JP2006120545A - Deterioration evaluation method and deterioration evaluation device of electrolyte membrane - Google Patents

Deterioration evaluation method and deterioration evaluation device of electrolyte membrane Download PDF

Info

Publication number
JP2006120545A
JP2006120545A JP2004309211A JP2004309211A JP2006120545A JP 2006120545 A JP2006120545 A JP 2006120545A JP 2004309211 A JP2004309211 A JP 2004309211A JP 2004309211 A JP2004309211 A JP 2004309211A JP 2006120545 A JP2006120545 A JP 2006120545A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
deterioration
anode
aqueous solution
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004309211A
Other languages
Japanese (ja)
Inventor
Akane Nakanishi
亜加音 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004309211A priority Critical patent/JP2006120545A/en
Publication of JP2006120545A publication Critical patent/JP2006120545A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration evaluation method of an electrolyte membrane capable of evaluating substantial accelerated deterioration of the electrolyte membrane in an actual fuel cell. <P>SOLUTION: An electrolyzed aqueous solution with H<SB>2</SB>O<SB>2</SB>and at least one kind of NaOH and KOH added therein is injected in a reaction vessel 1; an deterioration evaluation object electrolyte membrane of an evaluation sample is stuck to the vessel with an adhesive or the like as a barrier membrane 2 for dividing the aqueous solution; a positive electrode 4 is formed on one side 6 of the aqueous solution divided by the barrier membrane, and a negative electrode 5 is formed on the other side 7 thereof; a certain voltage is applied between the positive electrode 4 and the negative electrode 5 by a power source 31 to measure a current between the positive electrode 4 and the negative electrode 5 by an ammeter 32; and the deterioration of the electrolyte membrane is evaluated by increase of the measured current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に燃料電池に用いられる電解質膜の劣化評価方法およびその劣化評価装置に関するものである。   The present invention particularly relates to a method for evaluating deterioration of an electrolyte membrane used in a fuel cell and a device for evaluating the deterioration.

燃料電池に用いられる電解質膜の劣化評価方法としては、電解質膜を80℃、30重量%H水中で12時間曝露し、外観観察と、溶出イオン(SO 2−、F)量を測定する方法がある(例えば、非特許文献1参照)。 As a method for evaluating the deterioration of an electrolyte membrane used in a fuel cell, the electrolyte membrane is exposed in 80 ° C. and 30 wt% H 2 O 2 water for 12 hours, and the appearance is observed and the amount of eluted ions (SO 4 2− , F ) is measured. There is a method of measuring (see, for example, Non-Patent Document 1).

新エネルギー・産業技術総合研究開発機構,固体高分子形燃料電池の開発 固体高分子形燃料電池の劣化要因に関する研究 劣化要因の基礎的研究(1)p13−25,平成13年度成果報告書(2002)New Energy and Industrial Technology Research and Development Organization, Development of Polymer Electrolyte Fuel Cell Study on Degradation Factors of Polymer Electrolyte Fuel Cells Basic Research on Degradation Factors (1) p13-25, 2001 Results Report (2002) )

しかしながら、従来の電解質膜の劣化評価方法は、Hによる化学的な電解質膜の劣化を評価しているだけであり、実際の燃料電池内での電気化学的反応による電解質膜の劣化を評価していないという課題があった。
つまり、従来の劣化評価方法では、例えば、実質的な電解質膜の劣化原因であるOHラジカル(・OH)の生成を促して、OHラジカルによる電解質膜の加速劣化を評価できないという課題があった。
However, the conventional method for evaluating the deterioration of the electrolyte membrane only evaluates the deterioration of the chemical electrolyte membrane due to H 2 O 2 , and the deterioration of the electrolyte membrane due to the electrochemical reaction in the actual fuel cell is not evaluated. There was a problem of not evaluating.
In other words, the conventional deterioration evaluation method has a problem that, for example, the accelerated deterioration of the electrolyte membrane due to the OH radicals cannot be evaluated by promoting the generation of OH radicals (.OH) that are the substantial causes of deterioration of the electrolyte membrane.

本発明は、かかる課題を解決するためになされたものであり、実際の燃料電池内での実質的な電解質膜の加速劣化を評価できる電解質膜の劣化評価方法およびその劣化評価装置を得ることを目的とするものである。   The present invention has been made to solve such a problem, and provides an electrolyte membrane degradation evaluation method and a degradation assessment apparatus capable of evaluating substantial accelerated degradation of the electrolyte membrane in an actual fuel cell. It is the purpose.

本発明に係る第1の電解質膜の劣化評価方法は、Hと、NaイオンおよびKイオンのうちの少なくとも一種とを含有する水溶液を、被劣化評価電解質膜で分割して得られる上記水溶液の一方の領域に設置された陽極と、上記水溶液の他方の領域に設置された陰極との間に、一定の電圧を印加して、上記陽極と陰極との間の電流を測定して上記電解質膜の劣化を評価する方法である。 The first method for evaluating deterioration of an electrolyte membrane according to the present invention is obtained by dividing an aqueous solution containing H 2 O 2 and at least one of Na ions and K ions with an electrolyte membrane to be deteriorated. A constant voltage is applied between the anode installed in one area of the aqueous solution and the cathode installed in the other area of the aqueous solution, and the current between the anode and the cathode is measured to measure the current. This is a method for evaluating the deterioration of the electrolyte membrane.

本発明の第1の電解質膜の劣化評価方法は、Hと、NaイオンおよびKイオンのうちの少なくとも一種とを含有する水溶液を、被劣化評価電解質膜で分割して得られる上記水溶液の一方の領域に設置された陽極と、上記水溶液の他方の領域に設置された陰極との間に、一定の電圧を印加して、上記陽極と陰極との間の電流を測定して上記電解質膜の劣化を評価する方法で、実際の燃料電池内での実質的な電解質膜の加速劣化を評価できるという効果がある。 The first method for evaluating deterioration of an electrolyte membrane according to the present invention is the above aqueous solution obtained by dividing an aqueous solution containing H 2 O 2 and at least one of Na ions and K ions with an electrolyte membrane to be deteriorated. A constant voltage is applied between the anode installed in one area of the electrode and the cathode installed in the other area of the aqueous solution, and the current between the anode and the cathode is measured to measure the electrolyte. The method for evaluating the deterioration of the membrane has the effect that the substantial deterioration of the electrolyte membrane in an actual fuel cell can be evaluated.

