JP2006119192A - Zoom lens and imaging apparatus equipped with the same - Google Patents

Zoom lens and imaging apparatus equipped with the same Download PDF

Info

Publication number
JP2006119192A
JP2006119192A JP2004304216A JP2004304216A JP2006119192A JP 2006119192 A JP2006119192 A JP 2006119192A JP 2004304216 A JP2004304216 A JP 2004304216A JP 2004304216 A JP2004304216 A JP 2004304216A JP 2006119192 A JP2006119192 A JP 2006119192A
Authority
JP
Japan
Prior art keywords
lens
refractive power
image
zoom
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004304216A
Other languages
Japanese (ja)
Other versions
JP2006119192A5 (en
Inventor
Takayuki Sugiyama
孝幸 杉山
Nobuyuki Tochigi
伸之 栃木
Motomu Fukazawa
求 深澤
Kazuyuki Imamichi
和行 今道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004304216A priority Critical patent/JP2006119192A/en
Publication of JP2006119192A publication Critical patent/JP2006119192A/en
Publication of JP2006119192A5 publication Critical patent/JP2006119192A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a zoom lens constituted of comparatively fewer lenses, also, having a desired zooming ratio and high optical performance. <P>SOLUTION: Regarding the zoom lens constituted of, in order from an object side to an image side, a 1st lens group having negative refractive power, a 2nd lens group having positive refractive power, and a 3rd lens group having positive refractive power, wherein the 1st lens group and the 2nd lens group are shifted at zooming, the 1st lens group is constituted of two lenses, and provided that the focal distance of an i-th lens group is expressed by fi, the focal distance of the whole system at a wide angle end is expressed by fw, and the focal distance of the whole system at a telephoto end is expressed by ft, conditions of 1.5≤ft/fw, and 1.2<¾f1¾/f2<2.5 are satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はズームレンズに関し、特に小型の撮像装置(例えばデジタルスチルカメラや携帯電話やPDA等)に用いられる超小型で高い光学性能を有するズームレンズに関するものである。   The present invention relates to a zoom lens, and more particularly to a zoom lens having a high optical performance and a very small size used in a small imaging device (for example, a digital still camera, a mobile phone, a PDA, etc.).

近年、携帯電話やPDA等の携帯端末には、撮影レンズとCCDやCMOSといった固体撮像素子と組み合わせた撮像モジュールより成る光学機器が搭載されている。これらの光学機器では携帯に支障がないように機器全体の薄型化が進んでおり、これに伴い撮像モジュールも薄型化が進んでいる。   2. Description of the Related Art In recent years, mobile devices such as mobile phones and PDAs are equipped with optical devices composed of an imaging module combined with a photographing lens and a solid-state imaging device such as a CCD or CMOS. In these optical devices, the overall thickness of the device has been reduced so as not to hinder portability, and the imaging module has also been reduced in thickness accordingly.

撮像モジュール、特に携帯電話用の撮像モジュールでは薄型化が容易な比較的レンズ枚数の少ない単焦点の撮影レンズの搭載が非常に多くなっている。   Imaging modules, particularly imaging modules for mobile phones, are very frequently equipped with single-focus imaging lenses with a relatively small number of lenses that can be easily reduced in thickness.

一方で、高画質化が進み1〜2メガピクセルの撮像素子を搭載した携帯電話も登場している。また一方で、撮影レンズとしてズームレンズへのニーズが高まっている。このような小型の光学機器の対応したズームレンズとしては、物体側に負レンズを配置した負レンズ先行型(ネガティブリード型)のズームレンズ系が提案されている(特許文献1、2)。   On the other hand, mobile phones equipped with an image sensor of 1 to 2 megapixels have been developed with higher image quality. On the other hand, there is a growing need for zoom lenses as photographing lenses. As a zoom lens compatible with such a small optical device, a negative lens preceding type (negative lead type) zoom lens system in which a negative lens is disposed on the object side has been proposed (Patent Documents 1 and 2).

特許文献1では、物体側から像側へ順に、負、正、正の屈折力のレンズ群より成る3群構成で第1,第2レンズ群の間隔が減少し、第2,第3レンズ群の間隔が増加するように第1、第2レンズ群を移動させた全系として3枚のレンズより成るズームレンズが開示されている。   In Patent Document 1, in order from the object side to the image side, the distance between the first and second lens groups decreases in the three-group configuration including the lens groups having negative, positive, and positive refractive powers, and the second and third lens groups. A zoom lens composed of three lenses is disclosed as the entire system in which the first and second lens groups are moved so that the distance between them increases.

このようにレンズ枚数を少なくし、レンズ系全体の小型化を達成している。   In this way, the number of lenses is reduced, and the entire lens system is reduced in size.

さらに第3レンズ群をズーミングの際に固定とした、正の屈折力で構成することで、射出瞳を長くしつつ、レンズ系全体の小型化を図っている。   Further, the third lens group is configured with a positive refractive power that is fixed during zooming, thereby reducing the size of the entire lens system while lengthening the exit pupil.

又、特許文献2では、全体として5ないし6枚のレンズで構成される特許文献1と同様の3群構成のズームレンズを開示している。   Further, Patent Document 2 discloses a zoom lens having a three-group configuration similar to Patent Document 1 that is composed of 5 to 6 lenses as a whole.

特許文献1、2のズームレンズでは撮像素子への光線の入射角度が垂直入射から大きくずれて入射すると撮像素子の表面から受光部までの構造物によりケラレが発生するのでこのときのケラレを防いでいる。
特開2003−177314号公報 特開2004−4765号公報
In the zoom lenses disclosed in Patent Documents 1 and 2, when the incident angle of the light beam to the image sensor is significantly deviated from the vertical incidence, vignetting is generated by the structure from the surface of the image sensor to the light receiving unit. Yes.
JP 2003-177314 A Japanese Patent Laid-Open No. 2004-4765

特許文献1で開示されているズームレンズの各実施例は前述のメガピクセル以上のセンサーへの対応は光学性能上困難である。   In each of the embodiments of the zoom lens disclosed in Patent Document 1, it is difficult to cope with the above-described sensor having a megapixel or more in terms of optical performance.

又、特許文献2の各実施例におけるレンズ性能はメガピクセルセンサーに対応しているが、沈胴式カメラを前提として設計されているため、光学系としてのレンズ全長が長く、携帯電話やPDA等の携帯端末に搭載できるまでの小型化が必ずしも十分でない。   In addition, the lens performance in each example of Patent Document 2 corresponds to a megapixel sensor, but since it is designed on the assumption of a retractable camera, the total length of the lens as an optical system is long, such as a mobile phone or PDA. Miniaturization until it can be mounted on a portable terminal is not always sufficient.

特許文献1、2のズームレンズにおいては、更に構成レンズ枚数を増やすことで光学性能を向上させることができる。   In the zoom lenses disclosed in Patent Documents 1 and 2, the optical performance can be improved by further increasing the number of constituent lenses.

しかしながら、射出瞳を長くするとレンズ系の有効径が全体としてセンサーサイズに近くなり、その結果としてレンズ系の厚みをより厚くする必要が生じ、ひいてはレンズ全長が長くなってくる。   However, if the exit pupil is lengthened, the effective diameter of the lens system as a whole becomes close to the sensor size, and as a result, it is necessary to increase the thickness of the lens system, which in turn increases the overall length of the lens.

