 2000, Vol. 47, No. 7 K. Lim et al., 2002 Symposium on VLSI Technology, p.98 “The Paradigm Shift in Semiconductor Processes Entering a Severe Era”, Shinichi Hasegawa, Industrial Research Magazine “M & E”, May 2003, p.140 "A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors", T. Garni et al. (Intel), IEEE International Electron Devices Meeting, December 2003

非特許文献1,2,3,4に示される従来の技術では、極めて複雑な手法が用いられている。すなわち、シリコン(Si)に対して、結晶の格子定数が約4%程度大きいゲルマニウウム(Ge)を10%〜20%程度混合したSixGe1−x(x=0.1〜0.2)層を電界効果型MOSトランジスタの導通部(チャンネル部)の直下に挿入することにより、電界効果型MOSトランジスタの導通部(チャンネル部)に引っ張り歪み応力
(Tensile Strain)を印加し、電界効果型MOSトランジスタの電気的特性(飽和電流IDSの増大)の向上を図る複雑な手法である(非特許文献1,2,3)。あるいは、電界効果型MOSトランジスタを、n型(negative type)とp型(positive type)とに細分する(非特許文献4参照)。細分されたn型電界効果型MOSトランジスタに対しては、多くの場合、ALD(Atomic
Layer Deposition)法やLPCVD(Low Pressure
Chemical Vapor Deposition)法を用いて得られる引っ張り歪み応力(Tensile Strain)を有するシリコン窒化膜(SiN)で、そのトランジスタの上部を被覆する。細分されたp型電界効果型MOSトランジスタに対しては、そのソース部(Source)とドレイン部(Drain)をエッチング
(Etching)し、エッチングによって形成された空洞部を選択エキタキシャル成長技術を用いてSixGe1−x層で埋め戻し、その結果、電界効果型MOSトランジスタの導通部(チャンネル部)に、圧縮型歪み応力(Compressive
Strain)を印加し、電界効果型MOSトランジスタの電気的特性(飽和電流IDSの増大)の向上を図る極めて複雑な手法である(非特許文献4)。
In the conventional techniques shown in Non-Patent Documents 1, 2, 3, and 4, extremely complicated methods are used. That is, a SixGe1-x (x = 0.1 to 0.2) layer in which germanium (Ge) having a crystal lattice constant of about 4% larger than silicon (Si) is mixed by about 10% to 20%. By inserting the conductive portion (channel portion) of the field effect MOS transistor directly below the conductive portion (channel portion) of the field effect MOS transistor, a tensile strain is applied to the conductive portion (channel portion) of the field effect MOS transistor. it is a complex technique to improve the electrical characteristics (increase in saturation current I DS) (non-Patent documents 1, 2 and 3). Alternatively, the field effect MOS transistor is subdivided into an n-type (negative type) and a p-type (positive type) (see Non-Patent Document 4). For subdivided n-type field effect MOS transistors, ALD (Atomic) is often used.
Layer deposition (LPD) method and LPCVD (Low Pressure)
The upper portion of the transistor is covered with a silicon nitride film (SiN) having a tensile strain obtained by using a Chemical Vapor Deposition method. For the subdivided p-type field effect MOS transistor, the source portion and the drain portion are etched, and the cavity formed by the etching is selected using a selective epitaxial growth technique. As a result, the compressive strain stress (Compressive) is applied to the conduction portion (channel portion) of the field effect MOS transistor.
Strain) was applied to a very complex approach to improve the electrical characteristics of the field effect type MOS transistor (increase in saturation current I DS) (Non-Patent Document 4).

本発明は、それら従来の技術には見られない手法であり、しかも、極めて単純簡素化された手法で電界効果型MOSトランジスタの電気的特性(飽和電流IDSの増大)の向上を図ることを目的とし、1GPa以上の圧縮型歪み応力(Compressive
Strain)を特徴とする超圧縮型歪み応力(Super Compressive Strain)を合有するシリコン窒化膜(SiN)を製造する方法及び製造装置を提供することを目的とする。
The present invention are those methods not found in the prior art, moreover, is to improve the electrical characteristics of the field effect type MOS transistor (increase in saturation current I DS) with very simple simplified approach Compressive strain stress of 1 GPa or more (Compressive)
It is an object of the present invention to provide a method and an apparatus for manufacturing a silicon nitride film (SiN) having a super compressive strain (Super Compressive Strain) characterized by a strain.

上記目的を達成するため、請求項1に係る発明は、容器内に高密度プラズマを発生させ、100mTorr以下の真空度の雰囲気中にシリコン(Si)及び窒素(N)を合有する有機化合物を供給し、成膜温度が200℃〜700℃、膜厚が20nm〜300nmの範囲で膜の合有する圧縮型歪み応力が1GPa以上であるシリコン窒化膜の製造方法である。   In order to achieve the above object, the invention according to claim 1 generates a high-density plasma in a container and supplies an organic compound containing silicon (Si) and nitrogen (N) in an atmosphere of a vacuum degree of 100 mTorr or less. And a silicon nitride film manufacturing method in which the compressive strain stress of the film is 1 GPa or more when the film forming temperature is 200 ° C. to 700 ° C. and the film thickness is 20 nm to 300 nm.

請求項2に係る発明は、請求項1において、シリコン(Si)及び窒素(N)を合有する有機化合物は、トリメチル・シラン〔(CHSiH〕などの3MS系有機化合物であるシリコン窒化膜の製造方法である。 The invention according to claim 2 is the silicon nitride according to claim 1, wherein the organic compound containing silicon (Si) and nitrogen (N) is a 3MS organic compound such as trimethylsilane [(CH 3 ) 3 SiH]. It is a manufacturing method of a film | membrane.

