JP2006119091A - Method for measuring tire vibration characteristics - Google Patents

Method for measuring tire vibration characteristics Download PDF

Info

Publication number
JP2006119091A
JP2006119091A JP2004309800A JP2004309800A JP2006119091A JP 2006119091 A JP2006119091 A JP 2006119091A JP 2004309800 A JP2004309800 A JP 2004309800A JP 2004309800 A JP2004309800 A JP 2004309800A JP 2006119091 A JP2006119091 A JP 2006119091A
Authority
JP
Japan
Prior art keywords
tire
impact
axle force
vibration
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309800A
Other languages
Japanese (ja)
Other versions
JP4431023B2 (en
Inventor
Seiji Ishikawa
清二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004309800A priority Critical patent/JP4431023B2/en
Publication of JP2006119091A publication Critical patent/JP2006119091A/en
Application granted granted Critical
Publication of JP4431023B2 publication Critical patent/JP4431023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring tire vibration characteristic that excludes the influence of tire uniformity components, even when measuring the vibration characteristics in a rolling state of a tire for obtaining a high-accuracy frequency response function. <P>SOLUTION: Impact vibration is applied to a tire tread in the vertical directions, back-and-forth directions, or right-and-left directions in a rolling state of the test tire 12 on a rotating drum 11 by use of an impulse hammer 14 to measure the impact input and the axle force; while the axle force is measured, without the application of the impact vibration in the rolling state of the test tire 12 to find an axle force fluctuation component, the axle force wherein the average value of the axle force fluctuation component is subtracted from the axle force is calculated; and the frequency response function of the test tire 12 in the vertical directions, back-and-forth directions or right-and-left directions of the tire 12 is found from the axle force and the impact input. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、タイヤに振動を加えた時に生じるタイヤ軸力を検出してタイヤの振動特性を測定する方法に関するものである。   The present invention relates to a method for measuring tire vibration characteristics by detecting tire axial force generated when vibration is applied to a tire.

従来、タイヤのロードノイズに大きな影響を与えるタイヤ振動特性の測定方法としては、例えば、図9に示すように、試験機のヘッド50にホイール51に装着された試験タイヤ52のタイヤ軸を固定し、インパルスハンマー53によってタイヤトレッドを打診し、上記トレッド表面に張り付けられた加速度計54の出力のパワースペクトラムを求め、このパワースペクトラムのピーク位置から当該試験タイヤ52の共振特性を求める方法や、図10に示すように、加振器61にてタイヤトレッド62に振動を加えるとともに、タイヤ軸に高速応答形の荷重計63を取り付けてランダム加振を行い、力の伝達関数を測定してタイヤの応答特性を求める方法などが行なわれている(例えば、非特許文献1参照)。
酒井秀雄 著 「タイヤ工学」 グランプリ出版、2002年2月6日改訂版、p321−p323
Conventionally, as a method for measuring tire vibration characteristics that have a great influence on tire road noise, for example, as shown in FIG. 9, the tire shaft of a test tire 52 mounted on a wheel 51 is fixed to a head 50 of a testing machine. The tire tread is hit with the impulse hammer 53, the power spectrum of the output of the accelerometer 54 attached to the tread surface is obtained, and the resonance characteristic of the test tire 52 is obtained from the peak position of the power spectrum. As shown in FIG. 3, the tire tread 62 is vibrated by a vibration exciter 61, a high speed response load meter 63 is attached to the tire shaft, random vibration is performed, and a force transfer function is measured to measure tire response. A method for obtaining characteristics is performed (for example, see Non-Patent Document 1).
Hideo Sakai "Tire Engineering" Grand Prix Publishing, Revised February 6, 2002, p321-p323

しかしながら、上記従来のタイヤ振動特性測定方法では、タイヤを静止させた状態で測定を行っているため、必ずしも実際のロードノイズに対するタイヤ特性の優劣を評価することができない場合がある。
また、タイヤを転動させた状態で振動特性を測定しようとすると、加振力と相関性のないタイヤ周方向の不均一性による車軸力変動成分(ユニフォーミティ成分)が出てしまい、このため、得られた振動特性のコヒーレンス関数(関連度関数)が低下し、正確な振動特性を測定することができなかった。
However, in the conventional method for measuring tire vibration characteristics, since the measurement is performed with the tire stationary, it may not always be possible to evaluate the superiority or inferiority of the tire characteristics with respect to actual road noise.
Also, if you try to measure the vibration characteristics while rolling the tire, the axle force fluctuation component (uniformity component) due to the tire circumferential non-uniformity that has no correlation with the excitation force will appear, and for this reason As a result, the coherence function (relevance function) of the obtained vibration characteristics was lowered, and accurate vibration characteristics could not be measured.