実施の形態1.
燃料電池は、下記式(1)のように、電解水溶液中の電解質膜の片方で生成したHが電解質膜中を移動し、式(2)のように、酸素と反応して、電気を発生させる。
→2H+2e ・・・(1)
+4H+4e→2HO ・・・(2)
しかし、式(3)のように、副生成物として、Hが発生することも確認されている。
+2H+2e→H ・・・(3)
このHは、式(4)に示す自己分解過程の中間生成物として(式(4)を確認下さい。OHラジカルが発生していないのでは?式の両辺の原子数が一致していないのでは?)、また、式(5)、式(6)に示すように、副反応生成物であるOとの反応により、また、式(7)に示すようにFe2+やCu2+などの金属イオン不純物との反応により、OHラジカル(・OH)を生成するが、OHラジカルは反応性が高く、電解質膜を劣化させる。
2H→O+2HO ・・・(4)
3HO→O+6H+6e ・・・(5)
+O→・OH+・HO+O ・・・(6)
Fe2++H→Fe3++OH+・OH ・・・(7)
また、燃料電池内では、膜の弱い部分(劣化しやすい部分)に、電流集中が生じ、局部的に上記の反応が進むことがわかっている。
しかしながら、従来の電解質膜の劣化評価方法では、電解質膜を30重量%H水へ曝露するだけであるので、単にHによる化学的な電解質膜の劣化を評価しているのみであり、上記のような燃料電池の陽極近傍における電気化学的反応によるOHラジカルの生成を考慮しておらず、実質的に燃料電池における電解質膜の劣化を評価してない。
Embodiment 1 FIG.
In the fuel cell, as shown in the following formula (1), H + generated in one side of the electrolyte membrane in the electrolytic aqueous solution moves in the electrolyte membrane, and reacts with oxygen as shown in formula (2) to generate electricity. generate.
H 2 → 2H + + 2e (1)
O 2 + 4H + + 4e → 2H 2 O (2)
However, it has also been confirmed that H 2 O 2 is generated as a by-product as in the formula (3).
O 2 + 2H + + 2e → H 2 O 2 (3)
This H 2 O 2 is an intermediate product of the self-decomposition process shown in Formula (4) (Check Formula (4). If OH radicals are not generated, the number of atoms on both sides of the formula is the same. Is not present?), And as shown in Formula (5) and Formula (6), by reaction with O 3 which is a side reaction product, and as shown in Formula (7), Fe 2+ and Cu 2+ OH radicals (.OH) are generated by reaction with metal ion impurities such as OH radicals, but OH radicals are highly reactive and degrade the electrolyte membrane.
2H 2 O 2 → O 2 + 2H 2 O (4)
3H 2 O → O 3 + 6H + + 6e (5)
H 2 O 2 + O 3 → .OH + .HO 2 + O 2 (6)
Fe 2+ + H 2 O 2 → Fe 3+ + OH + · OH (7)
Further, it has been found that in the fuel cell, current concentration occurs in a weak part of the membrane (a part that tends to deteriorate), and the above reaction proceeds locally.
However, in the conventional method for evaluating deterioration of an electrolyte membrane, the electrolyte membrane is only exposed to 30 wt% H 2 O 2 water, and therefore only chemical electrolyte membrane deterioration due to H 2 O 2 is evaluated. Thus, the generation of OH radicals due to the electrochemical reaction in the vicinity of the anode of the fuel cell as described above is not considered, and the deterioration of the electrolyte membrane in the fuel cell is not substantially evaluated.

なお、上記従来の評価方法であっても、電解質膜に事前にFeやCu(Fe2+、Cu2+)を含有させたものを30重量%H水へ曝露すると、式(7)に示すようにHからOHラジカルが生成するため、OHラジカルによる劣化が評価できるが、OHラジカルは電解質膜において局所的に発生できず、OHラジカル発生箇所を特定することができない。また、OHラジカルの発生量も測定できず、まして制御もできない。
しかし、上記のように電解質膜にFeやCuを含ませることは、FeやCuが含まれていない電解質膜(下記実施例で示すH型電解質膜)自体の劣化を評価していることにはならず、H型電解質膜のOHラジカルによる劣化を評価することはできない。
Even in the conventional evaluation method described above, when an electrolyte membrane containing Fe or Cu (Fe 2+ , Cu 2+ ) in advance is exposed to 30 wt% H 2 O 2 water, the formula (7) is obtained. As shown, since OH radicals are generated from H 2 O 2, degradation due to OH radicals can be evaluated, but OH radicals cannot be generated locally in the electrolyte membrane, and the OH radical generation site cannot be specified. In addition, the amount of OH radicals generated cannot be measured and cannot be controlled.
However, inclusion of Fe or Cu in the electrolyte membrane as described above means that the deterioration of the electrolyte membrane that does not contain Fe or Cu (the H-type electrolyte membrane shown in the examples below) itself is evaluated. In other words, the deterioration of the H-type electrolyte membrane due to OH radicals cannot be evaluated.