請求項3に係る発明は、請求項1において、シリコン(Si)及び窒素(N)を合有する有機化合物は、テトラメチル・シラン〔(CHSi〕などの4MS系有機化合物であるシリコン窒化膜の製造方法である。 The invention according to claim 3 is the silicon according to claim 1, wherein the organic compound containing silicon (Si) and nitrogen (N) is a 4MS organic compound such as tetramethylsilane [(CH 3 ) 4 Si]. This is a method for manufacturing a nitride film.

請求項4に係る発明は、請求項1において、シリコン(Si)及び窒素(N)を合有する有機化合物は、トリデイメチル・アミノシラン〔HSi〔N(CH〕などのTDMAS系有機化合物であるシリコン窒化膜の製造方法である。 The invention according to claim 4 is the invention as set forth in claim 1, wherein the organic compound containing silicon (Si) and nitrogen (N) is a TDMAS organic compound such as tridaymethylaminosilane [HSi [N (CH 3 ) 2 ] 3 ]. This is a method for manufacturing a silicon nitride film.

請求項5に係る発明は、前記シリコン(Si)及び窒素(N)を合有する有機化合物は、前記3MS系有機化合物、前記4MS有機化合物、前記TDMAS系有機化合物の何れか2種類又は3種類の混合物である請求項1乃至4の何れか1項に記載のシリコン窒化膜の製造方法である。   According to a fifth aspect of the present invention, the organic compound comprising silicon (Si) and nitrogen (N) is one of two or three of the 3MS organic compound, the 4MS organic compound, and the TDMAS organic compound. 5. The method for producing a silicon nitride film according to claim 1, wherein the silicon nitride film is a mixture.

請求項6に係る発明は、容器内に発生させる高密度プラズマ発生源と、10mTorr以下の真空度の雰囲気中にシリコン(Si)及び窒素(N)を合有する有機化合物を供給する供給手段とから成り、成膜温度が200℃〜700℃、膜厚が20nm〜300nmの範囲で膜の合有する圧縮型歪み応力が1GPa以上である超圧縮型歪み応力を合有するシリコン窒化膜の製造装置である。   According to a sixth aspect of the present invention, there is provided a high-density plasma generation source generated in a container and a supply means for supplying an organic compound having a combination of silicon (Si) and nitrogen (N) in an atmosphere of a vacuum degree of 10 mTorr or less. It is an apparatus for manufacturing a silicon nitride film having a super compressive strain stress that has a compressive strain stress of 1 GPa or more with a film forming temperature of 200 ° C. to 700 ° C. and a film thickness of 20 nm to 300 nm. .

請求項7に係る発明は、請求項6において、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板が、元素周期律表の第4族系半導体電子素子であるシリコン窒化膜の製造装置である。   The invention according to claim 7 is the semiconductor device according to claim 6, wherein the substrate when the silicon nitride film (SiN) having the super compressive strain stress is manufactured is a group 4 semiconductor electronic device having an element periodic table. This is a silicon nitride film manufacturing apparatus.

請求項8に係る発明は、請求項6において、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板が、元素周期律表の第III-V族系化合物半導体電子素子であるシリコン窒化膜の製造装置である。   The invention according to claim 8 is the group III-V compound semiconductor electron according to claim 6, wherein the substrate when the silicon nitride film (SiN) having supercompressive strain stress is manufactured is a group III-V compound semiconductor electron of the periodic table This is a device for manufacturing a silicon nitride film as an element.

請求項9に係る発明は、請求項6において、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板が、元素周期律表の第II-VI族系化合物半導体電子素子であるシリコン窒化膜の製造装置である。   The invention according to claim 9 is the semiconductor device according to claim 6, wherein the silicon nitride film (SiN) having supercompressive strain stress is manufactured in the group II-VI group compound semiconductor electron of the periodic table of elements. This is a device for manufacturing a silicon nitride film as an element.

本発明によると、極めて単純簡素化された手法で電界効果型MOSトランジスタの電気的特性(飽和電流IDSの増大)の向上を図ることができる。 According to the present invention, it is possible to improve the electrical characteristics of the field effect type MOS transistor (increase in saturation current I DS) with very simple simplified approach.