本発明は、従来の問題点に鑑みてなされたもので、タイヤを転動させた状態で振動特性を測定した場合でも、タイヤユニフォーミティ成分の影響を排除して、精度の高い周波数応答関数を得ることのできるタイヤ振動特性測定方法を提供することを目的とする。   The present invention has been made in view of the conventional problems, and even when the vibration characteristics are measured in a state where the tire is rolled, the influence of the tire uniformity component is eliminated, and a highly accurate frequency response function is obtained. An object of the present invention is to provide a tire vibration characteristic measuring method that can be obtained.

本願の請求項1に記載の発明は、タイヤに所定の荷重を加えた状態でタイヤトレッドをインパクト加振し、上記インパクト入力と車軸力とを測定して当該タイヤの周波数応答関数を求め、上記タイヤの振動特性を測定するタイヤ振動特性測定方法であって、タイヤをドラム上で転動させた状態でタイヤトレッドをインパクト加振して、インパクト入力と車軸力とを測定するステップと、タイヤをドラム上で転動させた状態でタイヤトレッドをインパクト加振せずに車軸力を測定するステップと、両ステップの車軸力の差とインパクト入力とから当該タイヤの周波数応答関数を求めるステップとを有することを特徴とする。
請求項2に記載の発明は、請求項1に記載のタイヤ振動特性測定方法において、上記転動状態のタイヤをインパクト加振せずに車軸力を測定するステップにて、上記車軸力を、タイヤを5回転分以上回転させたときの平均の車軸力としたことを特徴とする。
According to the first aspect of the present invention, the tire tread is subjected to impact vibration in a state where a predetermined load is applied to the tire, the impact input and the axle force are measured to obtain a frequency response function of the tire, A tire vibration characteristic measuring method for measuring a tire vibration characteristic, wherein the tire tread is impact-vibrated in a state where the tire rolls on a drum, the step of measuring impact input and axle force, and the tire A step of measuring the axle force of the tire tread without impact excitation while rolling on the drum, and a step of obtaining a frequency response function of the tire from the difference between the axle forces of both steps and the impact input. It is characterized by that.
According to a second aspect of the present invention, in the method for measuring tire vibration characteristics according to the first aspect, in the step of measuring the axle force without impact-vibrating the rolling tire, It is characterized by the average axle force when the is rotated more than 5 revolutions.

請求項3に記載の発明は、請求項1または請求項2に記載のタイヤ振動特性測定方法において、タイヤを上下方向にインパクト加振して得られたタイヤ上下方向の車軸力と上記上下方向のインパクト入力とから、タイヤ上下方向の周波数応答関数を求めることを特徴とする。
請求項4に記載の発明は、請求項1または請求項2に記載のタイヤ振動特性測定方法において、タイヤを前後方向にインパクト加振して得られたタイヤ前後方向の車軸力と上記前後方向のインパクト入力とから、タイヤ前後方向の周波数応答関数を求めることを特徴とする。
請求項5に記載の発明は、請求項1または請求項2に記載のタイヤ振動特性測定方法において、タイヤを左右方向にインパクト加振して得られたタイヤ左右方向の車軸力と上記左右方向のインパクト入力とから、タイヤ左右方向の周波数応答関数を求めることを特徴とする。
請求項6に記載の発明は、請求項1〜請求項5のいずれかに記載のタイヤ振動特性測定方法において、タイヤの転動速度を10km/h以下としたことを特徴とする。
According to a third aspect of the present invention, in the tire vibration characteristic measuring method according to the first or second aspect, the axial force in the tire vertical direction obtained by impact vibration of the tire in the vertical direction and the vertical force in the vertical direction are obtained. A frequency response function in the tire vertical direction is obtained from the impact input.
According to a fourth aspect of the present invention, in the tire vibration characteristic measuring method according to the first or second aspect, the front-rear direction axle force obtained by impact-vibrating the tire in the front-rear direction and the front-rear direction A frequency response function in the tire longitudinal direction is obtained from the impact input.
According to a fifth aspect of the present invention, in the tire vibration characteristic measuring method according to the first or second aspect, the tire axial force in the lateral direction of the tire obtained by impact vibration in the lateral direction of the tire and the lateral direction of the tire are obtained. A frequency response function in the tire lateral direction is obtained from the impact input.
The invention according to claim 6 is the tire vibration characteristic measuring method according to any one of claims 1 to 5, characterized in that the rolling speed of the tire is 10 km / h or less.