図1は、本発明の実施の形態1の電解質の劣化評価方法に用いる、燃料電池内の劣化メカニズムを模擬している本発明の実施の形態の電解質膜の劣化評価装置を示す構成図である。
温度制御計8を備えた反応容器1内には、Hと、NaOHおよびKOHの内の少なくとも一種が添加されている電解水溶液が注入され、この水溶液を2つの領域に分割する隔膜2として、評価サンプルの被劣化評価電解質膜を容器に接着剤等で接着させて着設し、上記隔膜で分割される水溶液の一方の領域(陽極側水溶液)6に陽極4、他方の領域(陰極側水溶液)7に陰極5が設けられ、電源31により、上記陽極4と陰極5間に一定電圧を印加し、上記陽極4と陰極5間の電流を電流計32により測定する。
なお、上記被劣化評価電解質膜2を反応容器1の内壁に着設する被劣化評価電解質膜保持手段として、本実施の形態におけるように接着剤を用いる場合は、予め被劣化評価電解質膜2を反応容器1に接着しておき、反応容器1を陽極側と陰極側の領域とし、両方の領域に同じ組成の上記電解水溶液を注入することにより、上記電解水溶液を被劣化評価電解質膜2で分割した状態とすることができる。
以上のように、本実施の形態の劣化評価装置では、電解質膜を挟んで陽極と陰極が設けられ、上記陽極電極近傍では、水の電気分解、並びにその副反応である上記式(1)〜(6)で示される反応が起こりOHラジカルが生成するため、この装置内では、OHラジカルを故意に生成させ、これにより上記電解質膜を加速的に劣化させることができる。
FIG. 1 is a configuration diagram illustrating an electrolyte membrane deterioration evaluation apparatus according to an embodiment of the present invention that simulates a deterioration mechanism in a fuel cell, which is used in the electrolyte deterioration evaluation method according to Embodiment 1 of the present invention. .
A reaction vessel 1 equipped with a temperature controller 8 is injected with an aqueous electrolytic solution to which H 2 O 2 and at least one of NaOH and KOH are added, and the diaphragm 2 divides this aqueous solution into two regions. The electrolyte membrane to be deteriorated of the evaluation sample is attached to the container with an adhesive or the like, and the anode 4 and the other region (cathode) are attached to one region (anode-side aqueous solution) 6 of the aqueous solution divided by the diaphragm. The cathode 5 is provided on the side aqueous solution 7, a constant voltage is applied between the anode 4 and the cathode 5 by the power source 31, and the current between the anode 4 and the cathode 5 is measured by the ammeter 32.
In the case where an adhesive is used as in the present embodiment as the degradation evaluation electrolyte membrane holding means for attaching the degradation assessment electrolyte membrane 2 to the inner wall of the reaction vessel 1, the degradation assessment electrolyte membrane 2 is previously provided. Adhering to the reaction vessel 1, the reaction vessel 1 is made into an anode side region and a cathode side region, and the electrolytic solution having the same composition is injected into both regions, so that the electrolytic solution is divided by the electrolyte membrane 2 to be deteriorated. It can be made into the state which carried out.
As described above, in the degradation evaluation apparatus of the present embodiment, the anode and the cathode are provided with the electrolyte membrane interposed therebetween, and in the vicinity of the anode electrode, the above-described formulas (1) to (1) are the electrolysis of water and the side reaction. Since the reaction shown in (6) occurs and OH radicals are generated, OH radicals are intentionally generated in the apparatus, and thereby the electrolyte membrane can be acceleratedly deteriorated.

図2は、本実施の形態の劣化評価方法に係わる評価結果の説明図であり、反応容器内に電解水溶液を注入した後、電源により一定電圧を印加し、陽極と陰極間の電流をモニタリングしたもので、電解質膜の分解などの劣化が起こると、電流量に微量な増加などの変化(図中A点)があらわれ、破膜にいたれば急激な電流の増加(図中C点)が確認され、例えば図中C点を劣化と評価する。なお、図においてaは未劣化期間、bは劣化が開始し緩やかに劣化が進行する期間、cは急激に劣化が進行する劣化期間、dは貫通後、さらに劣化が進行し孔が大きくなっていく期間である。なお、電圧の増加に伴い電流量が全体的に多くなり、上記C点までの期間が短くなる。   FIG. 2 is an explanatory diagram of an evaluation result related to the deterioration evaluation method of the present embodiment. After injecting an electrolytic aqueous solution into the reaction vessel, a constant voltage is applied by a power source and the current between the anode and the cathode is monitored. However, when degradation such as decomposition of the electrolyte membrane occurs, a change such as a slight increase in the amount of current (point A in the figure) appears, and if the film is broken, a sudden increase in current (point C in the figure) is confirmed. For example, point C in the figure is evaluated as degraded. In the figure, a is an undegraded period, b is a period in which degradation starts and gradually progresses, c is a degradation period in which degradation proceeds rapidly, d is a degradation period after penetration, and further degradation proceeds and the hole becomes larger. It is a period to go. As the voltage increases, the amount of current increases as a whole, and the period up to the point C is shortened.

従来の電解質膜の劣化評価方法は、溶出イオンの測定など化学的劣化などの間接的評価により、劣化を評価していたので、実機に則した電気化学的な評価(実機では電圧低下、電流低下が指標となる。)は行われていなかった。
それに対して、本実施の形態の評価方法では、電流上昇という電気化学的な劣化が評価の指標となり、電解質膜としての燃料電池内での性能を直接的に評価ができるので実機に則した評価ができるという効果がある。また、オンラインでの電流モニタリングによる劣化評価ということで、溶出イオンの測定などのようにサンプリングする必要がなく、評価が簡便にかつ速やかであるという効果がある。
また、本実施の形態におけるように、Na、K等の不純物とHとの相乗作用による劣化も評価できるという効果もある。
さらに、OHラジカルによる劣化とともに、燃料電池内における劣化要因の一つであるH移動が起こり、H+移動とHとの相乗作用による劣化も評価できるという効果もある。
The conventional electrolyte membrane degradation evaluation methods used indirect assessments such as chemical degradation, such as measurement of eluted ions, to evaluate degradation. Therefore, electrochemical evaluation based on the actual machine (voltage drop and current drop in the actual machine) Was an indicator).
On the other hand, in the evaluation method of the present embodiment, electrochemical degradation such as current rise serves as an evaluation index, and the performance in the fuel cell as the electrolyte membrane can be directly evaluated. There is an effect that can be. In addition, the deterioration evaluation by online current monitoring eliminates the need for sampling as in the measurement of eluted ions, and has an effect that the evaluation is simple and quick.
Further, as in the present embodiment, there is an effect that deterioration due to synergistic action between impurities such as Na and K and H 2 O 2 can be evaluated.
Furthermore, there is with degradation due to OH radicals, occur H + moves is one of the degradation factors in the fuel cell, H + is also moved and H 2 effect that degradation can be evaluated by synergy with O 2.