本発明におけるシリコン窒化膜の製造方法及びその製造装置における最良の形態について説明する。
本発明は、容器内に高密度プラズマ(>5x10E(10)/cm3)を発生させ、100mTorr以下、望ましくは10mTorr以下の真空度(圧力)の雰囲気中にシリコン(Si)及び窒素(N)を合有する有機化合物を供給し、成膜温度が200℃〜700℃の範囲で、膜厚が20nm〜300nmの範囲で膜の合有する圧縮型歪み応力
(Compressive Strain)が1GPa(ギガパスカル)以上(1GPaを含む)である超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造方法である。
このシリコン(Si)及び窒素(N)を合有する有機化合物は、トリメチル・シラン
〔(CHSiH〕などの3MS系有機化合物であり、または、テトラメチル・シラン〔(CHSi〕などの4MS系有機化合物であり、または、トリデイメチル・アミノシラン〔HSi〔N(CH〕などのTDMAS系有機化合物であり、または、3MS系有機化合物、4MS系有機化合物、TDMAS系有機化合物の2種類、または3種類の混合物である。
他の各発明は、容器内に高密度プラズマ(>5x10E(10)/cm3)を発生させ、<10mTorrの真空度(圧力)の雰囲気中にシリコン(Si)及び窒素(N)を合有する有機化合物を供給し、成膜温度が200℃〜700℃の範囲で、膜厚が20nm〜300nmの範囲で膜の合有する圧縮型歪み応力(Compressive
Strain)が1GPa(ギガパスカル)以上(1GPaを含む)であること特徴とする超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造装置である。
この超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板体が、元素周期律表の第4族系半導体電子素子(デバイス)であり、または、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板体が、元素周期律表の第
III-V族系化合物半導体電子素子(デバイス)であり、または、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板体が、元素周期律表の第II-VI族系化合物半導体電子素子(デバイス)である。
The best mode of the silicon nitride film manufacturing method and manufacturing apparatus according to the present invention will be described.
The present invention generates high-density plasma (> 5 × 10E (10) / cm 3) in a container and supplies silicon (Si) and nitrogen (N) in an atmosphere having a vacuum (pressure) of 100 mTorr or less, preferably 10 mTorr or less. The compression strain stress (Compressive Strain) of the film is 1 GPa (gigapascal) or more when the film formation temperature is in the range of 200 ° C. to 700 ° C. and the film thickness is in the range of 20 nm to 300 nm. This is a method for manufacturing a silicon nitride film (SiN) having a super compressive strain stress (including 1 GPa).
The organic compound containing silicon (Si) and nitrogen (N) is a 3MS organic compound such as trimethyl silane [(CH 3 ) 3 SiH], or tetramethyl silane [(CH 3 ) 4 Si. Or a TDMAS organic compound such as tridaymethylaminosilane [HSi [N (CH 3 ) 2 ] 3 ], or a 3MS organic compound, 4MS organic compound, or TDMAS Two or three kinds of organic compounds.
Each of the other inventions generates high-density plasma (> 5 × 10E (10) / cm 3) in the container, and combines silicon (Si) and nitrogen (N) in an atmosphere of vacuum degree (pressure) of <10 mTorr. Compressive strain stress (Compressive) that the compound has supplied, the film formation temperature is in the range of 200 ° C. to 700 ° C., and the film thickness is in the range of 20 nm to 300 nm.
This is an apparatus for manufacturing a silicon nitride film (SiN) having a super compressive strain stress characterized by a strain of 1 GPa (gigapascal) or more (including 1 GPa).
The substrate body when the silicon nitride film (SiN) having the super compressive strain stress is manufactured is a group 4 semiconductor electronic element (device) of the periodic table, or the super compressive strain stress. The substrate body when the silicon nitride film (SiN) containing
The substrate body when a silicon nitride film (SiN) that is a III-V compound semiconductor electronic element (device) or has a super-compressive strain stress is manufactured is II-VI in the periodic table of elements. It is a group compound semiconductor electronic device (device).

以下に、本発明におけるシリコン窒化膜の製造方法及びその製造装置における各実施例について詳述する。
(実施例1)
図1は、本発明を具現化するCVD(Chemical Vapor
Deposition)装置の一例である。真空容器1内に高密度プラズマ(>5x10E(10)/cm3)を発生させる13.56MHzの高周波を用いたヘリコン
(Helicon)型プラズマ発生源2が装着されている。真空容器1内に高密度プラズマを発生させガス種である窒素ガス(N)及びアンモニヤガス(NH)を供給する供給口3が設けられている。さらに、真空容器1内に、本発明の特徴である超圧縮型歪み応力(Super Compressive Strain)を合有するシリコン窒化膜
(SiN)の原料ガスの供給口4が設けられている。超圧縮型歪み応力(Super
Compressive Strain)を合有するシリコン窒化膜(SiN)が成膜する半導体基板(ウエハ)5を加熱保持するステージ(Stage)6が設けられている。真空容器1は真空排気口7により、排気されたり、あるいは、所望の真空容器1内圧力に保持されたりしている。
The embodiments of the silicon nitride film manufacturing method and manufacturing apparatus according to the present invention will be described in detail below.
Example 1
FIG. 1 shows a CVD (Chemical Vapor) embodying the present invention.
It is an example of a (deposition) apparatus. A helicon type plasma generation source 2 using a high frequency of 13.56 MHz for generating high-density plasma (> 5 × 10E (10) / cm 3) is mounted in the vacuum vessel 1. A supply port 3 for generating high-density plasma in the vacuum vessel 1 and supplying nitrogen gas (N 2 ) and ammonia gas (NH 3 ) as gas species is provided. Further, a supply port 4 for a source gas of a silicon nitride film (SiN) having super compressive strain (Super Compressive Strain), which is a feature of the present invention, is provided in the vacuum vessel 1. Super compressive strain stress (Super
A stage (Stage) 6 is provided for heating and holding a semiconductor substrate (wafer) 5 on which a silicon nitride film (SiN) including Compressive Strain is formed. The vacuum vessel 1 is evacuated through the vacuum exhaust port 7 or is maintained at a desired pressure inside the vacuum vessel 1.

図2は、既に90nm−node(Logic−node)のロジック用p型電界効果型MOSトランジスタ(8,9,10,11,12,13,14,15)が形成された、直径200mmのシリコン・ウエハ17を示す。同図において、トランジスタ8,9,10,11,12,13,14は、それぞれ、電界効果型MOSトランジスタのソース部8、ソース・エクテンシン部(Source Extension部)9、ドレイン部10、ドレイン・エクテンシン部(Drain Extension部)11、導通部(チャンネル部)12、膜厚5nmのゲート(Gate)・シリコン酸化膜13、多結晶シリコン・ゲート電極14、そして、サイド・ウォール部(Side Wall部)15である。   FIG. 2 shows a silicon-type 200 mm diameter in which p-type field effect MOS transistors (8, 9, 10, 11, 12, 13, 14, 15) for logic of 90 nm-node (Logic-node) have already been formed. The wafer 17 is shown. In the figure, transistors 8, 9, 10, 11, 12, 13, and 14 are a field effect MOS transistor source section 8, source extension section (source extension section) 9, drain section 10, and drain extension array, respectively. Part (Drain Extension part) 11, conducting part (channel part) 12, 5 nm-thick gate (Gate) silicon oxide film 13, polycrystalline silicon gate electrode 14, and side wall part (Side Wall part) 15 It is.