本発明によれば、タイヤを転動させた状態でタイヤトレッドをインパクト加振して、インパクト入力と車軸力とを測定するとともに、別途、タイヤをドラム上で転動させた状態でタイヤトレッドをインパクト加振せずに車軸力を測定し、上記測定された2つの車軸力の差とインパクト入力とから当該タイヤの周波数応答関数を求めるようにしたので、タイヤユニフォーミティ成分の影響を排除することができ、精度の高い周波数応答関数を得ることができる。
このとき、上記転動状態のタイヤをインパクト加振せずに車軸力を測定するステップにおいて、上記車軸力を、タイヤを5回転分以上回転させたときの平均の車軸力とすれば、車軸力のユニフォーミティに起因する成分を確実に排除することでき、測定精度を更に向上させることができる。
また、タイヤの転動速度が速くなると加振入力の測定精度が低下するので、精度の高い周波数応答関数を得るためには、上記転動速度としては10km/h以下であることが好ましい。
According to the present invention, the tire tread is impact-vibrated while the tire is rolled, and the impact input and the axle force are measured, and the tire tread is separately rolled while the tire is rolled on the drum. Since the axle force is measured without impact vibration and the frequency response function of the tire is obtained from the difference between the two axle forces measured above and the impact input, the influence of the tire uniformity component is eliminated. And a highly accurate frequency response function can be obtained.
At this time, in the step of measuring the axle force without subjecting the rolling tire to impact vibration, if the axle force is an average axle force when the tire is rotated more than 5 times, the axle force It is possible to reliably eliminate the component due to the uniformity of the measurement, and to further improve the measurement accuracy.
Moreover, since the measurement accuracy of the vibration input decreases as the tire rolling speed increases, the rolling speed is preferably 10 km / h or less in order to obtain a highly accurate frequency response function.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本最良の形態に係るタイヤ振動特性測定装置10の概要を示す図で、同図において、11は路面に相当する回転ドラム、12はホイール13に装着された試験タイヤ、14は加振手段であるインパルスハンマー、15は上記試験タイヤ12の車軸に加わる力(以下、車軸力という)を測定するための車軸力計である。
次に、上記測定装置10を用いたタイヤ振動特性測定方法について説明する。
まず、回転ドラム11に上記試験タイヤ12を押し付けて、所定の荷重を負荷しながら転動させるとともに、インパルスハンマー14にて上記試験タイヤ12のタイヤトレッドを上下方向にインパクト加振し、インパクト入力FinRの大きさとタイヤ上下方向の車軸力FR1の大きさとをそれぞれ測定する。
図2(a),(b)は、試験タイヤとして乗用車用タイヤA(P225/55R17)をサイズが7.5J−7のホイールに装着し、2km/hのタイヤ転動速度にて転動させながら、タイヤトレッド中央部の反荷重直下を上下方向にハンマリング加振したときの加振力及び車軸力の時間波形を示す図で、図2(c)は、図示しない回転センサを用いて同時に測定したタイヤ回転パルスの時間波形を示す図である。なお、このときのタイヤ内圧は220kPaで、上記タイヤAに加えた荷重は1kNである。
このように、転動状態のタイヤをインパクト加振すると、このインパクト加振によるタイヤ上下方向の車軸力FR1は、図2(b)に示すように、タイヤ回転パルスの周期、すなわち、試験タイヤ12の回転周期と同一の周期を有するタイヤユニフォーミティに起因する車軸力の変動波形の上に重複されて現れる。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an outline of a tire vibration characteristic measuring apparatus 10 according to the best mode. In FIG. 1, 11 is a rotating drum corresponding to the road surface, 12 is a test tire mounted on a wheel 13, and 14 is an additive. An impulse hammer 15 serving as a vibration means is an axle force meter for measuring a force applied to the axle of the test tire 12 (hereinafter referred to as axle force).
Next, a method for measuring tire vibration characteristics using the measurement apparatus 10 will be described.
First, the test tire 12 is pressed against the rotating drum 11 to roll while applying a predetermined load, and the impulse tread of the test tire 12 is subjected to impact vibration in the vertical direction by the impulse hammer 14 so that the impact input F inR size and the tire vertical axle force F R1 size and the respectively measured.
2 (a) and 2 (b) show a passenger car tire A (P225 / 55R17) as a test tire mounted on a wheel of size 7.5J-7 and rolled at a tire rolling speed of 2 km / h. However, FIG. 2C is a diagram showing time waveforms of the excitation force and the axle force when hammering is applied in the vertical direction immediately below the anti-load in the center portion of the tire tread. FIG. It is a figure which shows the time waveform of the measured tire rotation pulse. The tire internal pressure at this time is 220 kPa, and the load applied to the tire A is 1 kPa.
In this way, when the rolling tire is subjected to impact vibration, the tire vertical force F R1 due to the impact vibration is represented by the period of the tire rotation pulse, that is, the test tire, as shown in FIG. It appears overlapping on the fluctuation waveform of the axle force caused by the tire uniformity having the same period as the twelve rotation periods.