一般に、ズームレンズを構成する各レンズ群のレンズ枚数が多いと、各レンズ群の光軸上の長さが長くなり、また各レンズ群のズーミング及びフォーカシングにおける移動量が大きいとレンズ全長が長くなり、レンズ系全体の小型化が難しくなる。   In general, if the number of lenses in each lens group constituting the zoom lens is large, the length of each lens group on the optical axis becomes long, and if the amount of movement in zooming and focusing of each lens group is large, the total lens length becomes long. This makes it difficult to reduce the size of the entire lens system.

本発明は、構成レンズ枚数が比較的少なく、且つ所望のズーム比を有し、高い光学性能を有するズームレンズ及びそれを有する撮像装置の提供を目的とする。   An object of the present invention is to provide a zoom lens having a relatively small number of constituent lenses, a desired zoom ratio, and high optical performance, and an image pickup apparatus having the same.

この他本発明は、メガピクセル以上の撮像素子に対応しつつ非常にレンズ全長が短く(小型化)且つ、高い光学性能を有するズームレンズおよびそれを用いた撮像装置の提供を目的とする。   Another object of the present invention is to provide a zoom lens having a very short total lens length (miniaturized) and having high optical performance, and an image pickup apparatus using the same, corresponding to an image pickup device having megapixels or more.

本発明のズームレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、正の屈折力の第3レンズ群より成り、ズーミングに際して、該第1レンズ群、第2レンズ群が移動するズームレンズにおいて、該第1レンズ群は、2枚のレンズから成り、該第1レンズ群の焦点距離をf1、該第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw、ftとするとき、
1.5≦ft/fw
1.5<|f1|/f2<2.5
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. At this time, in the zoom lens in which the first lens group and the second lens group move, the first lens group includes two lenses, and the focal length of the first lens group is f1, and the second lens group When the focal length is f2, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fw and ft, respectively.
1.5 ≦ ft / fw
1.5 <| f1 | / f2 <2.5
It is characterized by satisfying the following conditions.

本発明によれば、構成レンズ枚数が比較的少なく、且つ所望のズーム比を有し、高い光学性能を有するズームレンズ得られる。   According to the present invention, a zoom lens having a relatively small number of constituent lenses, a desired zoom ratio, and high optical performance can be obtained.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1は本発明の実施例1のズームレンズの広角端におけるレンズ断面図、図2、図3はそれぞれ実施例1のズームレンズの広角端、望遠端における収差図である。実施例1はズーム比1.88、開口比3.2〜4.54程度のズームレンズである。   FIG. 1 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 1 of the present invention, and FIGS. 2 and 3 are aberration diagrams at the wide-angle end and telephoto end of the zoom lens according to Embodiment 1, respectively. Example 1 is a zoom lens having a zoom ratio of 1.88 and an aperture ratio of about 3.2 to 4.54.

図4は本発明の実施例2のズームレンズの広角端におけるレンズ断面図、図5、図6はそれぞれ実施例2のズームレンズの広角端、望遠端における収差図である。実施例2はズーム比1.88、開口比3.50〜5.04程度のズームレンズである。   FIG. 4 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 2 of the present invention, and FIGS. 5 and 6 are aberration diagrams at the wide-angle end and telephoto end of the zoom lens according to Embodiment 2, respectively. The second embodiment is a zoom lens having a zoom ratio of 1.88 and an aperture ratio of about 3.50 to 5.04.

図7は本発明の実施例3のズームレンズの広角端におけるレンズ断面図、図8、図9はそれぞれ実施例3のズームレンズの広角端、望遠端における収差図である。実施例3はズーム比2、開口比3.00〜4.48程度のズームレンズである。   FIG. 7 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention, and FIGS. 8 and 9 are aberration diagrams at the wide-angle end and telephoto end of the zoom lens according to Embodiment 3, respectively. Example 3 is a zoom lens having a zoom ratio of 2 and an aperture ratio of about 3.00 to 4.48.

図10は本発明の実施例4のズームレンズの広角端におけるレンズ断面図、図11、図12はそれぞれ実施例4のズームレンズの広角端、望遠端における収差図である。実施例4はズーム比2、開口比3.72〜5.70程度のズームレンズである。   FIG. 10 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 4 of the present invention. FIGS. 11 and 12 are aberration diagrams at the wide-angle end and telephoto end of the zoom lens according to Embodiment 4, respectively. The fourth exemplary embodiment is a zoom lens having a zoom ratio of 2 and an aperture ratio of about 3.72 to 5.70.

図13は、本発明のズームレンズを有した携帯機器の概略図である。   FIG. 13 is a schematic view of a portable device having the zoom lens of the present invention.

図14は、本発明のズームレンズを有した撮像装置の概略図である。   FIG. 14 is a schematic diagram of an imaging apparatus having the zoom lens of the present invention.

各実施例のズームレンズは、撮像装置(光学機器)に用いられる撮影レンズ系であり、レンズ断面図において、左方が物体側で、右方が像側である。   The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus (optical apparatus). In the lens cross-sectional view, the left side is the object side, and the right side is the image side.

レンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群である。   In the lens cross-sectional view, L1 is a first lens group having negative refractive power (optical power = reciprocal of focal length), L2 is a second lens group having positive refractive power, and L3 is a third lens group having positive refractive power. It is.

SPは開口絞りである。   SP is an aperture stop.

Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する感光面が置かれる。   G is an optical block corresponding to an optical filter, a face plate, a quartz low-pass filter, an infrared cut filter, or the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, a photosensitive surface corresponding to an imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed.

収差図において、d,gは各々d線及びg線、ΔM、ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線によって表している。   In the aberration diagrams, d and g are d-line and g-line, respectively, ΔM and ΔS are meridional image plane, sagittal image plane, and lateral chromatic aberration are represented by g-line.

尚、以下の各実施例において広角端と望遠端は変倍用レンズ群(第2レンズ群L2)が機構上、光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。   In each of the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit (second lens unit L2) is positioned at both ends of the range in which it can move on the optical axis due to the mechanism.

各実施例では、物体側から像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、正の屈折力の第3レンズ群より成り、ズーミングに際して該第1、第2レンズ群を移動させている。   In each embodiment, in order from the object side to the image side, the first lens group having a negative refractive power, the second lens group having a positive refractive power, and the third lens group having a positive refractive power are provided. The first and second lens groups are moved.

特に広角端から望遠端へのズーミングに際して、第1レンズ群L1は、像側に凸状の軌跡を描くように移動し、第2レンズ群L2は、第3レンズ群L3との間隔が広がるように物体側に移動している。   In particular, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves so as to draw a convex locus on the image side, and the second lens unit L2 increases the distance from the third lens unit L3. Has moved to the object side.

第1レンズ群L1は、2枚のレンズ、特に物体側より像側へ順に、負の屈折力の第1レンズと正の屈折力の第2レンズとから構成されることを基本構成としている。   The first lens unit L1 is basically composed of two lenses, particularly a first lens having a negative refractive power and a second lens having a positive refractive power in order from the object side to the image side.

このようにレンズ群を3群有することで、メガピクセル以上のセンサーへの対応ができる良好な光学性能を得ている。   By having three lens groups in this way, good optical performance capable of dealing with sensors of megapixels or more is obtained.