また、実機では、H+移動は局所的に起こる(電流集中となる)。そこで、上記陽極を、これと対向する被劣化評価電解質膜の面積より小さくすると、電解質膜全体を劣化させるよりも電流集中を起こさせることができ、電流集中による劣化を容易に評価できる。例えば、陽極と電解質膜との面積比が1/10000であると、電圧をかけた場合、電解質膜全体を劣化させるよりも10000倍の電流集中を起こさせることができる。
つまり、陽極面積を制御することにより、燃料電池における電解質膜への電流集中(H移動)による、膜の局部的な劣化メカニズムを評価することができる。陽極は、電解質膜10cm角の場合10000倍の電流集中とするには、0.1cm角の電極が必要であり、かなり微小な電極となる。この電極に下記に示すように2V以上の電圧をかけなくてはならないため、多孔子状または凹凸を細かくして、表面積の大きな電極を使うことが望ましい。
なお、陽極電極近傍では上記反応が起こりOHラジカルが生成するが、OHラジカルは寿命が短く、10〜20μm程度の距離しか移動できないので、陽極2を電解質膜上に設けるか、電解質膜から20μm以内、望ましくは10μm以内の距離に設置することにより、表面での電極反応により生成したOHラジカルが効率的に電解質膜にアタック可能となる。
なお、本実施の形態の評価装置に係わる陽極と陰極は、それ自体が反応しない白金などを使うのが望ましい。
また、陽極として、Na、K等の金属イオンや水を通すメッシュ状の電極を用い、電解質膜に接触させるのは、電解質膜表面上で、OHラジカル、金属イオン、H移動というあらゆる劣化が起こり、燃料電池内で起こる電解質膜劣化を模擬した総合的な膜劣化を発生できるため望ましい。
In an actual machine, H + movement occurs locally (current concentration). Therefore, if the anode is made smaller than the area of the electrolyte membrane to be deteriorated facing the anode, current concentration can be caused rather than deterioration of the entire electrolyte membrane, and deterioration due to current concentration can be easily evaluated. For example, when the area ratio between the anode and the electrolyte membrane is 1/10000, when a voltage is applied, the current concentration can be 10,000 times higher than when the entire electrolyte membrane is deteriorated.
That is, by controlling the anode area, it is possible to evaluate the local deterioration mechanism of the membrane due to the current concentration (H + movement) on the electrolyte membrane in the fuel cell. Anode, to 10,000 times the current concentration when the electrolyte membrane 10 cm 2 square is required electrode of 0.1 cm 2 square, a fairly small electrodes. Since it is necessary to apply a voltage of 2 V or more to the electrode as described below, it is desirable to use an electrode having a large surface area by finely forming a porous shape or unevenness.
In the vicinity of the anode electrode, the above reaction occurs and OH radicals are generated. However, since the OH radical has a short lifetime and can move only by a distance of about 10 to 20 μm, the anode 2 is provided on the electrolyte membrane or within 20 μm from the electrolyte membrane. Preferably, the OH radical generated by the electrode reaction on the surface can be efficiently attacked on the electrolyte membrane by being installed at a distance within 10 μm.
It should be noted that it is desirable to use platinum or the like that does not react with itself for the anode and the cathode related to the evaluation apparatus of the present embodiment.
In addition, a metal electrode such as Na + , K +, or a mesh electrode that passes water is used as the anode, and contact with the electrolyte membrane is caused by any deterioration of OH radicals, metal ions, and H migration on the electrolyte membrane surface. This is desirable because it can generate comprehensive membrane degradation that simulates electrolyte membrane degradation occurring in a fuel cell.

本実施の形態の評価装置に係わる上記陽極と陰極に一定の電圧で印加される電圧の値は、Hが自己分解を起こさないためには最低2V以上必要である。
また、現在開発されている燃料電池の電解質膜1枚に対する発生電圧が、現在1V程度であるが、電圧はH移動量であると考えると、印加する電圧を50Vに設定すると、局部的に流れるH移動量が増加することになり約50倍に劣化を加速していることになる。
The value of the voltage applied at a constant voltage to the anode and the cathode relating to the evaluation apparatus of the present embodiment needs to be at least 2 V so that H 2 O 2 does not cause self-decomposition.
Also, the generated voltage for one electrolyte membrane of the currently developed fuel cell is currently about 1V, but considering that the voltage is H + movement amount, if the applied voltage is set to 50V, it will be locally The amount of H + movement that flows is increased, and the deterioration is accelerated about 50 times.

本実施の形態の評価装置に係わる水溶液中のH量は、H自体による電解質膜の劣化およびOHラジカル生成に関与している。本実施の形態においては、H濃度は、実質的に使用できる最大濃度である30重量%を用いているが、この量を制御することにより、劣化加速を制御できる。
つまり、上記評価装置における陽極では、副反応として式(5)が起こりOが生成し、その生成量は電圧に比例する。また、Oは式(6)のようにHと反応してOHラジカルを生成するため、陽極表面では、OHラジカルが常時発生している状態となる。
Fe等が含まれる上記従来の方法においてもOHラジカルは発生するが、OHラジカルは一般的に反応中間生成物質のため制御が困難である。しかし、本実施の形態の評価装置内ではOの反応によりOHラジカルが生成するため、電圧により制御可能である。そのため、電圧により制御したO生成量からOHラジカルを推定することにより、OHラジカルは制御可能である。
また、本実施の形態の評価装置内では上記のように、電極表面での電極反応によりOHラジカルが生成するため、HとFe2+などの溶解成分同士の反応と異なり、水溶液中で局所的に発生でき、電解質膜のアタックさせたい部分にOHラジカルをアタックさせることができるという効果がある。
The amount of H 2 O 2 in the aqueous solution related to the evaluation apparatus of the present embodiment is involved in the deterioration of the electrolyte membrane and the generation of OH radicals by H 2 O 2 itself. In the present embodiment, the H 2 O 2 concentration is 30% by weight, which is the maximum concentration that can be substantially used, but the deterioration acceleration can be controlled by controlling this amount.
That is, in the anode in the evaluation apparatus, equation (5) occurs as a side reaction and O 3 is generated, and the generation amount is proportional to the voltage. In addition, O 3 reacts with H 2 O 2 to generate OH radicals as shown in Formula (6), so that OH radicals are constantly generated on the anode surface.
OH radicals are also generated in the above conventional method including Fe and the like, but OH radicals are generally a reaction intermediate product and are difficult to control. However, since OH radicals are generated by the reaction of O 3 in the evaluation apparatus of the present embodiment, it can be controlled by voltage. Therefore, the OH radical can be controlled by estimating the OH radical from the amount of O 3 generated controlled by the voltage.
Further, as described above in the evaluation apparatus of this embodiment, since the OH radicals are generated by the electrode reaction at the electrode surface, unlike the reaction between dissolved components such as H 2 O 2 and Fe 2+, in aqueous solution There is an effect that it can be generated locally and OH radicals can be attacked on the part of the electrolyte membrane to be attacked.