そこで、本例では、転動状態の試験タイヤ12を加振しない状態において、タイヤユニフォーミティに起因する車軸力の変動成分FR2を測定し、この車軸力変動成分FR2を上記車軸力FR1から減算することにより、インパクト加振のみによる車軸力FRの大きさを求める。
図3は車軸力変動成分FR2の時間変化を示す図で、本例では、タイヤユニフォーミティに起因する車軸力変動をより正確に求めるため、上記車軸力変動成分FR2を、試験タイヤ12を5回転分以上回転させて測定して平均値をとり、この車軸力変動成分FR2の車軸力変動平均値FR0を用いてインパクト加振のみによる車軸力FRの大きさを求める。図4は、上記タイヤAにおけるタイヤ回転角と車軸力変動平均値FR0との関係を示すグラフで、車軸力変動平均値がタイヤ回転角により大きく異なっていることがわかる。
図5は、上記図2(b)に示したタイヤ上下方向の車軸力FR1から上記車軸力変動平均値FR0を差し引いた車軸力FRを示す図で、図6は、タイヤ加振力であるインパクト入力FinRを入力とし、上記車軸力FRを応答とした周波数応答関数を示す図で、この周波数応答関数は、上記車軸力FRとインパクト入力FinRのフーリエスペクトルの比を表わす。本例では、上記車軸力変動成分FR2及び上記車軸力FR1をそれぞれ10回ずつ測定し、その平均値から上記周波数応答関数を求めた。また、図7は得られた周波数応答関数の信頼性を表わす指標の一つであるコヒーレンス関数を示す図で、同図から明らかなように、本発明のタイヤ振動特性測定方法によって測定した周波数応答関数は、ロードノイズの周波数帯域である50〜500Hzにおいて、極めて高いコヒーレンスを示しており、測定精度が極めて高いことがわかる。
Therefore, in this example, in a state where the rolling test tire 12 is not vibrated, a fluctuation component F R2 of the axle force caused by the tire uniformity is measured, and this axle force fluctuation component F R2 is measured as the axle force F R1. by subtracting from, we obtain the magnitude of the axle force F R by only impact excitation.
FIG. 3 is a diagram showing the time variation of the axle force fluctuation component F R2 . In this example, in order to more accurately determine the axle force fluctuation due to the tire uniformity, the axle force fluctuation component F R2 is applied to the test tire 12. 5 is rotated revolution or an average value as measured to determine the magnitude of the axle force F R by only impact excitation with an axle force variation average value F R0 of the axle force variation component F R2. FIG. 4 is a graph showing the relationship between the tire rotation angle and the axle force fluctuation average value F R0 in the tire A, and it can be seen that the axle force fluctuation average value varies greatly depending on the tire rotation angle.
FIG. 5 is a diagram showing the axle force F R obtained by subtracting the axle force fluctuation average value F R0 from the axle axial force F R1 in the tire vertical direction shown in FIG. 2B, and FIG. 6 shows the tire excitation force. inputs the impact input F inR is a diagram showing a frequency response function with a response the axle force F R, the frequency response function represents the Fourier spectrum ratio of the axle force F R and impact input F inR . In this example, the axle force fluctuation component F R2 and the axle force F R1 were measured 10 times each, and the frequency response function was obtained from the average value. FIG. 7 is a diagram showing a coherence function which is one of the indexes representing the reliability of the obtained frequency response function. As is clear from the figure, the frequency response measured by the tire vibration characteristic measuring method of the present invention is shown. The function shows extremely high coherence in the frequency band of road noise of 50 to 500 Hz, and it can be seen that the measurement accuracy is extremely high.