次に本発明である超圧縮型歪み応力(Super Compressive
Strain)を合有するシリコン窒化膜(SiN)16の製造方法を述べる。上記電界効果型MOSトランジスタが既に形成された直径200mmのシリコン・ウエハ17を真空容器1内の加熱ステージ6に設置した。次に真空容器1内を10のマイナス6乗
[10E(−6)]を排気、窒素ガス(N)を100cm3/minの供給レートで供給口3から真空容器1内に導入し、真空容器1内圧力を95mTorrにした。ヘリコン(Helicon)型プラズマ発生源2をRF出力2.5KWで通電開始し、窒素ガス供給レートを30cm3/minに調整し、5x10E(10)/cm3以上の高密度プラズマを3秒間発生させ、アンモニヤガス(NH)を31cm3/min供給レートで供給口3から導入した。その際の真空容器力を2mTorrに調整され、続いて、供給口4より、超圧縮型歪み応力(Super Compressive Strain)を合有するシリコン窒化膜(SiN)15の原料ガス、3MS系有機化合物であるトリメチル・シラン〔(CHSiH〕を2,0cm3/minの供給レートで、計4分30秒間導入した。その結果、加熱ステージ6により450℃で加熱保持されたシリコン・ウエハ16上に、図2に示すシリコン窒化膜(SiN)16が成膜された。成膜シリコン窒素膜
(SiN)16の膜厚は95nmであり、1.7GPaの超圧縮型歪み応力(Super Compressive Strain)を合有するシリコン窒化膜(SiN)が製造されていることが確認された。
Next, the super compressive strain stress (Super Compressive) of the present invention.
A method of manufacturing a silicon nitride film (SiN) 16 having a strain will be described. A silicon wafer 17 having a diameter of 200 mm, on which the field effect MOS transistor had already been formed, was placed on the heating stage 6 in the vacuum vessel 1. Next, the inside of the vacuum vessel 1 is exhausted to the negative sixth power [10E (−6)] and nitrogen gas (N 2 ) is introduced into the vacuum vessel 1 from the supply port 3 at a supply rate of 100 cm 3 / min. The internal pressure was set to 95 mTorr. The helicon type plasma generation source 2 is energized with an RF output of 2.5 KW, the nitrogen gas supply rate is adjusted to 30 cm3 / min, high density plasma of 5 × 10E (10) / cm3 or more is generated for 3 seconds, and the ammonia is generated. Gas (NH 3 ) was introduced from the supply port 3 at a supply rate of 31 cm 3 / min. The vacuum vessel force at that time is adjusted to 2 mTorr, and subsequently, a raw material gas of a silicon nitride film (SiN) 15 having super compressive strain (Super Compressive Strain) from the supply port 4, and a 3MS organic compound. Trimethyl silane [(CH 3 ) 3 SiH] was introduced at a supply rate of 2.0 cm 3 / min for a total of 4 minutes and 30 seconds. As a result, a silicon nitride film (SiN) 16 shown in FIG. 2 was formed on the silicon wafer 16 heated and held at 450 ° C. by the heating stage 6. The film thickness of the deposited silicon nitrogen film (SiN) 16 was 95 nm, and it was confirmed that a silicon nitride film (SiN) having a super compressive strain of 1.7 GPa (Super Compressive Strain) was produced. .

次に、この1.7GPaの超圧縮型歪み応力を合有するシリコン窒化膜(SiN)が成膜したp型電界効果型MOSトランジスタの電気的特性を、シリコン窒化膜(SiN)が成膜される以前の電気的特性と比較した。その結果、p型電界効果型MOSトランジスタの飽和電流IDSが13%も増大・向上していることが確認された。 Next, the silicon nitride film (SiN) is formed in accordance with the electrical characteristics of the p-type field effect MOS transistor formed with the silicon nitride film (SiN) having a super compressive strain stress of 1.7 GPa. Compared with previous electrical characteristics. As a result, it was confirmed that the saturation current I DS of p-type field-effect MOS transistor is also increased and increase of 13%.

図3は、上記と同様のシリコン・ウエハを複数枚用意し、上記と同様の成膜実験を繰り返し、シリコン窒化膜の成膜温度(加熱ステージ6上のリコン・ウエハの温度)に対するシリコン窒化膜の合有圧縮型歪み応力の依存性を測定した結果を示したものである。200℃〜700℃の広い成膜温度領域で1.5GPa以上の超圧縮型歪み応力を合有するシリコン窒化膜が製造されていることが確認された。なお、同図に示される2.1GPaの超圧縮型歪み応力を合有するシリコン窒化膜が成膜したp型電界効果型MOSトランジスタの電気的特性を測定した結果、成膜される以前の電気的特性と比較し、飽和電流IDSが実に22%も増大・向上していることが確認された。 FIG. 3 shows a case where a plurality of silicon wafers similar to the above are prepared, and a film formation experiment similar to the above is repeated, and the silicon nitride film with respect to the film formation temperature of the silicon nitride film (the temperature of the recon wafer on the heating stage 6). It shows the result of measuring the dependence of the combined compressive strain stress. It was confirmed that a silicon nitride film having a super compressive strain stress of 1.5 GPa or more was produced in a wide film forming temperature range of 200 ° C. to 700 ° C. In addition, as a result of measuring the electrical characteristics of the p-type field effect MOS transistor formed with the silicon nitride film having the super compressive strain stress of 2.1 GPa shown in FIG. Compared with the characteristics, it was confirmed that the saturation current IDS was actually increased and improved by 22%.