反応容器内での電流が流れやすくなるために添加する補助剤として、劣化要因である不純物(Na、K、Ca2+、Mg2+)を含んだ補助剤を用いることは、上記不純物による劣化も同時に評価できるため望ましい。しかし、Ca2+、Mg2+は水溶液中では電気分解中にCa(OH)、Mg(OH)になりながら、凝集沈殿を起こすので、凝集沈殿の恐れのないNaOHやKOHを補助剤として使用する。また、HはpH8を超えると自己分解が進行するため、上記補助剤の添加量を、30重量%Hの場合においては、NaOHは0.01〜1重量%、KOHは0.01〜0.4重量%とする。 The use of an auxiliary agent containing impurities (Na + , K + , Ca 2+ , Mg 2+ ), which is a deterioration factor, as an auxiliary agent added to facilitate the flow of current in the reaction vessel is caused by the above-described deterioration due to the impurities. Can be evaluated at the same time. However, since Ca 2+ and Mg 2+ become a Ca (OH) 2 and Mg (OH) 2 during electrolysis in an aqueous solution and cause aggregation and precipitation, NaOH and KOH that do not cause aggregation and precipitation are used as an auxiliary agent. To do. In addition, since self-decomposition proceeds when pH of H 2 O 2 exceeds 8, when the amount of the auxiliary agent is 30 wt% H 2 O 2 , NaOH is 0.01 to 1 wt%, KOH is 0.01 to 0.4 wt%.

以上のように、実施の形態1の劣化評価装置では、電圧、陽極と電解質膜の面積比、電解質液への補助剤の添加量を制御することにより、劣化因子(H移動量、局部劣化の面積、OHラジカル量の制御、Na、K量)を制御することができるので、劣化速度を自由に制御可能となる。また、劣化因子量は、個々の燃料電池内で異なるため、様々な使用を想定した燃料電池内での劣化モードを模擬した試験が可能となる効果がある。 As described above, in the deterioration evaluation apparatus according to the first embodiment, the deterioration factor (H + movement amount, local deterioration) is controlled by controlling the voltage, the area ratio between the anode and the electrolyte membrane, and the amount of the auxiliary agent added to the electrolyte solution. , The amount of OH radicals, Na + , K + amount) can be controlled, and the deterioration rate can be controlled freely. In addition, since the deterioration factor amount is different in each fuel cell, there is an effect that it is possible to perform a test simulating a deterioration mode in the fuel cell assuming various uses.

実施の形態2.
図3は本発明の実施の形態2の劣化評価方法を実施するための劣化評価装置を示す構成図であり、実施の形態1において、陽極4の近傍に220nm紫外線ランプ11を設け、このランプの紫外線制御計10が設置されている他は実施の形態1の装置と同様である。
上記反応容器1内に電解水溶液を注入した後、電源31により一定電圧を印加し、紫外線を照射しながら、電流計32により電流をモニタリングすることにより図2と同様の図が得られるが、紫外線照射により、実施の形態1と比べてOHラジカル量の増加するため劣化が加速され、短時間で測定電流が増加し劣化評価に要する時間を短縮することができるという効果がある。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing a deterioration evaluation apparatus for carrying out the deterioration evaluation method according to the second embodiment of the present invention. In the first embodiment, a 220 nm ultraviolet lamp 11 is provided in the vicinity of the anode 4, and this lamp The apparatus is the same as that of the first embodiment except that the ultraviolet light control meter 10 is installed.
After injecting the electrolytic aqueous solution into the reaction vessel 1, a constant voltage is applied by the power source 31, and the current is monitored by the ammeter 32 while irradiating the ultraviolet rays. Irradiation increases the amount of OH radicals as compared to the first embodiment, thereby accelerating the degradation, increasing the measurement current in a short time, and reducing the time required for degradation evaluation.

なお、陽極近傍において生成したOHラジカルは寿命が短いため、本実施の形態におけるように、陽極付近にUVランプを設置することにより、電極反応の起こっている場所で紫外線反応を起こし、電極反応とUV反応との両方で生成したOHラジカルを電解質膜の局部にアタックすることができ、劣化が加速される。
陽極側の電解水溶液のみに、220nm波長の紫外線(UV)を照射して、HをOHラジカル化してOHラジカル量を増加させ、膜のOHラジカル劣化を促進するが、HのUV反応であるため、UV量を制御することによりOHラジカル生成量は制御可能である。
なお、UVが直接電解質膜にあたると、膜自体のUV劣化がおこるため、光ファイバーなどUVが直線的に進行するランプを膜と平行に設置し、膜に直接UVがあたらない設計が望ましい。
Since OH radicals generated near the anode have a short life, as in this embodiment, by installing a UV lamp near the anode, an ultraviolet reaction occurs at a place where the electrode reaction occurs, The OH radical generated by both the UV reaction can be attacked locally on the electrolyte membrane, and the deterioration is accelerated.
Only the electrolytic solution on the anode side, by irradiating ultraviolet rays (UV) of 220nm wavelength, the H 2 O 2 and OH radicals of increasing the amount of OH radicals, promotes the OH radical degradation of film, H 2 O 2 Therefore, the amount of OH radicals generated can be controlled by controlling the amount of UV.
In addition, when UV directly hits the electrolyte membrane, UV degradation of the membrane itself occurs. Therefore, it is desirable to install a lamp such as an optical fiber that travels linearly in parallel with the membrane so that the UV does not directly hit the membrane.