これに対して、図8(a)に示す、タイヤ上下方向の車軸力FR1から直接求めた周波数応答関数では、図8(b)に示すように、全体としてコヒーレンスが低下しており、特に、ロードノイズで最も重要な周波数帯域である150〜300Hzにおいて、コヒーレンスが著しく低いことから、タイヤユニフォーミティ成分である車軸力変動成分FR2を補償しないと正確なタイヤ振動特性を測定することが困難であることがわかる。
これに対して本発明によるタイヤ振動特性測定方法では、車軸力変動の一因であるタイヤユニフォーミティ成分がキャンセルされているので、精度の高い周波数応答関数を得ることができる。
On the other hand, in the frequency response function obtained directly from the axle force F R1 in the tire vertical direction shown in FIG. 8A, the coherence as a whole decreases as shown in FIG. in 150~300Hz the most important frequency band road noise, since coherence is significantly lower, it is difficult to accurately measure the tire vibration characteristics without compensating for axle force variation component F R2 is a tire uniformity component It can be seen that it is.
On the other hand, in the tire vibration characteristic measuring method according to the present invention, since the tire uniformity component that is a cause of the fluctuation of the axle force is canceled, a highly accurate frequency response function can be obtained.

このように、本最良の形態によれば、回転ドラム11上で試験タイヤ12を転動させた状態で、インパルスハンマー14を用いてタイヤトレッドを上下方向にインパクト加振し、インパクト入力FinRと上下方向の車軸力FR1とを測定するとともに、別途、上記試験タイヤ12を転動させた状態でかつインパクト加振せずに上下方向の車軸力を測定して車軸力変動成分FR2を求め、上記車軸力FR1から上記車軸力変動成分FR2の平均値FR0を減算した車軸力FRを算出し、この車軸力FRと上記インパクト入力FinRとから上記試験タイヤ12のタイヤ上下方向の周波数応答関数を求めるようにしたので、タイヤユニフォーミティ成分の影響を排除することができ、精度の高い周波数応答関数を得ることができる。 Thus, according to this best mode, with the test tire 12 rolling on the rotating drum 11, the tire tread is impacted in the vertical direction using the impulse hammer 14, and the impact input FinR In addition to measuring the vertical axle force F R1 , separately determine the axle force fluctuation component F R2 by measuring the vertical axle force with the test tire 12 rolling and without impact vibration. calculates the axle force F R from the axle force F R1 by subtracting the average value F R0 of the axle force variation component F R2, tires and below the above-mentioned test tires 12 and the axle force F R and the impact input F inR Since the frequency response function in the direction is obtained, the influence of the tire uniformity component can be eliminated, and a highly accurate frequency response function can be obtained.