(実施例2)
本実施例では、シリコン窒化膜(SiN)(図2の16)の原料ガスとして、4MS系有機化合物であるテトラメチル・シラン〔(CHSi〕を用いた。又、シリコン・ウエハ(図2の17)としては直径300mmのシリコン・ウエハを用いた。既に当該シリコン・ウエハに形成された電界効果型MOSトランジスタの上部を超圧縮型歪み応力
(Super Compressive Strain)を合有するシリコン窒化膜
(SiN)(図2の16)で成膜・皮膜をすることを行った。電界効果型MOSトランジスタが既に形成された直径200mmのシリコン・ウエハ17を真空容器1内の加熱ステージ6に設置した。
(Example 2)
In this example, tetramethyl silane [(CH 3 ) 4 Si], which is a 4MS organic compound, was used as a source gas for the silicon nitride film (SiN) (16 in FIG. 2). A silicon wafer having a diameter of 300 mm was used as the silicon wafer (17 in FIG. 2). The upper part of the field effect MOS transistor already formed on the silicon wafer is formed and coated with a silicon nitride film (SiN) (16 in FIG. 2) having a super compressive strain (Super Compressive Strain). Went. A silicon wafer 17 having a diameter of 200 mm on which a field effect MOS transistor was already formed was placed on the heating stage 6 in the vacuum vessel 1.

次に、真空容器1内を10のマイナス6乗[10E(−6)]を排気、窒素ガス
(N)を100cm3/minの供給レートで供給口3から真空容器1内に導入し、真空容器1内圧力を97mTorrにした。ヘリコン(Helicon)型プラズマ発生源2をRF出力2.8KWで通電開始し、窒素ガス供給レートを37cm3/minに調整し、6x10E(10)/cm3以上の高密度プラズマを約4秒間発生させ、アンモニヤガス(NH)を33cm3/min供給レートで供給口3から導入した。その際の真空容器力を1mTorrに調整され、続いて、供給口4より、超圧縮型歪み応力
(Super Compressive Strain)を合有するシリコン窒化膜
(SiN)16の原料ガス、3MS系有機化合物であるテトラメチル・シラン
〔(CHSi〕を2.5cm3/minの供給レートで、計3分50秒間導入した。
Next, the inside of the vacuum vessel 1 is exhausted to the negative sixth power [10E (−6)], and nitrogen gas (N 2 ) is introduced into the vacuum vessel 1 from the supply port 3 at a supply rate of 100 cm 3 / min. The internal pressure of the container 1 was set to 97 mTorr. The Helicon type plasma generation source 2 is energized with an RF output of 2.8 KW, the nitrogen gas supply rate is adjusted to 37 cm3 / min, and high-density plasma of 6 × 10E (10) / cm3 or more is generated for about 4 seconds. Ammonia gas (NH 3 ) was introduced from the supply port 3 at a supply rate of 33 cm 3 / min. The vacuum vessel force at that time is adjusted to 1 mTorr, and subsequently, a material gas of a silicon nitride film (SiN) 16 having a super compressive strain (Super Compressive Strain) is supplied from the supply port 4 and is a 3MS organic compound. Tetramethyl silane [(CH 3 ) 4 Si] was introduced at a supply rate of 2.5 cm 3 / min for a total of 3 minutes and 50 seconds.

その結果、加熱ステージ6により430℃で加熱保持されたシリコン・ウエハ16上に、図2の16に示すシリコン窒化膜(SiN)が成膜された。成膜シリコン窒素膜
(SiN)の膜厚は99nmであり、1.8GPaの超圧縮型歪み応力(Super
Compressive Strain)を合有するシリコン窒化膜(SiN)が製造されていることが確認された。次に、この1.8GPaの超圧縮型歪み応力を合有するシリコン窒化膜(SiN)が成膜したp型電界効果型MOSトランジスタの電気的特性を、シリコン窒化膜(SiN)が成膜される以前の電気的特性と比較した。その結果、p型電界効果型MOSトランジスタの飽和電流IDSが16%も増大・向上していることが確認された。
As a result, a silicon nitride film (SiN) indicated by 16 in FIG. 2 was formed on the silicon wafer 16 heated and held at 430 ° C. by the heating stage 6. The film thickness of the deposited silicon nitrogen film (SiN) is 99 nm, and the super compressive strain stress (Super) of 1.8 GPa
It was confirmed that a silicon nitride film (SiN) including Compressive Strain was manufactured. Next, the silicon nitride film (SiN) is formed in accordance with the electrical characteristics of the p-type field effect MOS transistor formed with the silicon nitride film (SiN) having a super compressive strain stress of 1.8 GPa. Compared with previous electrical characteristics. As a result, it was confirmed that the saturation current I DS of the p-type field-effect MOS transistor is also increased and improvement by 16%.

(実施例3)
本実施例では、シリコン窒化膜(SiN)(図2の16)の原料ガスとして、TDMAS系有機化合物であるトリデイメチル・アミノシラン〔HSi〔N(CH〕を用いた。又、シリコン・ウエハ(図2の17)としては直径200mmのシリコン・ウエハを用いた。既に当該シリコン・ウエハに形成された電界効果型MOSトランジスタの上部を超圧縮型歪み応力(Super Compressive Strain)を合有するシリコン窒化膜(SiN)(図2の16)で成膜・皮膜をすることを行った。電界効果型MOSトランジスタが既に形成された直径200mmのシリコン・ウエハ17を真空容器1内の加熱ステージ6に設置した。
(Example 3)
In this embodiment, tridaymethyl-aminosilane [HSi [N (CH 3 ) 2 ] 3 ], which is a TDMAS organic compound, was used as a source gas for the silicon nitride film (SiN) (16 in FIG. 2). A silicon wafer having a diameter of 200 mm was used as the silicon wafer (17 in FIG. 2). The upper part of the field effect MOS transistor already formed on the silicon wafer is formed and coated with a silicon nitride film (SiN) (16 in FIG. 2) having a super compressive strain (Super Compressive Strain). Went. A silicon wafer 17 having a diameter of 200 mm on which a field effect MOS transistor was already formed was placed on the heating stage 6 in the vacuum vessel 1.