本実施の形態におけるOHラジカルの生成は、電極表面での電極反応であるため、従来のHとFe2+などの溶解成分同士の反応などによるOHラジカルの生成と異なり、水溶液中で局所的に発生でき、電解質膜のアタックさせたい部分にOHラジカルをアタックさせることができ、劣化させたい部分を劣化可能であるという効果がある。またそのことにより、電解質膜の化学劣化を評価する際、劣化部分が容易に特定でき、簡便かつ迅速に分析ができるという効果もある。
なお、実施の形態2の劣化評価装置では、Na、Kによる劣化を評価する必要がない場合は、Na、Kを添加しなくても、紫外線によりOHラジカルを発生させることができる。
Since the generation of OH radicals in the present embodiment is an electrode reaction on the electrode surface, unlike the conventional generation of OH radicals by reaction between dissolved components such as H 2 O 2 and Fe 2+ , Therefore, the OH radical can be attacked on the part of the electrolyte membrane to be attacked, and the part to be degraded can be degraded. This also has the effect that when the chemical deterioration of the electrolyte membrane is evaluated, the deteriorated portion can be easily identified, and analysis can be performed easily and quickly.
In the deterioration evaluating device of the second embodiment, Na +, if there is no need to evaluate the degradation due to K + is, Na +, even without the addition of K +, it is possible to generate OH radicals by ultraviolet .

実施例1.
上記図1に示す評価装置において、被劣化評価電解質膜として10cm角の電解質膜{商品名:ナフィオン,デュポン(株)製}を用い、縦10cm×横20cm×高さ15cmの反応容器を図に示すように2分するように接着する。
反応容器の両方の領域に、1重量%NaOHと、30重量%Hとを各1l含有する電解水溶液を注入し、一方に0.1cm角の陽極を電解質膜の中心部から10μm離れたところに設置し、他方に1cm角の陰極を設置し、温度を80℃に制御して、電圧を50V印加して、電流をモニタリングすると、図2に示すように、電流は徐々に増加し始め、その後電流は急激に増加して、12時間以内に破膜を確認することにより劣化を評価することができた。
なお、本実施例で用いた電解質膜は、下記化学式で示す構造を有し、スルホン酸基(SO3 )に結合している陽イオンがHであるもので、このような膜をH型電解質膜という。なお、式中、mおよびpは共に自然数である。
Example 1.
In the evaluation device shown in FIG. 1, the electrolyte membrane of 10 cm 2 square as the deterioration evaluating electrolyte membrane: using {trade name Nafion, DuPont Corp.}, the reaction vessel vertical 10 cm × horizontal 20 cm × height 15cm Figure Adhere for 2 minutes as shown.
An electrolytic aqueous solution containing 1 liter each of 1 wt% NaOH and 30 wt% H 2 O 2 was injected into both regions of the reaction vessel, and a 0.1 cm 2 anode was added to one side from the center of the electrolyte membrane by 10 μm. When a cathode of 1 cm 2 square is installed on the other side, the temperature is controlled at 80 ° C., a voltage of 50 V is applied, and the current is monitored, the current gradually increases as shown in FIG. The current started to increase, and then the current increased rapidly. Deterioration could be evaluated by confirming the rupture within 12 hours.
The electrolyte membrane used in this example has a structure represented by the following chemical formula, and the cation bonded to the sulfonic acid group (SO 3 ) is H +. Type electrolyte membrane. In the formula, m and p are both natural numbers.

Figure 2006120545
Figure 2006120545

一方、本実施例における上記H型電解質膜を従来の劣化評価方法により評価した。つまり、上記電解質膜を、80℃、30重量%H水中で12時間曝露したが、H溶液は不変で劣化を評価することができなかった。 On the other hand, the H-type electrolyte membrane in this example was evaluated by a conventional deterioration evaluation method. That is, although the electrolyte membrane was exposed in 80 ° C. and 30 wt% H 2 O 2 water for 12 hours, the H 2 O 2 solution was unchanged and could not be evaluated for deterioration.

実施例2.
上記図1に示す評価装置において、陽極として全面積が0.1cmとなるメッシュ型の陽極を用い、これを電解質膜のちょうど中心部に貼り付ける以外は実施例1と同様にして、電流をモニタリングすると、電圧をかけてしばらくしてから、電流は徐々に増加し始め、その後電流は急激に増加し、実施例1と同様に、12時間以内に劣化を評価できた。
Example 2
In the evaluation apparatus shown in FIG. 1, a mesh type anode having a total area of 0.1 cm 2 was used as the anode, and the current was applied in the same manner as in Example 1 except that this was attached to the center of the electrolyte membrane. As a result of monitoring, the current started to increase gradually after a while after the voltage was applied, and then the current increased rapidly. As in Example 1, the deterioration could be evaluated within 12 hours.

実施例3.
上記図3に示す評価装置において、被劣化評価電解質膜として10cm角の電解質膜{商品名:ナフィオン,デュポン(株)製}を用い、縦10cm×横20cm×高さ15cmの反応容器を図に示すように2分するように接着する。
反応容器の両方の領域に、1重量%NaOHと、30重量%Hとを各1l含有する電解水溶液を注入し、一方に0.1cm角の陽極を電解質膜の中心部から10μm離れたところに設置し、他方に1cm角の陰極を設置し、温度を80℃に制御し、陽極側の電解水溶液のみに、220nm波長の紫外線を照射しながら、電圧を50V印加して、電流をモニタリングすると、電流は徐々に増加し始め、その後電流は急激に増加するが、実施例1より電流の増加程度が大きく、実施例1より早期に劣化を評価することができた。
Example 3
In the evaluation device shown in FIG. 3, the electrolyte membrane of 10 cm 2 square as the deterioration evaluating electrolyte membrane: using {trade name Nafion, DuPont Corp.}, the reaction vessel vertical 10 cm × horizontal 20 cm × height 15cm Figure Adhere for 2 minutes as shown.
An electrolytic aqueous solution containing 1 liter each of 1 wt% NaOH and 30 wt% H 2 O 2 was injected into both regions of the reaction vessel, and a 0.1 cm 2 anode was added to one side from the center of the electrolyte membrane by 10 μm. Install a 1 cm 2 square cathode on the other side, control the temperature to 80 ° C., apply a voltage of 50 V while irradiating only 220 μm wavelength ultraviolet light to the electrolytic solution on the anode side, When the current was monitored, the current started to increase gradually, and then the current increased rapidly. However, the increase in current was larger than that in Example 1, and deterioration could be evaluated earlier than Example 1.

実施例4.
図4は本実施例の電解質の劣化評価方法に用いる、電解質の劣化評価装置を示す構成図で、被劣化評価電解質膜として10cm角の電解質膜{商品名:ナフィオン,デュポン(株)製}を用い、縦10cm×横20cm×高さ15cmの反応容器を図に示すように2分するように接着する。
反応容器の両方の領域に、1重量%NaOHと、30重量%Hとを各1l含有する電解水溶液を注入し、一方に光ファイバ(直径0.01cm)を設置した、0.1cm角の紫外線ランプ一体型陽極42を電解質膜のちょうど中心部から10μm離れたところに設置し、他方に1cm角の陰極を設置し、温度を80℃に制御して、陽極側の電解水溶液のみに、220nm波長の紫外線を照射しながら、電圧を50V印加して、電流をモニタリングすると、図2に示すように、電流は徐々に増加し始め、その後電流は急激に増加するが、実施例3と同様に電流の増加程度が大きく、実施例1より早期に劣化を評価することができた。
Example 4
Figure 4 is used in the degradation evaluation method of the electrolyte of this embodiment, a constitutional view showing the deterioration evaluating device of the electrolyte, the electrolyte membrane of 10 cm 2 square as the deterioration evaluating electrolyte membrane {trade name: Nafion, manufactured by Du Pont Co.} Is used, and a reaction vessel having a length of 10 cm, a width of 20 cm, and a height of 15 cm is bonded in two parts as shown in the figure.
An electrolytic aqueous solution containing 1 l each of 1 wt% NaOH and 30 wt% H 2 O 2 was injected into both regions of the reaction vessel, and an optical fiber (diameter 0.01 cm 2 ) was installed on one side. A 1 cm 2 square UV lamp integrated anode 42 is placed at a distance of 10 μm from the center of the electrolyte membrane, and a 1 cm 2 square cathode is placed on the other side, and the temperature is controlled at 80 ° C. When the current is monitored by applying a voltage of 50 V while irradiating only the aqueous solution with ultraviolet light of 220 nm wavelength, as shown in FIG. 2, the current starts to increase gradually, and then the current increases rapidly. Similar to Example 3, the degree of increase in current was large, and deterioration could be evaluated earlier than Example 1.

本発明の実施の形態1の電解質の劣化評価方法に用いる、電解質の劣化評価装置を示す構成図である。It is a block diagram which shows the electrolyte deterioration evaluation apparatus used for the electrolyte deterioration evaluation method of Embodiment 1 of this invention. 本発明の実施の形態の劣化評価方法に係わる評価結果の説明図である。It is explanatory drawing of the evaluation result concerning the deterioration evaluation method of embodiment of this invention. 本発明の実施の形態2の劣化評価方法を実施するための劣化評価装置を示す構成図である。It is a block diagram which shows the deterioration evaluation apparatus for enforcing the deterioration evaluation method of Embodiment 2 of this invention. 本発明の実施例4の劣化評価方法を実施するための劣化評価装置を示す構成図である。It is a block diagram which shows the deterioration evaluation apparatus for enforcing the deterioration evaluation method of Example 4 of this invention.

符号の説明Explanation of symbols

1 反応容器、2 被劣化評価電解質膜、31 電源、32 電流計、4 陽極、40 紫外線ランプ一体型陽極、5 陰極、6 陽極側電解水溶液、7 陰極側電解水溶液、11 紫外線ランプ。


DESCRIPTION OF SYMBOLS 1 Reaction container, 2 to-be-degraded electrolyte membrane, 31 Power supply, 32 Ammeter, 4 Anode, 40 Ultraviolet lamp integrated anode, 5 Cathode, 6 Anode side electrolytic aqueous solution, 7 Cathode side electrolytic aqueous solution, 11 Ultraviolet lamp


Claims (5)