なお、上記最良の形態では、試験タイヤ12のタイヤトレッドを上下方向にインパクト加振して試験タイヤ12のタイヤ上下方向の周波数応答関数を求めるようにしたが、試験タイヤ12のタイヤトレッドを前後方向や左右方向にインパクト加振し、そのときのインパクト入力の大きさとタイヤ前後方向の車軸力、あるいはタイヤ左右方向の車軸力の大きさとから試験タイヤ12のタイヤ前後方向の周波数応答関数やタイヤ左右方向の周波数応答関数を求めることも可能である。
また、上記例では、タイヤの転動速度を2km/h以下としたが、これに限るものではない。但し、タイヤの転動速度が速くなると加振入力の測定精度が低下するので、精度の高い周波数応答関数を得るためには、上記転動速度としては10km/h以下であることが好ましい。
In the above-described best mode, the tire tread of the test tire 12 is subjected to impact vibration in the vertical direction to obtain the frequency response function of the test tire 12 in the vertical direction. The vibration response of the test tire 12 in the longitudinal direction of the tire and the lateral direction of the tire is determined from the magnitude of the impact input and the axial force in the longitudinal direction of the tire or the axial force in the lateral direction of the tire. It is also possible to obtain a frequency response function of
Moreover, in the said example, although the rolling speed of the tire was 2 km / h or less, it is not restricted to this. However, since the measurement accuracy of the vibration input decreases as the tire rolling speed increases, the rolling speed is preferably 10 km / h or less in order to obtain a highly accurate frequency response function.

このように、本発明によれば、簡単構成で、タイヤユニフォーミティ成分の影響を排除した精度の高い周波数応答関数を得ることができるので、ロードノイズを低減したタイヤを設計する際の有効なデータを得ることができる。   Thus, according to the present invention, it is possible to obtain a high-accuracy frequency response function that eliminates the influence of the tire uniformity component with a simple configuration, and therefore, effective data for designing a tire with reduced road noise. Can be obtained.

本発明の最良の形態に係るタイヤ振動特性測定装置の概略構成を示す図である。It is a figure showing the schematic structure of the tire vibration characteristic measuring device concerning the best mode of the present invention. 試験タイヤを転動させながらインパルス加振したときの加振力及び車軸力の時間波形と、タイヤ回転パルスの時間波形とを示す図である。It is a figure which shows the time waveform of the excitation force when a test tire rolls, and an impulse vibration, and the axle force, and the time waveform of a tire rotation pulse. 車軸力の変動成分の時間変化を示す図である。It is a figure which shows the time change of the fluctuation | variation component of axle force. タイヤ回転角と車軸力変動平均値との関係を示す図である。It is a figure which shows the relationship between a tire rotation angle and an axle force fluctuation | variation average value. 本発明のタイヤ振動特性測定方法により求めた車軸力の時間波形を示す図である。It is a figure which shows the time waveform of the axle force calculated | required by the tire vibration characteristic measuring method of this invention. 本発明のタイヤ振動特性測定方法により求めた周波数応答関数を示す図である。It is a figure which shows the frequency response function calculated | required with the tire vibration characteristic measuring method of this invention. 本発明による周波数応答関数のコヒーレンス関数を示す図である。It is a figure which shows the coherence function of the frequency response function by this invention. 従来の手法による周波数応答関数のコヒーレンス関数を示す図である。It is a figure which shows the coherence function of the frequency response function by the conventional method. 従来のタイヤ振動特性測定方法を示す図である。It is a figure which shows the conventional tire vibration characteristic measuring method. 従来のタイヤ振動特性測定方法の他の例を示す図である。It is a figure which shows the other example of the conventional tire vibration characteristic measuring method.

符号の説明Explanation of symbols

10 タイヤ振動特性測定装置、11 回転ドラム、12 試験タイヤ、
13 ホイール、14 インパルスハンマー、15 車軸力計。
10 tire vibration characteristic measuring device, 11 rotating drum, 12 test tire,
13 wheel, 14 impulse hammer, 15 axle force meter.

Claims (6)