次に真空容器1内を10のマイナス6乗[10E(−6)]を排気、窒素ガス(N)を100cm3/minの供給レートで供給口3から真空容器1内に導入し、真空容器1内圧力を95mTorrにした。ヘリコン(Helicon)型プラズマ発生源2をRF出力2.8KWで通電開始し、窒素ガス供給レートを37cm3/minに調整し、6x10E(10)/cm3以上の高密度プラズマを約4秒間発生させ、アンモニヤガス
(NH)を39cm3/min供給レートで供給口3から導入した。その際の真空容器力を15mTorrに調整され、続いて、供給口4より、超圧縮型歪み応力(Super Compressive Strain)を合有するシリコン窒化膜(SiN)16の原料ガス、TDMAS系系有機化合物であるトリデイメチル・アミノシランを3.5cm3/minの供給レートで、計4分20秒間導入した。
Next, the inside of the vacuum vessel 1 is exhausted to the negative sixth power [10E (−6)] and nitrogen gas (N 2 ) is introduced into the vacuum vessel 1 from the supply port 3 at a supply rate of 100 cm 3 / min. The internal pressure was set to 95 mTorr. The helicon type plasma generation source 2 is energized with an RF output of 2.8 KW, the nitrogen gas supply rate is adjusted to 37 cm3 / min, and high-density plasma of 6 × 10E (10) / cm3 or more is generated for about 4 seconds. Ammonia gas (NH 3 ) was introduced from the supply port 3 at a supply rate of 39 cm 3 / min. The vacuum vessel force at that time was adjusted to 15 mTorr, and subsequently, from the supply port 4, a raw material gas of a silicon nitride film (SiN) 16 having a super compressive strain (Super Compressive Strain), a TDMAS organic compound A certain tridaymethyl aminosilane was introduced at a feeding rate of 3.5 cm 3 / min for a total of 4 minutes and 20 seconds.

その結果、加熱ステージ6により450℃で加熱保持されたシリコン・ウエハ16上に、図2の16に示すシリコン窒化膜(SiN)が成膜された。成膜シリコン窒素膜
(SiN)の膜厚は99nmであり、1.6GPaの超圧縮型歪み応力(Super
Compressive Strain)を合有するシリコン窒化膜(SiN)が製造されていることが確認された。次に、この1.6GPaの超圧縮型歪み応力を合有するシリコン窒化膜(SiN)が成膜したp型電界効果型MOSトランジスタの電気的特性を、シリコン窒化膜(SiN)が成膜される以前の電気的特性と比較した。その結果、p型電界効果型MOSトランジスタの飽和電流IDSが13%も増大・向上していることが確認された。
As a result, a silicon nitride film (SiN) indicated by 16 in FIG. 2 was formed on the silicon wafer 16 heated and held at 450 ° C. by the heating stage 6. The film thickness of the deposited silicon nitrogen film (SiN) is 99 nm, and the super compressive strain stress (Super) of 1.6 GPa
It was confirmed that a silicon nitride film (SiN) including Compressive Strain was manufactured. Next, the silicon nitride film (SiN) is formed in accordance with the electrical characteristics of the p-type field effect MOS transistor in which the silicon nitride film (SiN) having the super compressive strain stress of 1.6 GPa is formed. Compared with previous electrical characteristics. As a result, it was confirmed that the saturation current I DS of the p-type field-effect MOS transistor is also increased and increase of 13%.

以上実施例1,2,3では、直径200mmのシリコン・ウエハを用いた実施例であったが、他の口径のウエハ、たとえば直径300mmのシリコン・ウエハを用いても、本発明を実施することは明白であり、本発明の特許請求範囲に包括されるべきである。   In the first, second, and third embodiments, the silicon wafer having a diameter of 200 mm is used. However, the present invention can be carried out using a wafer having another diameter, for example, a silicon wafer having a diameter of 300 mm. Is obvious and should be covered by the claims of the present invention.

本発明は、半導体製造工程における半導体ウエハ基板の例について説明したが、その他、TFT(Thin Film Transistor)を用いた液晶ディスプレイ
(TFT型LCD)の製造工程における液晶用基板、或いはTFTを用いた有機ELディスプレイ(TFT型OLED)の製造工程における有機EL用基板、その他の処理基板にも広く適用することができる。
Although the present invention has been described with reference to an example of a semiconductor wafer substrate in a semiconductor manufacturing process, a liquid crystal display using a TFT (Thin Film Transistor) is also available.
It can be widely applied to a liquid crystal substrate in the manufacturing process of (TFT type LCD), an organic EL substrate in the manufacturing process of an organic EL display using TFT (TFT type OLED), and other processing substrates.

本発明におけるCVD装置の一例を示した概略図である。It is the schematic which showed an example of the CVD apparatus in this invention. 本発明におけるロジック用p型電界効果型MOSトランジスタの一例を示した概略図である。It is the schematic which showed an example of the p-type field effect type MOS transistor for logics in this invention. 成膜温度に対するシリコン窒化膜の含有圧縮型歪み応力の依存性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the dependence of the compression-type distortion stress of the silicon nitride film with respect to film-forming temperature.