また、第1レンズ群L1を負と正の屈折力の2枚のレンズのみで構成することで、レンズ群内における偏芯で発生する収差を相対的に打ち消しあい、レンズ群内の敏感度の低減を図り、さらには少ないレンズ枚数(全体として5枚以下)での全系の小型化を図っている。   In addition, by configuring the first lens unit L1 with only two lenses having negative and positive refractive powers, aberrations caused by decentration in the lens unit can be canceled relatively, and the sensitivity in the lens unit can be reduced. The entire system is reduced in size by reducing the number of lenses (5 or less as a whole).

◎本実施例では、望遠端の焦点距離をft、広角端の焦点距離をfw、第1レンズ群L1の焦点距離をf1、第2レンズ群L2の焦点距離をf2とするとき、
1.5≦ft/fw・・・・(1)
1.5<|f1|/f2<2.5・・・・(2)
を満足している。
In this embodiment, when the focal length at the telephoto end is ft, the focal length at the wide-angle end is fw, the focal length of the first lens unit L1 is f1, and the focal length of the second lens unit L2 is f2.
1.5 ≦ ft / fw (1)
1.5 <| f1 | / f2 <2.5 (2)
Is satisfied.

次に各条件式の技術的内容を説明する。   Next, the technical contents of each conditional expression will be described.

条件式(1)と、条件式(2)は、レンズ系全体のパワー(屈折力)、及び各レンズ群のパワー配置を規定しており、ズーミングの際に移動する第2レンズ群L2のパワーを強くすることにより、第1、第2レンズ群間の距離を短くして、レンズ系全体の小型化を達成する為のものである。   Conditional expression (1) and conditional expression (2) define the power (refractive power) of the entire lens system and the power arrangement of each lens group, and the power of the second lens group L2 that moves during zooming. By strengthening, the distance between the first and second lens groups is shortened to achieve downsizing of the entire lens system.

条件式(1)を満足しても、条件式(2)の下限を超えてしまうと、所定の変倍比を得るのに第1レンズ群L1と第2レンズ群L2との間隔を大きくしなければならず、広角端でのレンズ全長が長くなってしまう。逆に上限を超えてしまうと、望遠側でのテレ比が大きくなり、望遠端でのレンズ全長が大きくなってくる。   Even if the conditional expression (1) is satisfied, if the lower limit of the conditional expression (2) is exceeded, the distance between the first lens unit L1 and the second lens unit L2 is increased in order to obtain a predetermined zoom ratio. Therefore, the total lens length at the wide-angle end becomes long. On the contrary, if the upper limit is exceeded, the tele ratio on the telephoto side increases, and the total lens length at the telephoto end increases.

更に好ましくは、条件式(1)、(2)の数値範囲を
1.7≦ft/fw・・・(1a)
1.5 < |f1|/f2 < 2.3・・・(2a)
とするのが良く、これによれば更なるレンズ系全体の小型化及び高い光学性能を得るのが容易となる。
More preferably, the numerical ranges of the conditional expressions (1) and (2) are set to 1.7 ≦ ft / fw (1a).
1.5 <| f1 | / f2 <2.3 (2a)
According to this, it becomes easy to obtain further downsizing of the entire lens system and high optical performance.

以上のように各実施例では、条件式(1)、(2)を満足することによって、レンズ系全体を小型化し、高い光学性能を維持しつつレンズの構成枚数を減らした簡易な構成のズームレンズを得ている。   As described above, in each embodiment, by satisfying conditional expressions (1) and (2), the entire lens system is reduced in size, and a zoom with a simple configuration in which the number of lenses is reduced while maintaining high optical performance. I have a lens.

◎第1レンズ群L1は、物体側から像側へ順に、負の屈折力の第11レンズG11と正の屈折力の第12レンズG12より成り、第11レンズG11の物体側と像側の曲率半径を各々R11、R12、第12レンズG12の物体側と像側の曲率半径をR13、R14とするとき、
1.0<|R11/R12|・・・・(3)
|R13/R14|<1.2・・・・(4)
なる条件を満足している。
The first lens unit L1 includes, in order from the object side to the image side, an eleventh lens G11 having a negative refractive power and a twelfth lens G12 having a positive refractive power. The curvature of the eleventh lens G11 on the object side and the image side is When the radii are R11 and R12, and the curvature radii of the object side and the image side of the twelfth lens G12 are R13 and R14, respectively.
1.0 <| R11 / R12 | (3)
| R13 / R14 | <1.2 (4)
Is satisfied.

条件式(3)、(4)は、第1レンズ群L1に使用する2つのレンズの各レンズ面の曲率半径を規定する式であり、条件式(3)、(4)から外れてしまうと、第1レンズ群L1のパワーが弱くなってしまい、レンズ系全体の小型化が困難となる。   Conditional expressions (3) and (4) are expressions that define the radii of curvature of the lens surfaces of the two lenses used in the first lens unit L1, and deviate from conditional expressions (3) and (4). The power of the first lens unit L1 becomes weak and it is difficult to reduce the size of the entire lens system.

更に好ましくは、条件式(3)、(4)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical ranges of conditional expressions (3) and (4) are set as follows.

1.5<|R11/R12|・・・・(3a)
|R13/R14|<1.0・・・・(4a)
◎第11レンズG11と第12レンズG12の材料のアッベ数を各々ν11、ν12とするとき、
1.0<ν11/ν12・・・・(5)
なる条件を満足している。
1.5 <| R11 / R12 | ... (3a)
| R13 / R14 | <1.0 (4a)
When the Abbe numbers of the materials of the eleventh lens G11 and the twelfth lens G12 are ν11 and ν12, respectively.
1.0 <ν11 / ν12 (5)
Is satisfied.

条件式(5)は、第1レンズ群L1に使用する2つのレンズの材料のアッベ数を規定する式であり、条件式(5)から外れてしまうと、軸上色収差の良好なる補正が困難となり好ましくない。   Conditional expression (5) defines the Abbe number of the materials of the two lenses used in the first lens unit L1, and if it deviates from conditional expression (5), it is difficult to correct axial chromatic aberration. It is not preferable.

更に好ましくは、条件式(5)の数値を次の如く設定するのが良い。   More preferably, the numerical value of conditional expression (5) is set as follows.

1.1<ν11/ν12・・・・(5a)
本実施例におけるズームレンズは、携帯電話やPDA等の携帯端末に搭載用の撮影レンズとして用いるときには、ズームレンズを保持する鏡筒は沈胴しないタイプとし、コンパクト化のため、後述する数値実施例をmm単位を表わしたときバックフォーカスを2.3mm以下にし、第1レンズ群L1の最も物体側のレンズ面からセンサー面(撮像面)までの距離を15mm以内としている。
1.1 <ν11 / ν12 (5a)
When the zoom lens in this embodiment is used as a photographic lens mounted on a portable terminal such as a mobile phone or a PDA, the lens barrel that holds the zoom lens is a type that does not retract. When expressed in mm, the back focus is 2.3 mm or less, and the distance from the lens surface closest to the object side of the first lens unit L1 to the sensor surface (imaging surface) is within 15 mm.