と、NaイオンおよびKイオンのうちの少なくとも一種とを含有する水溶液を、被劣化評価電解質膜で分割して得られる上記水溶液の一方の領域に設置された陽極と、上記水溶液の他方の領域に設置された陰極との間に、一定の電圧を印加して、上記陽極と陰極との間の電流を測定して上記電解質膜の劣化を評価する電解質膜の劣化評価方法。 An anode installed in one region of the aqueous solution obtained by dividing an aqueous solution containing H 2 O 2 and at least one of Na ions and K ions with an electrolyte membrane to be deteriorated; A method for evaluating deterioration of an electrolyte membrane, in which a constant voltage is applied between the cathode installed in the other region and a current between the anode and the cathode is measured to evaluate deterioration of the electrolyte membrane. を含有する水溶液を、被劣化評価電解質膜で分割して得られる上記水溶液の一方の領域に設置された陽極と、上記水溶液の他方の領域に設置された陰極との間に、一定の電圧を印加し、上記陽極近傍に紫外線を照射しながら、上記陽極と陰極との間の電流を測定して上記電解質膜の劣化を評価する電解質膜の劣化評価方法。 Between an anode installed in one region of the aqueous solution obtained by dividing an aqueous solution containing H 2 O 2 with an electrolyte membrane to be deteriorated, and a cathode installed in the other region of the aqueous solution, A method for evaluating deterioration of an electrolyte membrane, in which deterioration of the electrolyte membrane is evaluated by measuring a current between the anode and the cathode while applying a constant voltage and irradiating ultraviolet rays in the vicinity of the anode. 陽極と被劣化評価電解質膜の対向する面の面積が、上記陽極の方が、上記被劣化評価電解質膜より小さいことを特徴とする請求項1または請求項2に記載の電解質膜の劣化評価方法。 3. The method for evaluating deterioration of an electrolyte membrane according to claim 1 or 2, wherein an area of the facing surface of the anode and the electrolyte membrane to be deteriorated is smaller than that of the electrolyte membrane to be deteriorated in the anode. . 請求項1ないし請求項3のいずれかに記載の電解質膜の劣化評価方法に用いる電解質膜の劣化評価装置であって、Hを含有する水溶液を保有する容器と、上記水溶液を分割する隔膜となるように、上記容器に被劣化評価電解質膜を着設する被劣化評価電解質膜保持手段と、上記隔膜で分割される水溶液の一方の領域に設けられた陽極と、上記隔膜で分割される水溶液の他方の領域に設けられた陰極と、上記陽極と陰極間に一定の電圧を印加する電源と、上記陽極と陰極の間の電流を測定する電流計とを備えた電解質膜の劣化評価装置。 An electrolyte membrane deterioration evaluation apparatus for use in the electrolyte membrane deterioration evaluation method according to any one of claims 1 to 3, wherein a container holding an aqueous solution containing H 2 O 2 and the aqueous solution are divided. A degradation-evaluated electrolyte membrane holding means for attaching a degradation-evaluated electrolyte membrane to the container so as to form a diaphragm, an anode provided in one region of the aqueous solution divided by the diaphragm, and a membrane divided by the diaphragm Degradation evaluation of an electrolyte membrane provided with a cathode provided in the other region of the aqueous solution, a power source for applying a constant voltage between the anode and the cathode, and an ammeter for measuring a current between the anode and the cathode apparatus. 陽極が被劣化評価電解質膜に設けられるか、被劣化評価電解質膜から20μm以内の距離に設けられることを特徴とする請求項4に記載の電解質膜の劣化評価装置。


5. The deterioration evaluation apparatus for an electrolyte membrane according to claim 4, wherein the anode is provided on the deterioration-evaluated electrolyte membrane or provided at a distance within 20 μm from the deterioration-evaluated electrolyte membrane.


JP2004309211A 2004-10-25 2004-10-25 Deterioration evaluation method and deterioration evaluation device of electrolyte membrane Pending JP2006120545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309211A JP2006120545A (en) 2004-10-25 2004-10-25 Deterioration evaluation method and deterioration evaluation device of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309211A JP2006120545A (en) 2004-10-25 2004-10-25 Deterioration evaluation method and deterioration evaluation device of electrolyte membrane

Publications (1)

Publication Number Publication Date
JP2006120545A true JP2006120545A (en) 2006-05-11

Family

ID=36538228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309211A Pending JP2006120545A (en) 2004-10-25 2004-10-25 Deterioration evaluation method and deterioration evaluation device of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP2006120545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993657B1 (en) 2008-08-14 2010-11-10 순천대학교 산학협력단 System and method for judging deterioration of fuel cell
US9985297B2 (en) 2013-10-25 2018-05-29 Toyota Jidosha Kabushiki Kaisha Durability test device of membrane electrode assembly and durability test method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993657B1 (en) 2008-08-14 2010-11-10 순천대학교 산학협력단 System and method for judging deterioration of fuel cell
US9985297B2 (en) 2013-10-25 2018-05-29 Toyota Jidosha Kabushiki Kaisha Durability test device of membrane electrode assembly and durability test method thereof

Similar Documents

Publication Publication Date Title
Deng et al. Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries
RU2656017C2 (en) Method for electrolytic enrichment of heavy water
Sakuma et al. Nucleation and growth of electrolytic gas bubbles under microgravity
Ayers et al. Characterization of anion exchange membrane technology for low cost electrolysis
EP3626858A1 (en) Carbon dioxide electrolytic device and method of electrolyzing carbon dioxide
EP3795720A1 (en) Carbon dioxide electrolytic device and method for electrolyzing carbon dioxide
JP6196528B2 (en) Dissolved hydrogen concentration measuring method and electrolyzed water generator
Chen et al. Hydrogen bubble formation at hydrogen-insertion electrodes
EP3378967A1 (en) Electrochemical reaction device and electrochemical reaction method
Leong et al. Doubling the power output of a Mg-air battery with an acid-salt dual-electrolyte configuration
CN104471480B (en) Manufacturing method, dustproof film supporting frame and the dustproof film of dustproof film supporting frame
DE602007007684D1 (en) Method and device for obtaining the maximum amount in the electrolytic production of hydrides of groups IV and V
Santasalo-Aarnio et al. SO 2 Carry-over and sulphur formation in a SO 2-depolarized electrolyser
Briot et al. Aging phenomena and their modelling in aqueous organic redox flow batteries: A review
Thangavel et al. Nanoscale visualization of reversible redox pathways in lithium-sulfur battery using in situ AFM-SECM
US20140170517A1 (en) Method of depollution and regeneration of a fuel cell electrode poisoned by sulfur compounds
JP2008164504A (en) Quantity determination method of oxidizing component in electrolysis sulfuric acid
CN114192561A (en) Remediation method for cadmium-containing contaminated soil and application thereof
JP2006120545A (en) Deterioration evaluation method and deterioration evaluation device of electrolyte membrane
CN109374518A (en) A kind of test device and method of the corrosion of simulation nuclear waste storage tank gas-liquid interface
Hosseini et al. Electrochemical reduction of bicarbonate on carbon nanotube-supported silver oxide: An electrochemical impedance spectroscopy study
Wang et al. Integrated electrochemical-aerating oxidation in recovery system of seawater flue gas desulfurization
Zhao et al. Electrochemical Degradation of 4, 4’-(propane-2, 2-diyl) diphenol in Water with CeO2/ß-PbO2/Ti Electrode
Kikuchi et al. Hydrogen concentration in water from an Alkali–Ion–Water electrolyzer having a platinum-electroplated titanium electrode
Peng et al. Electrochemical oscillation of vanadium ions in anolyte