符号の説明Explanation of symbols

1 真空容器
2 プラズマ発生源
3 ガス供給口
4 原料ガス供給口
5 半導体基板
6 ステージ
16 シリコン窒化膜
17 シリコン・ウエハ
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Plasma generation source 3 Gas supply port 4 Raw material gas supply port 5 Semiconductor substrate 6 Stage 16 Silicon nitride film 17 Silicon wafer

Claims (9)

容器内に高密度プラズマを発生させ、100mTorr以下の真空度の雰囲気中にシリコン(Si)及び窒素(N)を合有する有機化合物を供給し、成膜温度が200℃〜700℃、膜厚が20nm〜300nmの範囲で膜の合有する圧縮型歪み応力が1GPa以上であること特徴とするシリコン窒化膜の製造方法。   A high-density plasma is generated in the container, an organic compound containing silicon (Si) and nitrogen (N) is supplied in an atmosphere of a vacuum degree of 100 mTorr or less, a film formation temperature is 200 ° C. to 700 ° C., and a film thickness is A method for producing a silicon nitride film, wherein the compressive strain stress of the film in the range of 20 nm to 300 nm is 1 GPa or more. 請求項1において、シリコン(Si)及び窒素(N)を合有する有機化合物は、トリメチル・シラン〔(CHSiH〕などの3MS系有機化合物であるシリコン窒化膜の製造方法。 2. The method for producing a silicon nitride film according to claim 1, wherein the organic compound containing silicon (Si) and nitrogen (N) is a 3MS organic compound such as trimethylsilane [(CH 3 ) 3 SiH]. 請求項1において、シリコン(Si)及び窒素(N)を合有する有機化合物は、テトラメチル・シラン〔(CHSi〕などの4MS系有機化合物であるシリコン窒化膜の製造方法。 2. The method for producing a silicon nitride film according to claim 1, wherein the organic compound containing silicon (Si) and nitrogen (N) is a 4MS organic compound such as tetramethylsilane [(CH 3 ) 4 Si]. 請求項1において、シリコン(Si)及び窒素(N)を合有する有機化合物は、トリデイメチル・アミノシラン〔HSi〔N(CH〕などのTDMAS系有機化合物であるシリコン窒化膜の製造方法。 2. The method for producing a silicon nitride film according to claim 1, wherein the organic compound containing silicon (Si) and nitrogen (N) is a TDMS organic compound such as tridaymethylaminosilane [HSi [N (CH 3 ) 2 ] 3 ]. . 前記シリコン(Si)及び窒素(N)を合有する有機化合物は、前記3MS系有機化合物、前記4MS有機化合物、前記TDMAS系有機化合物の何れか2種類又は3種類の混合物である請求項1乃至4の何れか1項に記載のシリコン窒化膜の製造方法。   5. The organic compound containing silicon (Si) and nitrogen (N) is any one of the 3MS organic compound, the 4MS organic compound, and the TDMAS organic compound, or a mixture of the three. The method for producing a silicon nitride film according to any one of the above. 容器内に発生させる高密度プラズマ発生源と、10mTorr以下の真空度の雰囲気中にシリコン(Si)及び窒素(N)を合有する有機化合物を供給する供給手段とから成り、成膜温度が200℃〜700℃、膜厚が20nm〜300nmの範囲で膜の合有する圧縮型歪み応力が1GPa以上であること特徴とする超圧縮型歪み応力を合有するシリコン窒化膜の製造装置。   A high-density plasma generation source generated in the container and a supply means for supplying an organic compound containing silicon (Si) and nitrogen (N) in an atmosphere of a vacuum degree of 10 mTorr or less and a film forming temperature of 200 ° C. An apparatus for producing a silicon nitride film having a super compressive strain stress, wherein the compressive strain stress of the film is 1 GPa or more in a range of ˜700 ° C. and a film thickness of 20 nm to 300 nm. 請求項6において、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板が、元素周期律表の第4族系半導体電子素子であるシリコン窒化膜の製造装置。   7. The apparatus for manufacturing a silicon nitride film according to claim 6, wherein the substrate when the silicon nitride film (SiN) having super compressive strain stress is manufactured is a group 4 semiconductor electronic element of the periodic table. 請求項6において、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板が、元素周期律表の第III-V族系化合物半導体電子素子であるシリコン窒化膜の製造装置。   8. The manufacture of a silicon nitride film according to claim 6, wherein the substrate when the silicon nitride film (SiN) having super compressive strain stress is manufactured is a group III-V compound semiconductor electronic device of the periodic table of elements. apparatus. 請求項6において、超圧縮型歪み応力を合有するシリコン窒化膜(SiN)の製造される際の基板が、元素周期律表の第II-VI族系化合物半導体電子素子であるシリコン窒化膜の製造装置。   7. The manufacture of a silicon nitride film according to claim 6, wherein the substrate when the silicon nitride film (SiN) having super compressive strain stress is manufactured is a group II-VI group compound semiconductor electronic device of the periodic table of elements. apparatus.
JP2004309694A 2004-10-25 2004-10-25 Method for manufacturing silicon nitride film, and its manufacturing apparatus Pending JP2006120992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309694A JP2006120992A (en) 2004-10-25 2004-10-25 Method for manufacturing silicon nitride film, and its manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309694A JP2006120992A (en) 2004-10-25 2004-10-25 Method for manufacturing silicon nitride film, and its manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2006120992A true JP2006120992A (en) 2006-05-11