タイヤに所定の荷重を加えた状態でタイヤトレッドをインパクト加振し、上記インパクト入力と車軸力とを測定して当該タイヤの周波数応答関数を求め、上記タイヤの振動特性を測定するタイヤ振動特性測定方法であって、タイヤをドラム上で転動させた状態でタイヤトレッドをインパクト加振して、インパクト入力と車軸力とを測定するステップと、タイヤをドラム上で転動させた状態でタイヤトレッドをインパクト加振せずに車軸力を測定するステップと、両ステップの車軸力の差とインパクト入力とから当該タイヤの周波数応答関数を求めるステップとを有することを特徴とするタイヤ振動特性測定方法。   Tire vibration characteristic measurement in which a tire tread is subjected to impact vibration with a predetermined load applied to the tire, the impact input and axle force are measured to obtain a frequency response function of the tire, and the tire vibration characteristic is measured. A method of impact-vibrating a tire tread with the tire rolling on a drum to measure impact input and axle force, and a tire tread with the tire rolling on the drum A method for measuring tire vibration characteristics, comprising: measuring an axle force without subjecting the vehicle to impact excitation; and obtaining a frequency response function of the tire from a difference between axle forces of both steps and an impact input. 上記転動状態のタイヤをインパクト加振せずに車軸力を測定するステップにおいて、上記車軸力を、タイヤを5回転分以上回転させたときの平均の車軸力としたことを特徴とする請求項1に記載のタイヤ振動特性測定方法。   The step of measuring the axle force without impact vibration of the rolling tire is characterized in that the axle force is an average axle force when the tire is rotated by five or more revolutions. 2. The tire vibration characteristic measuring method according to 1. タイヤを上下方向にインパクト加振して得られたタイヤ上下方向の車軸力と上記上下方向のインパクト入力とから、タイヤ上下方向の周波数応答関数を求めることを特徴とする請求項1または請求項2に記載のタイヤ振動特性測定方法。   3. A frequency response function in a tire vertical direction is obtained from an axial force in the tire vertical direction obtained by impact vibration of the tire in a vertical direction and the impact input in the vertical direction. 2. The tire vibration characteristic measuring method according to 1. タイヤを前後方向にインパクト加振して得られたタイヤ前後方向の車軸力と上記前後方向のインパクト入力とから、タイヤ前後方向の周波数応答関数を求めることを特徴とする請求項1または請求項2に記載のタイヤ振動特性測定方法。   3. A frequency response function in the tire longitudinal direction is obtained from an axle force in the tire longitudinal direction obtained by impact vibration in the longitudinal direction of the tire and an impact input in the longitudinal direction. 2. The tire vibration characteristic measuring method according to 1. タイヤを左右方向にインパクト加振して得られたタイヤ左右方向の車軸力と上記左右方向のインパクト入力とから、タイヤ左右方向の周波数応答関数を求めることを特徴とする請求項1または請求項2に記載のタイヤ振動特性測定方法。   3. A frequency response function in the tire lateral direction is obtained from an axle force in the tire lateral direction obtained by impact vibration in the lateral direction of the tire and the impact input in the lateral direction. 2. The tire vibration characteristic measuring method according to 1. タイヤの転動速度を10km/h以下としたことを特徴とする請求項1〜請求項5のいずれかに記載のタイヤ振動特性測定方法。   The tire vibration characteristic measuring method according to any one of claims 1 to 5, wherein a rolling speed of the tire is set to 10 km / h or less.
JP2004309800A 2004-10-25 2004-10-25 Tire vibration characteristics measurement method Expired - Fee Related JP4431023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309800A JP4431023B2 (en) 2004-10-25 2004-10-25 Tire vibration characteristics measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309800A JP4431023B2 (en) 2004-10-25 2004-10-25 Tire vibration characteristics measurement method

Publications (2)

Publication Number Publication Date
JP2006119091A true JP2006119091A (en) 2006-05-11
JP4431023B2 JP4431023B2 (en) 2010-03-10

Family

ID=36537102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309800A Expired - Fee Related JP4431023B2 (en) 2004-10-25 2004-10-25 Tire vibration characteristics measurement method

Country Status (1)