◎無限遠物体から近距離物体へフォーカスフォーカスを行う場合は第3レンズ群L3を後方へ移動することによって行っている。尚その他のレンズ群もしくはレンズ全体を動かしてフォーカスを行ってもよい。   When focusing from an object at infinity to an object at a short distance, the third lens unit L3 is moved backward. Note that focusing may be performed by moving other lens groups or the entire lens.

次に各実施例のズームレンズの特徴について順次説明する。   Next, features of the zoom lens of each embodiment will be described sequentially.

各実施例のズームレンズでは、物体側より像側へ順に、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3の3つのレンズ群を有しており、広角端から望遠端へのズーミングに際して、第1レンズ群L1が像側に凸状の軌跡を描くように移動し、絞りSPと第2レンズ群L2が物体側に一体に移動し、第3レンズ群L3は固定もしくは像面側に移動している。   In the zoom lens of each embodiment, the first lens unit L1 having a negative refractive power, the second lens unit L2 having a positive refractive power, and the third lens unit L3 having a positive refractive power are sequentially arranged from the object side to the image side. The first lens unit L1 moves so as to draw a convex locus on the image side during zooming from the wide-angle end to the telephoto end, and the stop SP and the second lens unit L2 are on the object side. The third lens unit L3 is fixed or moved to the image plane side.

各実施例のズームレンズは、第2レンズ群L2の移動により主な変倍を行い、第1レンズ群L1の像側に凸状の軌跡を描く移動によって変倍に伴う像点の移動を補正している。また、絞りSPを第2レンズ群L2の最も物体側に置き、広角側での入射瞳と第1レンズ群L1との距離を縮めることで第1レンズ群L1を構成するレンズの外径の増大を抑えると共に、第2レンズ群L2の物体側に配置した絞りSPを挟んで第1レンズ群L1と第3レンズ群L3とで軸外の諸収差を打ち消すことで構成レンズ枚数を増やさずに良好な光学性能を得ている。   The zoom lens of each embodiment performs main zooming by moving the second lens unit L2, and corrects movement of the image point accompanying zooming by moving a convex locus on the image side of the first lens unit L1. is doing. Further, the outer diameter of the lenses constituting the first lens unit L1 is increased by placing the stop SP on the most object side of the second lens unit L2 and reducing the distance between the entrance pupil on the wide angle side and the first lens unit L1. In addition, the first lens unit L1 and the third lens unit L3 cancel out various off-axis aberrations across the aperture stop SP disposed on the object side of the second lens unit L2, and it is good without increasing the number of constituent lenses. Has obtained excellent optical performance.

各実施例のズームレンズは、第1レンズ群L1が1枚の負レンズ(負の屈折力のレンズ)と1枚の正レンズ(正の屈折力のレンズ)を有している。そしてレンズ系の全体としてレンズ構成枚数が5枚以下で構成している。   In the zoom lens of each embodiment, the first lens unit L1 has one negative lens (a lens having a negative refractive power) and one positive lens (a lens having a positive refractive power). The entire lens system is composed of 5 or less lenses.

図1の実施例1においては、全体として5枚のレンズより成っている。   In Example 1 of FIG. 1, it consists of five lenses as a whole.

負の屈折力の第1レンズ群L1を物体側から像側へ順に、像側の面が凹でメニスカス形状の負レンズ、物体側の面が凸でメニスカス形状の正レンズの2枚のレンズで構成している。   In order from the object side to the image side, the first lens unit L1 having a negative refractive power is composed of two lenses: a negative meniscus lens having a concave image side surface, and a positive meniscus lens having a convex object side surface. It is composed.

正の屈折力の第2レンズ群L2を物体側から像側へ順に、両レンズ面が凸形状の正レンズ、両レンズ面が凹形状の負レンズで構成している。   In order from the object side to the image side, the second lens unit L2 having a positive refractive power is composed of a positive lens having a convex lens surface and a negative lens having a concave lens surface.

また、正の屈折力の第3レンズ群L3を像側の面が凹でメニスカス形状の正レンズで構成している。   The third lens unit L3 having a positive refractive power is constituted by a meniscus positive lens having a concave surface on the image side.

図4の実施例2においては、全体として5枚のレンズより成っている。   In the second embodiment shown in FIG. 4, the lens is composed of five lenses as a whole.

負の屈折力の第1レンズ群L1を物体側から像側へ順に、像側の面が凹形状の負レンズ、物体側の面が凸でメニスカス形状の正レンズの2枚のレンズで構成している。   The first lens unit L1 having negative refractive power is composed of two lenses in order from the object side to the image side: a negative lens having a concave surface on the image side, and a positive lens having a convex meniscus shape on the object side. ing.

正の屈折力の第2レンズ群を物体側から像側へ順に、両レンズ面が凸形状の正レンズ、両レンズ面が凹形状の負レンズで構成している。また、正の屈折力の第3レンズ群L3を両レンズ面が凸形状の正レンズで構成している。   In order from the object side to the image side, the second lens group having a positive refractive power is composed of a positive lens having convex lens surfaces and a negative lens having concave lens surfaces. Further, the third lens unit L3 having a positive refractive power is constituted by a positive lens having convex lens surfaces.

図7の実施例3においては、全体として5枚のレンズより成っている。   In Example 3 shown in FIG. 7, the lens is composed of five lenses as a whole.

負の屈折力の第1レンズ群L1を物体側から像側へ順に、両レンズ面が凹形状の負レンズ、物体側の面が凸でメニスカス形状の正レンズの2枚のレンズで構成している。   In order from the object side to the image side, the first lens unit L1 having negative refractive power is composed of two lenses, a negative lens having a concave shape on both lens surfaces and a positive meniscus lens having a convex surface on the object side. Yes.

正の屈折力の第2レンズ群L2を物体側から像側へ順に、両レンズ面が凸形状の正レンズ、両レンズ面が凹形状の負レンズで構成している。また、正の屈折力の第3レンズ群を両レンズ面が凸形状の正レンズで構成している。   In order from the object side to the image side, the second lens unit L2 having a positive refractive power is composed of a positive lens having a convex lens surface and a negative lens having a concave lens surface. Further, the third lens unit having a positive refractive power is constituted by a positive lens having convex both lens surfaces.

図10の実施例4においては、全体として4枚のレンズより成っている。   In Example 4 of FIG. 10, it consists of four lenses as a whole.

負の屈折力の第1レンズ群L1を物体側から像側へ順に、像側の面が凹でメニスカス形状の負レンズ、物体側の面が凸でメニスカス形状の正レンズの2枚のレンズで構成している。   In order from the object side to the image side, the first lens unit L1 having a negative refractive power is composed of two lenses: a negative meniscus lens having a concave image side surface, and a positive meniscus lens having a convex object side surface. It is composed.

正の屈折力の第2レンズ群L2を、両レンズ面が凸形状の正レンズで構成している。また、正の屈折力の第3レンズ群L3を両レンズ面が凸形状の正レンズで構成している。   The second lens unit L2 having a positive refractive power is constituted by a positive lens having convex lens surfaces. Further, the third lens unit L3 having a positive refractive power is constituted by a positive lens having convex lens surfaces.

以上のように各レンズ群を所望の屈折力配置と収差補正とを両立するレンズ構成とすることにより、良好な光学性能を保ちつつ、レンズ系をコンパクトにしている。   As described above, each lens group has a lens configuration that achieves both desired refractive power arrangement and aberration correction, thereby making the lens system compact while maintaining good optical performance.

第1レンズ群L1は、軸外主光線を絞りSP中心に瞳結像させる役割を持っており、特に広角側においては軸外主光線の屈折量が大きいために軸外諸収差、特に非点収差と歪曲収差が発生し易い。   The first lens unit L1 has a role of forming an off-axis chief ray at the center of the stop SP and forms a pupil image at the center of the aperture stop SP. Aberration and distortion are likely to occur.

そこで、各実施例では、第1レンズ群L1を通常の広画角のレンズ系と同様、最も物体側のレンズ有効径の増大が抑えられる負レンズと正レンズで構成している。   Therefore, in each embodiment, the first lens unit L1 is composed of a negative lens and a positive lens that can suppress an increase in the effective lens diameter closest to the object side, as in a normal wide-angle lens system.

そして、負レンズの像側のレンズ面を非球面とすることにより、非点収差と歪曲収差をバランス良く補正すると共に、2枚と言う少ない枚数で第1レンズ群L1を構成し、レンズ全体をコンパクトにしている。   By making the lens surface on the image side of the negative lens an aspherical surface, astigmatism and distortion are corrected in a well-balanced manner, and the first lens unit L1 is configured with a small number of two, and the entire lens is It is compact.

次に第2レンズ群L2は、少なくとも1枚の両レンズ面が凸形状の正レンズを有し、第1レンズ群L1を射出した軸外主光線の屈折角を少なくし、軸外諸収差が発生しない様な形状としている。また、正レンズは、最も軸上光線の通る高さが高く、主に球面収差、コマ収差の補正に関与している。   Next, the second lens unit L2 has at least one positive lens whose both lens surfaces are convex, reduces the refraction angle of the off-axis chief ray emitted from the first lens unit L1, and has various off-axis aberrations. The shape does not occur. In addition, the positive lens has the highest height for passing on-axis rays, and is mainly involved in correction of spherical aberration and coma aberration.

また、各実施例においては、正レンズの物体側のレンズ面を非球面とするのが良い。これによれば、球面収差、コマ収差を良好に補正するのが容易となる。   In each embodiment, the lens surface on the object side of the positive lens is preferably an aspherical surface. According to this, it becomes easy to satisfactorily correct spherical aberration and coma.

また、実施例1〜3では、正レンズの像面側に負レンズを配置し、正レンズのみでは補正できない軸上色収差及び倍率色収差の補正を行っている。   In Examples 1 to 3, a negative lens is disposed on the image plane side of the positive lens, and axial chromatic aberration and lateral chromatic aberration that cannot be corrected only by the positive lens are corrected.

次に第3レンズ群L3は、両レンズ面が凸形状の正レンズもしくは像側の面が凹でメニスカス状の正レンズより構成している。   Next, the third lens unit L3 includes a positive lens whose convex surfaces are convex or a meniscus positive lens whose concave surface on the image side is concave.

各実施例では正レンズの物体側の面は非球面形状であり、これによりズーム全域での軸外諸収差を良好に補正している。   In each embodiment, the object side surface of the positive lens has an aspherical shape, and thereby various off-axis aberrations in the entire zoom range are corrected favorably.

以上のように、各実施例によれば、負、正、正の屈折力のレンズ群の3群からなるズームレンズで、構成レンズ枚数が少なくても前述の如く各レンズ群の屈折力を設定することでレンズ系全体の小型化を図りつつメガピクセル以上の撮像素子にも対応可能な、良好な光学性能のズームレンズを達成している。   As described above, according to each embodiment, the zoom lens includes three groups of negative, positive, and positive refractive power groups, and the refractive power of each lens group is set as described above even if the number of constituent lenses is small. As a result, a zoom lens having a good optical performance that can be applied to an image pickup device of megapixels or more while reducing the size of the entire lens system is achieved.

次に本発明の数値実施例を示す。尚、数値実施例においてiは物体側からの順番を示し、Riは物体側より順にi番目の面の曲率半径、Diは物体側より順にi番目のレンズ厚および空気間隔、Niとνiはそれぞれ物体側より順にi番目の材料のd線での屈折率とアッベ数である。   Next, numerical examples of the present invention will be shown. In the numerical examples, i indicates the order from the object side, Ri is the radius of curvature of the i-th surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are respectively The refractive index and Abbe number at the d-line of the i-th material in order from the object side.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近
軸曲率半径、kを離心率、B、C、D、Eを各々非球面係数としたとき、
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the eccentricity, and B, C, D, and E are not Spherical coefficient

なる式で表している。
また例えば「e−Z」の表示は「10-Z」を意味する。fは焦点距離、FnoはFナンバー、ωは半画角を示す。
It is expressed by the following formula.
For example, “e-Z” means “10 −Z ”. f indicates a focal length, Fno indicates an F number, and ω indicates a half angle of view.

前述の各条件式と数値実施例における諸数値との関係を表1に示す。
数値実施例 1

f=3.80〜 7.15 Fno= 3.20 〜 4.54 2ω=63.2゜ 〜 34.9゜

R1= 12.009 D1 = 0.50 N 1 = 1.530410 ν 1 = 56.0
R2= 2.251 D2 = 0.54
R3= 2.125 D3 = 0.95 N 2 = 1.859600 ν 2 = 40.4
R4= 2.188 D4 = 可変
R5= 絞り D5 = 0.10
R6= 1.98 D6 = 1.00 N 3 = 1.773470 ν 3 = 47.2
R7= -4.16 D7 = 0.38
R8= -7.251 D8 = 0.50 N 4 = 1.906808 ν 4 = 21.2
R9= 2.344 D9 = 可変
R10 = -311.442 D10 = 1.30 N 5 = 1.583060 ν 5 = 30.2
R11 = -3.144 D11 = 0.50
R12 = ∞ D12 = 0.70 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞


\焦点距離 3.80 5.07 7.15
可変間隔\
D 4 2.89 1.51 0.30
D 9 1.21 1.94 3.15

非球面係数

R2 k=-1.83986e-01 B=1.24001e-02 C=2.19434e-03 D=3.41949e-04
E=-1.95515e-05

R3 k=-4.15194e-01 B=9.22038e-03 C=1.94799e-04 D=8.35231e-04
E=-1.13528e-04

R6 k=-1.25416e+00 B=6.00255e-03 C=-6.33555e-03 D=2.80526e-03
E=-8.30079e-04

R9 k=3.88096e+00 B=8.73855e-03 C=-5.27851e-02 D=8.25766e-02
E=-8.04026e-02

R10 k=-2.10600e+06 B=-4.49747e-03 C=6.97414e-04 D=-1.15875e-04
E=6.32031e-06

数値実施例 2

f=3.80〜 7.14 Fno= 3.50 〜 5.04 2ω=63.3゜ 〜 34.8゜

R1 = 110.952 D1 = 0.50 N 1 = 1.524700 ν 1 = 56.2
R2 = 1.891 D2 = 0.43
R3 = 2.375 D3 = 0.95 N 2 = 1.882997 ν 2 = 40.8
R4 = 3.387 D4 = 可変
R5 = 絞り D5 = 0.10
R6 = 2.152 D6 = 1.00 N 3 = 1.773770 ν 3 = 47.2
R7 = -4.522 D7 = 0.33
R8 = -12.838 D8 = 0.50 N 4 = 1.906808 ν 4 = 21.2
R9 = 2.421 D9 = 可変
R10 = 10.891 D10 = 1.30 N 5 = 1.583060 ν 5 = 30.2
R11 = -6.131 D11 = 0.50
R12 = ∞ D12 = 0.70 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞

\焦点距離 3.80 5.27 7.14
可変間隔\
D 4 2.79 1.31 0.30
D 9 1.34 2.44 3.83

非球面係数
R2 k=-4.71683e-02 B=-2.92201e-03 C=7.77841e-04 D=-3.80306e-04
E=-1.76887e-04

R6 k=-1.09780e+00 B=2.33860e-03 C=-1.08221e-03 D=-4.54431e-03
E=3.51702e-03

R9 k=5.15712e-01 B=2.52169e-02 C=-1.64825e-03 D=1.99190e-02
E=-1.39614e-02

R10 k=2.60279e+00 B=-2.26755e-03 C=9.18031e-04 D=-1.50534e-04
E=9.98272e-06

数値実施例 3

f=3.70〜 7.40 Fno= 3.00 〜 4.48 2ω=63.5゜ 〜 32.5゜

R1 = -17.954 D1 = 0.41 N 1 = 1.603112 ν 1 = 60.6
R2 = 1.998 D2 = 0.58
R3 = 3.768 D3 = 1.07 N 2 = 1.882997 ν 2 = 40.8
R4 = 12.046 D4 = 可変
R5 = 絞り D5 = 0.10
R6 = 2.191 D6 = 1.35 N 3 = 1.743300 ν 3 = 49.3
R7 = -5.209 D7 = 0.15
R8 = -5.302 D8 = 0.70 N 4 = 1.846660 ν 4 = 23.8
R9 = 4.047 D9 = 可変
R10 = 5.972 D10 = 0.80 N 5 = 1.583060 ν 5 = 30.2
R11 = -53.905 D11 = 0.30
R12 = ∞ D12 = 0.70 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞

\焦点距離 3.70 5.48 7.40
可変間隔\
D 4 3.30 1.35 0.30
D 9 2.26 3.85 5.56

非球面係数
R2 k=-8.41865e-01 B=-4.08956e-03 C= 4.35229e-03 D=-1.66571e-03
E=2.37998e-04

R6 k=-1.74139e+00 B= 1.75496e-02 C= 1.66289e-03 D=-1.61387e-03
E=4.92379e-04

R9 k= 5.56997e+00 B= 2.77705e-02 C=-1.55451e-02 D= 2.96193e-02
E=-1.14081e-02

R10 k=-1.52784e+00 B=-2.50682e-03 C= 3.04588e-04 D= 1.82816e-05
E=-4.46231e-06

数値実施例 4

f=3.75〜 7.50 Fno= 3.72 〜 5.70 2ω=54.3゜ 〜 25.8゜

R1 = 4.797 D1 = 1.20 N 1 = 1.901355 ν 1 = 31.6
R2 = 2.334 D2 = 0.59
R3 = 3.600 D3 = 1.20 N 2 = 1.846660 ν 2 = 23.8
R4 = 4.900 D4 = 可変
R5 = 絞り D5 = 0.15
R6 = 5.630 D6 = 0.85 N 3 = 1.487490 ν 3 = 70.2
R7 = -5.110 D7 = 可変
R8 = 7.544 D8 = 0.97 N 4 = 1.487490 ν 4 = 70.2
R9 = -24.379 D9 = 可変
R10 = ∞ D10 = 0.30 N 5 = 1.516330 ν 5 = 64.1
R11 = ∞

\焦点距離 3.75 5.12 7.50
可変間隔\
D 4 5.28 3.71 1.50
D 7 0.70 4.03 6.87
D 9 3.05 1.76 0.66

非球面係数

R2 k=-6.27185e-01 B=5.08216e-03 C=1.61761e-04 D=2.61937e-05
E=1.25814e-05

R6 k=-1.65518e+01 B=-1.21900e-02 C=1.16042e-01 D=-2.60088e-01
E=2.08789e-01

R8 k=-1.97176e+01 B=9.91648e-06 C=1.22098e-04 D=-5.96814e-05
E=-4.32276e-05
Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.
Numerical example 1

f = 3.80-7.15 Fno = 3.20-4.54 2ω = 63.2 °-34.9 °

R1 = 12.009 D1 = 0.50 N 1 = 1.530410 ν 1 = 56.0
R2 = 2.251 D2 = 0.54
R3 = 2.125 D3 = 0.95 N 2 = 1.859600 ν 2 = 40.4
R4 = 2.188 D4 = variable
R5 = Aperture D5 = 0.10
R6 = 1.98 D6 = 1.00 N 3 = 1.773470 ν 3 = 47.2
R7 = -4.16 D7 = 0.38
R8 = -7.251 D8 = 0.50 N 4 = 1.906808 ν 4 = 21.2
R9 = 2.344 D9 = variable
R10 = -311.442 D10 = 1.30 N 5 = 1.583060 ν 5 = 30.2
R11 = -3.144 D11 = 0.50
R12 = ∞ D12 = 0.70 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞


\ Focal length 3.80 5.07 7.15
Variable interval \
D 4 2.89 1.51 0.30
D 9 1.21 1.94 3.15

Aspheric coefficient

R2 k = -1.83986e-01 B = 1.24001e-02 C = 2.19434e-03 D = 3.41949e-04
E = -1.95515e-05

R3 k = -4.15194e-01 B = 9.22038e-03 C = 1.94799e-04 D = 8.35231e-04
E = -1.13528e-04

R6 k = -1.25416e + 00 B = 6.00255e-03 C = -6.33555e-03 D = 2.80526e-03
E = -8.30079e-04

R9 k = 3.88096e + 00 B = 8.73855e-03 C = -5.27851e-02 D = 8.25766e-02
E = -8.04026e-02

R10 k = -2.10600e + 06 B = -4.49747e-03 C = 6.97414e-04 D = -1.15875e-04
E = 6.32031e-06

Numerical example 2

f = 3.80-7.14 Fno = 3.50-5.04 2ω = 63.3 °-34.8 °

R1 = 110.952 D1 = 0.50 N 1 = 1.524700 ν 1 = 56.2
R2 = 1.891 D2 = 0.43
R3 = 2.375 D3 = 0.95 N 2 = 1.882997 ν 2 = 40.8
R4 = 3.387 D4 = variable
R5 = Aperture D5 = 0.10
R6 = 2.152 D6 = 1.00 N 3 = 1.773770 ν 3 = 47.2
R7 = -4.522 D7 = 0.33
R8 = -12.838 D8 = 0.50 N 4 = 1.906808 ν 4 = 21.2
R9 = 2.421 D9 = variable
R10 = 10.891 D10 = 1.30 N 5 = 1.583060 ν 5 = 30.2
R11 = -6.131 D11 = 0.50
R12 = ∞ D12 = 0.70 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞

\ Focal length 3.80 5.27 7.14
Variable interval \
D 4 2.79 1.31 0.30
D 9 1.34 2.44 3.83

Aspheric coefficient
R2 k = -4.71683e-02 B = -2.92201e-03 C = 7.77841e-04 D = -3.80306e-04
E = -1.76887e-04

R6 k = -1.09780e + 00 B = 2.33860e-03 C = -1.08221e-03 D = -4.54431e-03
E = 3.51702e-03

R9 k = 5.15712e-01 B = 2.52169e-02 C = -1.64825e-03 D = 1.99190e-02
E = -1.39614e-02

R10 k = 2.60279e + 00 B = -2.26755e-03 C = 9.18031e-04 D = -1.50534e-04
E = 9.98272e-06

Numerical example 3

f = 3.70-7.40 Fno = 3.00-4.48 2ω = 63.5 °-32.5 °

R1 = -17.954 D1 = 0.41 N 1 = 1.603112 ν 1 = 60.6
R2 = 1.998 D2 = 0.58
R3 = 3.768 D3 = 1.07 N 2 = 1.882997 ν 2 = 40.8
R4 = 12.046 D4 = variable
R5 = Aperture D5 = 0.10
R6 = 2.191 D6 = 1.35 N 3 = 1.743300 ν 3 = 49.3
R7 = -5.209 D7 = 0.15
R8 = -5.302 D8 = 0.70 N 4 = 1.846660 ν 4 = 23.8
R9 = 4.047 D9 = variable
R10 = 5.972 D10 = 0.80 N 5 = 1.583060 ν 5 = 30.2
R11 = -53.905 D11 = 0.30
R12 = ∞ D12 = 0.70 N 6 = 1.516330 ν 6 = 64.1
R13 = ∞

\ Focal length 3.70 5.48 7.40
Variable interval \
D 4 3.30 1.35 0.30
D 9 2.26 3.85 5.56

Aspheric coefficient
R2 k = -8.41865e-01 B = -4.08956e-03 C = 4.35229e-03 D = -1.66571e-03
E = 2.37998e-04

R6 k = -1.74139e + 00 B = 1.75496e-02 C = 1.66289e-03 D = -1.61387e-03
E = 4.92379e-04

R9 k = 5.56997e + 00 B = 2.77705e-02 C = -1.55451e-02 D = 2.96193e-02
E = -1.14081e-02

R10 k = -1.52784e + 00 B = -2.50682e-03 C = 3.04588e-04 D = 1.82816e-05
E = -4.46231e-06

Numerical example 4

f = 3.75 to 7.50 Fno = 3.72 to 5.70 2ω = 54.3 ° to 25.8 °

R1 = 4.797 D1 = 1.20 N 1 = 1.901355 ν 1 = 31.6
R2 = 2.334 D2 = 0.59
R3 = 3.600 D3 = 1.20 N 2 = 1.846660 ν 2 = 23.8
R4 = 4.900 D4 = variable
R5 = Aperture D5 = 0.15
R6 = 5.630 D6 = 0.85 N 3 = 1.487490 ν 3 = 70.2
R7 = -5.110 D7 = variable
R8 = 7.544 D8 = 0.97 N 4 = 1.487490 ν 4 = 70.2
R9 = -24.379 D9 = variable
R10 = ∞ D10 = 0.30 N 5 = 1.516330 ν 5 = 64.1
R11 = ∞

\ Focal length 3.75 5.12 7.50
Variable interval \
D 4 5.28 3.71 1.50
D 7 0.70 4.03 6.87
D 9 3.05 1.76 0.66

Aspheric coefficient

R2 k = -6.27185e-01 B = 5.08216e-03 C = 1.61761e-04 D = 2.61937e-05
E = 1.25814e-05

R6 k = -1.65518e + 01 B = -1.21900e-02 C = 1.16042e-01 D = -2.60088e-01
E = 2.08789e-01

R8 k = -1.97176e + 01 B = 9.91648e-06 C = 1.22098e-04 D = -5.96814e-05
E = -4.32276e-05

次に本発明のズームレンズを用いた撮像装置の実施例を図13を用いて説明する。   Next, an embodiment of an image pickup apparatus using the zoom lens of the present invention will be described with reference to FIG.

図13において1は携帯電話本体、2は本発明のズームレンズ4が取り付けられた撮像モジュールであり、ズームレンズ4と撮像素子5から構成されている。6は撮像モジュールにて撮影された画像データを記録する記録手段であり、7は撮影時及び再生時には撮影被写体の撮影像を表示するための液晶表示部である。   In FIG. 13, reference numeral 1 denotes a mobile phone body, and 2 denotes an image pickup module to which the zoom lens 4 of the present invention is attached. The image pickup module includes the zoom lens 4 and the image sensor 5. Reference numeral 6 denotes recording means for recording image data taken by the imaging module, and reference numeral 7 denotes a liquid crystal display unit for displaying a photographic image of the photographic subject at the time of shooting and reproduction.

このように本発明のズームレンズを携帯電話等の機器に適用することにより、小型で、高画質の画像を提供できる携帯機器を実現している。   In this way, by applying the zoom lens of the present invention to a device such as a mobile phone, a small portable device capable of providing a high-quality image is realized.

次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施例を図14を用いて説明する。   Next, an embodiment of a digital still camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図14において、20はカメラ本体、21は本発明のズームレンズによって構成された撮影光学系、22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、23は撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリ、24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダーである。   In FIG. 14, reference numeral 20 denotes a camera body, 21 denotes a photographing optical system constituted by the zoom lens of the present invention, 22 denotes a CCD sensor or CMOS sensor built in the camera body and receiving a subject image formed by the photographing optical system 21. A solid-state image pickup device (photoelectric conversion device) such as 23, a memory 23 for recording information corresponding to the subject image photoelectrically converted by the image pickup device 22, and a liquid crystal display panel 24 are formed on the solid-state image pickup device 22. This is a viewfinder for observing the subject image.

このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Thus, by applying the zoom lens of the present invention to an image pickup apparatus such as a digital still camera, a small image pickup apparatus having high optical performance is realized.

本発明の数値実施例1のレンズ断面図Lens sectional view of Numerical Example 1 of the present invention 本発明の数値実施例1の広角端における諸収差Various aberrations at the wide angle end according to Numerical Example 1 of the present invention 本発明の数値実施例1の望遠端における諸収差Various aberrations at the telephoto end according to Numerical Example 1 of the present invention 本発明の数値実施例2のレンズ断面図Lens sectional view of Numerical Example 2 of the present invention 本発明の数値実施例2の広角端における諸収差Various aberrations at the wide angle end according to Numerical Example 2 of the present invention 本発明の数値実施例2の望遠端における諸収差Various aberrations at the telephoto end according to Numerical Example 2 of the present invention 本発明の数値実施例3のレンズ断面図Lens sectional view of Numerical Example 3 of the present invention 本発明の数値実施例3の広角端における諸収差Various aberrations at the wide angle end according to Numerical Embodiment 3 of the present invention 本発明の数値実施例3の望遠端における諸収差Various aberrations at the telephoto end according to Numerical Example 3 of the present invention 本発明の数値実施例4のレンズ断面図Lens sectional view of Numerical Example 4 of the present invention 本発明の数値実施例4の広角端における諸収差Various aberrations at the wide angle end according to Numerical Example 4 of the present invention 本発明の数値実施例4の望遠端における諸収差Various aberrations at the telephoto end according to Numerical Example 4 of the present invention 本発明の光学機器の実施例の要部概略図Schematic diagram of the main part of an embodiment of the optical apparatus of the present invention 本発明の撮像装置の実施例の要部概略図Schematic diagram of main parts of an embodiment of an imaging apparatus of the present invention

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
SP 絞り
IP 像面
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面
L1 First lens unit L2 Second lens unit L3 Third lens unit SP Aperture IP Image surface d d line g g line ΔS Sagittal image surface ΔM Meridional image surface

Claims (9)

物体側から像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、正の屈折力の第3レンズ群より成り、ズーミングに際して、該第1レンズ群、第2レンズ群が移動するズームレンズにおいて、該第1レンズ群は、2枚のレンズから成り、該第1レンズ群の焦点距離をf1、該第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw、ftとするとき、
1.5≦ft/fw
1.5<|f1|/f2<2.5
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the lens unit includes a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a positive refractive power. In the zoom lens in which the second lens group moves, the first lens group includes two lenses, the focal length of the first lens group is f1, the focal length of the second lens group is f2, and the wide-angle end. When the focal lengths of the entire system at the telephoto end are fw and ft, respectively.
1.5 ≦ ft / fw
1.5 <| f1 | / f2 <2.5
A zoom lens characterized by satisfying the following conditions:
前記第1レンズ群は、物体側より像側へ順に、負の屈折力の第1レンズ、正の屈折力の第2レンズより成り、全系のレンズ枚数は5枚以下であることを特徴とする請求項1のズームレンズ。   The first lens group includes, in order from the object side to the image side, a first lens having a negative refractive power and a second lens having a positive refractive power, and the total number of lenses is five or less. The zoom lens according to claim 1. 広角端から望遠端へのズーミングに際して、前記第1レンズ群は、像側に凸状の軌跡を描くように移動し、前記第2レンズ群は、物体側へ移動することを特徴とする請求項1又は2のズームレンズ。   The zoom lens from the wide-angle end to the telephoto end, wherein the first lens group moves to draw a convex locus on the image side, and the second lens group moves to the object side. 1 or 2 zoom lens. 前記第2レンズ群の物体側に、ズーミングに際して、該第2レンズ群と一体的に移動する開口絞りを有することを特徴とする請求項1、2又は3のズームレンズ。   4. The zoom lens according to claim 1, further comprising an aperture stop that moves integrally with the second lens group during zooming on the object side of the second lens group. 前記第1レンズ群は、物体側から像側へ順に、負の屈折力の第11レンズG11と正の屈折力の第12レンズG12より成り、
該第11レンズG11の物体側と像側の曲率半径を各々R11、R12、該第12レンズG12の物体側と像側の曲率半径をR13、R14とするとき、
1.0<|R11/R12|
|R13/R14|<1.2
なる条件を満足することを特徴とする請求項1から4のいずれか1項のズームレンズ。
The first lens group includes, in order from the object side to the image side, an eleventh lens G11 having a negative refractive power and a twelfth lens G12 having a positive refractive power.
When the object-side and image-side radii of curvature of the eleventh lens G11 are R11 and R12, respectively, and the object-side and image-side radii of curvature of the twelfth lens G12 are R13 and R14,
1.0 <| R11 / R12 |
| R13 / R14 | <1.2
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第11レンズG11と第12レンズG12の材料のアッベ数を各々ν11、ν12とするとき、
1.0<ν11/ν12
なる条件を満足することを特徴とする請求項1から5のいずれか1項のズームレンズ。
When the Abbe numbers of the materials of the eleventh lens G11 and the twelfth lens G12 are ν11 and ν12, respectively.
1.0 <ν11 / ν12
The zoom lens according to claim 1, wherein the following condition is satisfied.
広角端におけるバックフォーカスが2.3mm以下であることを特徴とする請求項1から6のいずれか1項のズームレンズ。   The zoom lens according to any one of claims 1 to 6, wherein a back focus at a wide angle end is 2.3 mm or less. 物体側の第1レンズ面から像面までの距離が15mm以下であることを特徴とする請求項1から7のいずれか1項のズームレンズ。   8. The zoom lens according to claim 1, wherein a distance from the first lens surface on the object side to the image surface is 15 mm or less. 請求項1〜8のいずれか1項のズームレンズと該ズームレンズによって形成された像を受光する固体撮像素子を有していることを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image sensor that receives an image formed by the zoom lens.
JP2004304216A 2004-10-19 2004-10-19 Zoom lens and imaging apparatus equipped with the same Withdrawn JP2006119192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304216A JP2006119192A (en) 2004-10-19 2004-10-19 Zoom lens and imaging apparatus equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304216A JP2006119192A (en) 2004-10-19 2004-10-19 Zoom lens and imaging apparatus equipped with the same

Publications (2)

Publication Number Publication Date
JP2006119192A true JP2006119192A (en) 2006-05-11
JP2006119192A5 JP2006119192A5 (en) 2007-11-29

Family

ID=36537180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304216A Withdrawn JP2006119192A (en) 2004-10-19 2004-10-19 Zoom lens and imaging apparatus equipped with the same

Country Status (1)

Country Link
JP (1) JP2006119192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
WO2011111561A1 (en) * 2010-03-10 2011-09-15 株式会社オプトロジック Imaging lens
US8665533B2 (en) 2009-07-07 2014-03-04 Samsung Electronics Co., Ltd. Zoom lens and optical imaging device including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
US7869134B2 (en) 2005-04-22 2011-01-11 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP4894754B2 (en) * 2005-04-22 2012-03-14 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
US8665533B2 (en) 2009-07-07 2014-03-04 Samsung Electronics Co., Ltd. Zoom lens and optical imaging device including the same
WO2011111561A1 (en) * 2010-03-10 2011-09-15 株式会社オプトロジック Imaging lens

Similar Documents

Publication Publication Date Title
JP4589231B2 (en) Zoom lens, imaging device, and camera equipped with imaging device
JP5179519B2 (en) Zoom lens system, imaging device and camera
JP2009139701A (en) Zoom lens and imaging device using the same
JP2006119193A (en) Zoom lens and imaging apparatus equipped with the same
JP2009037125A (en) Three-group zoom lens system and image pickup apparatus using the same
JP2004333767A (en) Zoom lens and optical equipment having the same
JP2009098585A (en) Zoom lens, camera and personal digital assistant device
JP2009098184A (en) Zoom lens system
JP4827454B2 (en) Zoom lens and imaging apparatus having the same
JP2007121748A (en) Zoom lens and imaging apparatus using same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2008039838A (en) Zoom lens system, image pickup apparatus, and camera
JP5009051B2 (en) Three-group zoom lens and image pickup apparatus including the same
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JP2006337793A (en) Zoom lens and imaging apparatus using same
JP5067937B2 (en) Zoom lens and image pickup apparatus including the same
JP5038028B2 (en) Zoom lens and imaging apparatus having the same
JP2006058363A (en) Zoom lens and camera module using it
JP2004295075A (en) Zoom lens
JP4870527B2 (en) Zoom lens system, imaging device and camera
US7551365B2 (en) Zoom lens, digital camera and portable information device
JP2005275280A (en) Optical equipment having zoom lens
JP5179518B2 (en) Zoom lens system, imaging device and camera
JP2004053993A (en) Zoom lens
JP4913634B2 (en) Zoom lens system, imaging device and camera

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100820