Family

ID=36538557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309694A Pending JP2006120992A (en) 2004-10-25 2004-10-25 Method for manufacturing silicon nitride film, and its manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2006120992A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165369A (en) * 2004-12-09 2006-06-22 Fujitsu Ltd Method of manufacturing stress accumulation insulating film, and semiconductor device
WO2007139140A1 (en) * 2006-05-31 2007-12-06 Tokyo Electron Limited Plasma cvd method, method for forming silicon nitride film and method for manufacturing semiconductor device
JP2010118664A (en) * 2008-11-12 2010-05-27 Air Products & Chemicals Inc AMINO VINYLSILANE PRECURSOR FOR STRESSED SiN FILM
JP2011508434A (en) * 2007-12-21 2011-03-10 アプライド マテリアルズ インコーポレイテッド Silicon nitride film with low wet etching rate
US8889235B2 (en) 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459971A (en) * 1990-06-28 1992-02-26 Toshiba Corp Formation of silicon nitride film
JP2002190475A (en) * 2000-12-21 2002-07-05 Canon Inc Microwave plasma processing apparatus, method of plasma processing using the same, and method of manufacturing object
JP2003007700A (en) * 2001-06-20 2003-01-10 Samsung Electronics Co Ltd Method for manufacturing solid thin film containing silicon according to atomic layer vapor deposition using tris dimethyl aminosilane
JP2003297830A (en) * 2002-04-03 2003-10-17 Hitachi Kokusai Electric Inc Manufacturing method for semiconductor device
JP2004193262A (en) * 2002-12-10 2004-07-08 Tokyo Electron Ltd Insulating material and insulating film forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459971A (en) * 1990-06-28 1992-02-26 Toshiba Corp Formation of silicon nitride film
JP2002190475A (en) * 2000-12-21 2002-07-05 Canon Inc Microwave plasma processing apparatus, method of plasma processing using the same, and method of manufacturing object
JP2003007700A (en) * 2001-06-20 2003-01-10 Samsung Electronics Co Ltd Method for manufacturing solid thin film containing silicon according to atomic layer vapor deposition using tris dimethyl aminosilane
JP2003297830A (en) * 2002-04-03 2003-10-17 Hitachi Kokusai Electric Inc Manufacturing method for semiconductor device
JP2004193262A (en) * 2002-12-10 2004-07-08 Tokyo Electron Ltd Insulating material and insulating film forming method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165369A (en) * 2004-12-09 2006-06-22 Fujitsu Ltd Method of manufacturing stress accumulation insulating film, and semiconductor device
WO2007139140A1 (en) * 2006-05-31 2007-12-06 Tokyo Electron Limited Plasma cvd method, method for forming silicon nitride film and method for manufacturing semiconductor device
US8138103B2 (en) 2006-05-31 2012-03-20 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
US8329596B2 (en) 2006-05-31 2012-12-11 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
JP5276437B2 (en) * 2006-05-31 2013-08-28 東京エレクトロン株式会社 Silicon nitride film forming method, semiconductor device manufacturing method, and plasma CVD apparatus
US8569186B2 (en) 2006-05-31 2013-10-29 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
JP2011508434A (en) * 2007-12-21 2011-03-10 アプライド マテリアルズ インコーポレイテッド Silicon nitride film with low wet etching rate
JP2010118664A (en) * 2008-11-12 2010-05-27 Air Products & Chemicals Inc AMINO VINYLSILANE PRECURSOR FOR STRESSED SiN FILM
JP2013016859A (en) * 2008-11-12 2013-01-24 Air Products & Chemicals Inc AMINO VINYLSILANE PRECURSORS FOR STRESSED SiN FILMS
US8580993B2 (en) 2008-11-12 2013-11-12 Air Products And Chemicals, Inc. Amino vinylsilane precursors for stressed SiN films
US8889235B2 (en) 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor

Similar Documents

Publication Publication Date Title
US7247582B2 (en) Deposition of tensile and compressive stressed materials
US7563680B2 (en) Substrate having silicon germanium material and stressed silicon nitride layer
US7651961B2 (en) Method for forming strained silicon nitride films and a device containing such films
US7910497B2 (en) Method of forming dielectric layers on a substrate and apparatus therefor
TWI411100B (en) Semiconductor device based on si-ge with high stress liner for enhanced channel carrier mobility
US7601648B2 (en) Method for fabricating an integrated gate dielectric layer for field effect transistors
CN1967780B (en) Method for fabricating a gate dielectric of a field effect transistor
US7473655B2 (en) Method for silicon based dielectric chemical vapor deposition
JP5219815B2 (en) Method for forming silicon oxynitride film having tensile stress
JP5455622B2 (en) Method for manufacturing gate dielectric of field effect transistor
US20080014759A1 (en) Method for fabricating a gate dielectric layer utilized in a gate structure
US7482245B1 (en) Stress profile modulation in STI gap fill
JP2010530127A5 (en)
TW201441408A (en) PEALD of films comprising silicon nitride
KR20140002616A (en) Methods for forming a hydrogen free silicon containing dielectric film
US20080153266A1 (en) Method to improve the selective epitaxial growth (seg) process
US20120276718A1 (en) Method of fabricating graphene-based field effect transistor
JP2006120992A (en) Method for manufacturing silicon nitride film, and its manufacturing apparatus
US7026226B1 (en) Method of hydrogenating a poly-silicon layer
US7723240B2 (en) Methods of low temperature oxidation
CN106356337B (en) Method for manufacturing semiconductor device
JP2003197636A (en) Thin film semiconductor element and its manufacturing method
CN109119331B (en) Semiconductor device, manufacturing method thereof and electronic device
US9355820B2 (en) Methods for removing carbon containing films
Matero et al. Atomic layer deposition of GeO 2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714