Country Link
JP (1) JP4431023B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330269A (en) * 2014-11-26 2015-02-04 安徽佳通乘用子午线轮胎有限公司 Method for testing damping ratio of tyre-rim combination body
CN104344937A (en) * 2013-07-24 2015-02-11 重庆长安汽车股份有限公司 Automobile wheel vibration isolation performance test method
JP2020038158A (en) * 2018-09-05 2020-03-12 Toyo Tire株式会社 Tire vibration characteristic evaluation method
CN112729737A (en) * 2020-12-21 2021-04-30 北京建筑大学 Wheel rail rolling contact type vibration experiment table
JP7465180B2 (en) 2020-08-28 2024-04-10 Toyo Tire株式会社 Tire characteristic evaluation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011452B2 (en) * 2017-12-07 2022-01-26 Toyo Tire株式会社 Tire noise test equipment and method
JP7011453B2 (en) * 2017-12-07 2022-01-26 Toyo Tire株式会社 Tire noise test equipment and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175710A (en) * 2001-12-13 2003-06-24 Yokohama Rubber Co Ltd:The Forecasting method for tire characteristic, manufacturing method for tire, pneumatic tire, and program
JP2004191278A (en) * 2002-12-13 2004-07-08 Yokohama Rubber Co Ltd:The Tire testing device and tire testing method
JP2004198219A (en) * 2002-12-18 2004-07-15 Yokohama Rubber Co Ltd:The Testing device for tire vibrational characteristic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175710A (en) * 2001-12-13 2003-06-24 Yokohama Rubber Co Ltd:The Forecasting method for tire characteristic, manufacturing method for tire, pneumatic tire, and program
JP2004191278A (en) * 2002-12-13 2004-07-08 Yokohama Rubber Co Ltd:The Tire testing device and tire testing method
JP2004198219A (en) * 2002-12-18 2004-07-15 Yokohama Rubber Co Ltd:The Testing device for tire vibrational characteristic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344937A (en) * 2013-07-24 2015-02-11 重庆长安汽车股份有限公司 Automobile wheel vibration isolation performance test method
CN104344937B (en) * 2013-07-24 2017-12-29 重庆长安汽车股份有限公司 A kind of automotive wheel anti-vibration performance method of testing
CN104330269A (en) * 2014-11-26 2015-02-04 安徽佳通乘用子午线轮胎有限公司 Method for testing damping ratio of tyre-rim combination body
JP2020038158A (en) * 2018-09-05 2020-03-12 Toyo Tire株式会社 Tire vibration characteristic evaluation method
JP7100544B2 (en) 2018-09-05 2022-07-13 Toyo Tire株式会社 Tire vibration characteristic evaluation method
JP7465180B2 (en) 2020-08-28 2024-04-10 Toyo Tire株式会社 Tire characteristic evaluation method
CN112729737A (en) * 2020-12-21 2021-04-30 北京建筑大学 Wheel rail rolling contact type vibration experiment table

Also Published As

Publication number Publication date
JP4431023B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US7918131B2 (en) Tire slip state detecting method and tire slip state detecting apparatus
EP0886130B1 (en) Method of and apparatus for predicting vehicle interior noise
US7469578B2 (en) Method and apparatus for evaluating a cornering stability of a wheel
US9121790B2 (en) Methods and systems for evaluating tire properties
JPH11352024A (en) Method and device for predicting higher-order component of high-speed uniformity of tire and method for manufacturing the tire
JP4967981B2 (en) Vehicle vibration analysis method and apparatus
CN106461507B (en) Vehicle testing device and vehicle testing method
JP4431023B2 (en) Tire vibration characteristics measurement method
JP4893145B2 (en) Vibration measuring method and vibration measuring apparatus
US20200355577A1 (en) Method for correcting tire uniformity data and tire uniformity machine
CN113029584B (en) Method for obtaining standard load spectrum of finished automobile test
JP7225489B2 (en) Vibration characteristics evaluation method and vibration characteristics evaluation device
JP2004085297A (en) Method and apparatus for measuring properties of tire
JP4946174B2 (en) Tire contact length calculation method and tire contact length calculation device
JPH0579950A (en) Testing device for vehicle
JP4845681B2 (en) Tire vibration evaluation method
JP2004198219A (en) Testing device for tire vibrational characteristic
JP2000346755A (en) Measuring method for abrasion of tire
JP4104446B2 (en) Tire testing apparatus and tire testing method
KR101829436B1 (en) Test apparatus for measurement of dynamic spring rate of high speed rotating tire
JP2017122612A (en) Vehicle characteristic analysis method and device
JP4113088B2 (en) High-speed tire uniformity estimation method and tire selection method
Dorfi Tire Non‐Uniformities And Steering Wheel Vibrations
Choi et al. Finite Element modeling of force amplification at the spindle due to a tire's cavity mode: experimental verification
JP4219099B2 (en) Prediction method of frequency response characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees