JP2006118631A - Easily crushed land burial pipe - Google Patents

Easily crushed land burial pipe Download PDF

Info

Publication number
JP2006118631A
JP2006118631A JP2004307864A JP2004307864A JP2006118631A JP 2006118631 A JP2006118631 A JP 2006118631A JP 2004307864 A JP2004307864 A JP 2004307864A JP 2004307864 A JP2004307864 A JP 2004307864A JP 2006118631 A JP2006118631 A JP 2006118631A
Authority
JP
Japan
Prior art keywords
pipe
underground
resin
underground pipe
plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004307864A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2004307864A priority Critical patent/JP2006118631A/en
Publication of JP2006118631A publication Critical patent/JP2006118631A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily crushed land burial pipe used for an investigation pipe for investigating the nature of the soil or ground water, a water service pipe, a water feed pipe, and a land burial pipe for injecting a liquid chemical to the ground, and capable of being easily crushed after achieving the using object. <P>SOLUTION: Cellulose fiber is contained in thermoplastic resin, the resin easily crushed is obtained, and the resin is formed as the material, or entire or partial thereof is formed of biodegradable plastics, the cellulose fiber is contained in it, and the resin easily crushed is obtained, and the resin is formed as the material. Even when the land burial pipe is left behind in the ground, the land burial pipe is crushed without being caught by a blade of an excavator in excavating work of a shield method, and decrease in working efficiency can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は水中あるいは土中において使用され、掘削に際して容易に粉砕される粉砕の容易な土中埋設管に係り、特に地質や地下水調査のための調査管、配水管、給水管、地盤への薬液注入のための土中埋設管等に用いられ、使用目的を達成の後に容易に粉砕される粉砕の容易な土中埋設管に係り、さらには、地盤中に取り残して埋め殺しにしたままでも、シールド工法等の地盤掘削工事の際、掘削機の刃に絡んでも粉砕され、作業性が低下する心配のない粉砕の容易な土中埋設管に関する。   The present invention relates to an easily pulverized underground pipe that is used in water or in the soil and is easily pulverized during excavation, and more particularly, a survey pipe, a distribution pipe, a water supply pipe, and a chemical solution for the ground. It is used for underground pipes for injection, etc., and is related to easily ground ground pipes that are easily pulverized after the purpose of use has been achieved.Furthermore, even if left in the ground and buried, The present invention relates to a buried underground pipe that can be easily crushed without being concerned about the workability being degraded by pulverizing even when entangled with a blade of an excavator during ground excavation work such as a shield method.

中硬岩や硬岩ではトンネルを掘削する場合、従来火薬による爆破掘削が最も一般的に行われてたが、最近では機械掘削が多く行われるようになってきた。機械掘削は地山を緩ませることが少なく、掘削量も少なくてすみ、さらに、騒音振動も爆破に比べて格段に小さく、さらにまた、火薬を使用しないため保安上の請託が少ない等の理由から、最近ではその施工例が着実に伸びてきている。   When excavating tunnels in medium and hard rocks, explosive excavation with gunpowder has been the most common method, but recently mechanical excavation has become more common. Mechanical drilling does not loosen the ground and requires less excavation, noise vibration is much smaller than blasting, and there are fewer security deposits because no explosives are used. Recently, the construction examples have been steadily growing.

さらに、最近の掘削工法の選択の傾向は、できる限り大きい断面で切羽作業を行うことに主眼を置いている。このため、補助工法として、薬液注入のような、通常の施工で採用される機械設備で対処でき、かつ、掘削作業のサイクルタイム内に入れることのできる切羽安定対策工を行うことが多い。なお、土中埋設管の設置は地下構造物、地下埋設物、井戸等について行われる。また、掘削予定地盤の土質調査、水質調査には、調査井戸にも行われる。   In addition, recent trends in excavation methods have focused on working with face sections as large as possible. For this reason, as a supplementary construction method, there is often a face stabilization countermeasure that can be dealt with by mechanical equipment employed in normal construction, such as chemical injection, and that can be put within the cycle time of excavation work. Underground pipes will be installed in underground structures, underground structures, wells, etc. In addition, soil and water quality surveys on the planned excavation ground are also conducted in the survey wells.

上述の調査管、配水管、給水管、土中埋設管等の土中埋設管として、従来、塩化ビニール、ABS樹脂等の熱可塑性樹脂を材料とし、押出成型、あるいは射出成型によって成型された注入管が用いられている。しかし、この種の注入管は地中に埋め殺しにした場合、土中で腐敗しにくく、かつ力が作用した場合、破壊することなく、伸びやすいという素材の性質を有している。このため素材の樹脂が掘削機の刃表面に絡んでしまい、作業性を低下させる。
特許第2514875号 特許第3406567号
As underground pipes such as the survey pipes, water distribution pipes, water supply pipes, underground pipes, etc., injection made by thermoplastic resin such as vinyl chloride, ABS resin, etc., by extrusion molding or injection molding. A tube is used. However, this type of injection tube has the property of a material that it is difficult to rot in the soil when buried in the ground and is easy to stretch without breaking when force is applied. For this reason, the resin of the material is entangled with the blade surface of the excavator, and the workability is lowered.
Japanese Patent No. 2514875 Japanese Patent No. 3406567

本発明の課題は地質や地下水調査のための調査管、配水管、給水管、地盤への薬液注入のための土中埋設管等に用いられ、使用後に粉砕しやすく、また地中に埋め殺しにしたままであっても、地盤掘削工事の際に掘削機の刃に絡むようなことがなく、容易に粉砕され、上述の公知技術に存する欠点を改良した粉砕の容易な土中埋設管を提供することにある。   The subject of the present invention is used in survey pipes for geological and groundwater surveys, water distribution pipes, water supply pipes, underground pipes for injecting chemicals into the ground, etc., which are easy to grind after use and buried in the ground. Even if it is left as it is, it is easy to crush the ground buried pipe that does not get entangled with the blade of the excavator during the ground excavation work, and is improved with the disadvantages of the above-mentioned known techniques. It is to provide.

上述の課題を解決するため、本発明の土中埋設管によれば、熱可塑性樹脂にセルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材として形成され、粉砕の容易な注入管とすることを特徴とする。   In order to solve the above-described problems, according to the underground pipe of the present invention, a thermoplastic resin containing cellulose fibers is used as a resin that can be easily pulverized, and this resin is used as a raw material, and an injection pipe that is easily pulverized. It is characterized by doing.

さらに、上述の課題を解決するため、本発明の土中埋設管によれば、全部または一部が生物分解性プラスチックスで形成され、セルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材として成型されて、粉砕の容易な注入管とすることを特徴とする。   Furthermore, in order to solve the above-mentioned problem, according to the underground pipe of the present invention, all or part of the pipe is made of biodegradable plastics, contains cellulose fiber and is easily pulverized, and this resin The injection tube is molded as a material and can be easily pulverized.

上述の本発明土中埋設管は熱可塑性樹脂にセルローズ繊維を含有させた樹脂を素材として形成され、あるいは全部または一部が生物分解性プラスチックスで形成され、この中にセルローズ繊維を含有させた樹脂を素材として形成されるから、粉砕されやすく、あるいは土中で生物分解されやすく、このため、地盤掘削工事の際に土中埋設管が掘削機の刃に絡むようなことがなく容易に粉砕されるという効果を奏し得る。   The above-described buried pipe in the present invention is formed from a resin containing cellulose fibers in a thermoplastic resin, or all or a part thereof is made of biodegradable plastics and contains cellulose fibers therein. Because it is formed from resin, it is easy to be crushed or easily biodegraded in the soil, so it is easy to grind the underground pipe without tangling the excavator blade during excavation. The effect that it is done can be produced.

本発明にかかる土中埋設管は上述のとおり、熱可塑性樹脂にセルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材ペレットとして押出し成型機ないし射出成型機により300℃以下の温度で成型加工され、地質や地下水の調査のための調査管、配水管、給水管、地盤中への薬液注入のための土中埋設管等に用いられる。   As described above, the underground pipe according to the present invention contains cellulose fiber in a thermoplastic resin and is easily pulverized, and this resin is molded as a material pellet at a temperature of 300 ° C. or less by an extrusion molding machine or an injection molding machine. Processed and used for survey pipes for investigation of geology and groundwater, water distribution pipes, water supply pipes, underground pipes for injecting chemicals into the ground.

本発明に用いられる熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリアセタール、ポリスチレン、ナイロン、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられ、本発明では、これらのうちの一種または複数種が用いられる。   Examples of the thermoplastic resin used in the present invention include polyethylene, polypropylene, polyacetal, polystyrene, nylon, acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, polyethylene terephthalate, and polybutylene terephthalate. Then, one or more of these are used.

本発明に用いられるセルローズ繊維としては、古紙、木粉、麻、コットンパルプ、木材パルプ等の植物繊維を解繊した繊維が挙げられる。本発明では、このようなセルローズ繊維を水分率5〜40%で熱可塑性樹脂に混練し、造粒する。あるいは、セルローズ繊維の水分率が下限値5%を切らない水の存在下で、セルローズ繊維を熱可塑性樹脂に混練し、得られた混練物をセルローズ繊維の水分率5〜40%の範囲で造粒する。 Examples of the cellulose fiber used in the present invention include fibers obtained by defusing plant fibers such as waste paper, wood flour, hemp, cotton pulp, and wood pulp. In the present invention, such cellulose fibers are kneaded into a thermoplastic resin at a moisture content of 5 to 40% and granulated. Alternatively, the cellulose fiber is kneaded with a thermoplastic resin in the presence of water whose moisture content of the cellulose fiber does not cut below the lower limit of 5%, and the obtained kneaded product is made in the range of 5 to 40% of the moisture content of the cellulose fiber. Grain.

なお、本発明において、セルローズ繊維を使用する際に、ペレット製造時のセルローズ繊維の挙動を充分考察することが肝要である。セルローズは典型的な親水高分子物質であって、水分の吸脱湿が大きく、吸脱湿の状態によってその特性が変化するものである。すなわち、吸湿によって膨潤して柔らかくなり、しなやかで変形し易くなる反面、脱湿によって角質化して堅くなり、脆く、変形し難くなる。   In the present invention, when cellulose fibers are used, it is important to fully consider the behavior of cellulose fibers during pellet production. Cellulose is a typical hydrophilic polymer substance that absorbs and desorbs moisture very much, and its properties change depending on the state of moisture absorption and desorption. That is, it swells and softens due to moisture absorption and becomes flexible and easily deformed, while it becomes keratinized and hardened by dehumidification, becomes brittle and difficult to deform.

本発明に使用する強化繊維は上述のような植物繊維であるが、これを解繊後、または直接、100℃前後、あるいはそれ以上の溶融または軟化状態の熱可塑性樹脂中で、強い剪断力をかけながら均一に混練する。この条件下でセルローズを主成分とする植物繊維は殆ど水分を失い、絶乾状態となるため、角質化して堅く脆くなる。したがって、この絶乾状態で強い剪断力をかけて混練すると、セルローズ繊維は熱可塑性樹脂中に均一に分散するまでに粉砕されてしまって、繊維状をとどめない。   The reinforcing fiber used in the present invention is a vegetable fiber as described above, but after defibration or directly in a molten or softened thermoplastic resin at around 100 ° C. or higher, a strong shearing force is applied. Knead uniformly while applying. Under these conditions, the plant fiber mainly composed of cellulose loses moisture and becomes completely dry, so that it becomes keratinized and becomes brittle. Therefore, when kneaded by applying a strong shearing force in this absolutely dry state, the cellulose fiber is pulverized until it is uniformly dispersed in the thermoplastic resin, and the fiber shape is not retained.

この傾向は溶融温度または軟化温度の高い熱可塑性樹脂の場合ほど顕著であり、混練中に繊維が劣化して粉末化するにとどまらず、熱劣化がさらに進行し、炭化に至るほどに影響を受けることがある。本発明の土中埋設管はこの状態を避けるために、熱可塑性樹脂に強化繊維を加えたものを金型により射出成型、または押出成型することにより成形される。   This tendency is more conspicuous in the case of a thermoplastic resin having a high melting temperature or softening temperature, and is not only affected by the deterioration of the fibers during the kneading but also by the further deterioration of the fibers and carbonization. Sometimes. In order to avoid this state, the underground pipe of the present invention is formed by injection molding or extrusion molding of a thermoplastic resin added with reinforcing fibers using a mold.

表1に従来の注入管素材と、本発明注入管素材、すなわち、熱可塑性樹脂に強化繊維を加えたものとの性質の比較を示す。   Table 1 shows a comparison of properties between a conventional injection tube material and the injection tube material of the present invention, that is, a thermoplastic resin added with reinforcing fibers.

Figure 2006118631
Figure 2006118631

表1に示されるように、本発明に使用される素材は、従来の注入管に使用されている素材に比べ引っ張り強さは同等、またはそれ以上あるのに対し、伸び率が大きい。従来の機械を使用した掘削工法では注入管の素材の伸び率が高い場合、事前に埋めた注入管に刃が当ると、切断されず、外圧により変形する。そのため掘削機の刃に絡まり、刃の表面を多い地盤が掘りにくくなり、作業性を低下させる。本発明の土中埋設管に使用される素材は伸び率が低いことより、外圧がかかっても伸びず、破壊しやすいため、掘削機により粉砕され刃に絡みにくい。これにより上述の課題を解決することができる。   As shown in Table 1, the material used in the present invention has a tensile strength equal to or higher than that of the material used in the conventional injection tube, but has a high elongation rate. In the excavation method using a conventional machine, when the elongation rate of the material of the injection pipe is high, if the blade hits the pre-filled injection pipe, it is not cut and deformed by external pressure. Therefore, it becomes entangled with the blade of the excavator, and it becomes difficult to dig the ground having a large surface of the blade, thereby reducing workability. Since the material used for the underground buried pipe of the present invention has a low elongation rate, it does not stretch even when an external pressure is applied, and it is easy to break. Thereby, the above-mentioned subject can be solved.

以下、塩化ビニール、紙と乳酸ポリマーの混合素材とした注入管の破壊試験の結果を示す。   The results of a destructive test of an injection tube made of a mixed material of vinyl chloride, paper and lactic acid polymer are shown below.

1.試料
a 塩化ビニールを素材とする注入管
内径40.2×外径44.07×高さ101.67(mm)
b 紙と乳酸ポリマーの混合物を素材とする注入管(生分解性プラスチックス管)
内径40.38×外径45.33×高さ96.52(mm)
1. Sample a Injection tube made of vinyl chloride, inner diameter 40.2 x outer diameter 44.07 x height 101.67 (mm)
b Injection tube made of a mixture of paper and lactic acid polymer (biodegradable plastics tube)
Inner diameter 40.38 x outer diameter 45.33 x height 96.52 (mm)

2.試験方法
注入管を縦方向に半分に切断し、一軸圧縮機により横方向から圧力をかけ、管を破壊する。その時の圧縮力、破壊形状を観察する。
2. Test method Cut the injection tube in half in the longitudinal direction and apply pressure from the lateral direction with a single screw compressor to break the tube. Observe the compression force and fracture shape at that time.

3.実験結果
塩化ビニールを素材とする注入管と、紙と乳酸ポリマーの混合物を素材とする注入管を縦方向から半分に切断し、一軸圧縮機により管に横方向から圧力を加えた。図1、2の左側の写真は一軸圧縮試験前の土中埋設管の写真を示す。図1、2の右側の写真は一軸圧縮試験後の土中埋設管の破壊状態を示す。図1、2の写真中、上は塩化ビニールを素材とする注入管(試料A)、下は本発明の紙と乳酸ポリマーの混合物を素材とする注入管(試料B)で、実験では写真上部より加圧した。
3. Experimental result
An injection tube made of vinyl chloride and an injection tube made of a mixture of paper and lactic acid polymer were cut in half from the longitudinal direction, and pressure was applied to the tube from the lateral direction by a uniaxial compressor. The photographs on the left side of FIGS. 1 and 2 show photographs of underground pipes before the uniaxial compression test. The photographs on the right side of FIGS. 1 and 2 show the state of destruction of the underground pipe after the uniaxial compression test. 1 and 2, the top is an injection tube made of vinyl chloride (sample A), the bottom is an injection tube made of a mixture of paper and lactic acid polymer of the present invention (sample B). Pressurized more.

塩化ビニールを素材とする注入管と、紙と乳酸ポリマーの混合物を素材とする注入管を
横方向から一軸圧縮機により圧力を加えた。圧縮強度(kgf/cm)と歪み距離(mm)との関係を図3のグラフに示す。図3から明らかなように、塩化ビニ−ルを素材とする注入管は約300kgf/cm以上の圧力を加えると、圧力を受けた点より横に変形し、管自体が破壊されることは無かった。一方、本発明である紙と乳酸ポリマーの混合物を素材とする注入管は、約300kgf/cm以上の圧力を加えると圧力を受けた点に亀裂が入り割れた。これより本発明は歪みの小さい領域で大きな破壊強度を得ることが判る。したがって、埋設管として充分な強度をもちながら掘削に際して、小さな歪みで破壊することが判るこのため掘削に容易に粉砕される土中埋設管となることが実証された。
Pressure was applied to the injection tube made of vinyl chloride and the injection tube made of a mixture of paper and lactic acid polymer from the lateral direction by a single screw compressor. The relationship between compressive strength (kgf / cm 2 ) and strain distance (mm) is shown in the graph of FIG. As is apparent from FIG. 3, when a pressure of about 300 kgf / cm 2 or more is applied to an injection tube made of vinyl chloride, the tube itself is deformed laterally from the point where the pressure is received, and the tube itself is destroyed. There was no. On the other hand, the injection tube made of a mixture of paper and lactic acid polymer according to the present invention was cracked at the point where the pressure was applied when a pressure of about 300 kgf / cm 2 or more was applied. From this, it can be seen that the present invention obtains a high breaking strength in a region with a small strain. Therefore, it was proved that when excavating with sufficient strength as a buried pipe, it can be destroyed with a small strain, so that it becomes a buried pipe that can be easily crushed by excavation.

さらに、本発明土中埋設管は全部または一部を生物分解性プラスチックスで形成し、この中にセルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材として形成されてもよい。   Furthermore, the underground buried pipe of the present invention may be formed entirely or partially from biodegradable plastics, containing cellulose fibers therein to be easily pulverized resin, and this resin as a raw material.

本発明に用いられる上述の生物分解性プラスチックスは微生物により分解される高分子化合物であって、好ましくは熱可塑性であり、従来公知の押出成形により加工でき、注入管としての機械的強度を有するものをいう。なお、水溶性プラスチックス、特にアルカリ性の条件下で溶解するプラスチックスは、生物によっても分解され易く、本発明において好ましいものである。   The above-mentioned biodegradable plastics used in the present invention is a polymer compound that is degraded by microorganisms, preferably thermoplastic, and can be processed by conventionally known extrusion molding, and has mechanical strength as an injection tube. Say things. Water-soluble plastics, particularly plastics that dissolve under alkaline conditions, are easily decomposed by living organisms and are preferred in the present invention.

その化学構造は(1)主鎖が脂肪族で、これにエーテル結合またはエステル結合を有するもの、(2)主鎖(または側鎖)に水酸基、カルボキシル基を有するもの、あるいは、(3)プラスチックスの光分解および微生物分解を誘因、促進する添加剤を含有することにより生物分解性が良好なプラスチックスであり、具体的には澱粉系、酢酸セルローズ系、ポリ乳酸系、脂肪族ポリエステル系、ポリビニルアルコール系等の生物分解性プラスチックスが挙げられる。これらの主原料には、性能の向上あるいは可撓性の付与等の目的で他の高分子化合物、例えばポリエチレン、ポリプロピレン等のプラスチックス、可塑剤、安定剤、着色剤等を必要に応じて添加することもできる。   The chemical structure is (1) the main chain is aliphatic and has an ether bond or ester bond, (2) the main chain (or side chain) has a hydroxyl group or a carboxyl group, or (3) plastic. It is a plastic with good biodegradability by containing additives that induce and accelerate photodegradation and microbial degradation of starch, specifically starch-based, cellulose acetate-based, polylactic acid-based, aliphatic polyester-based, Examples thereof include biodegradable plastics such as polyvinyl alcohol. To these main raw materials, other polymer compounds such as plastics such as polyethylene and polypropylene, plasticizers, stabilizers, colorants and the like are added as necessary for the purpose of improving performance or imparting flexibility. You can also

上記(2)の水酸基あるいはカルボキシル基を有する化合物としては、脂肪族化合物が好ましい。これらの生物分解性プラスチックスとしては具体的には、上記(1)の例として、「ピオノーレ」(ポリオールとジカルボン酸の脂肪族ポリエステル)(昭和高分子株式会社と昭和電工株式会社)、「セルグリーン」(酢酸セルローズ系、ポリカプロラクトン系)(ダイセル化学工業株式会社)、「ラクティ(乳酸系)」(株式会社島津製作所)、(2)の例として、「ポバール」(ポリビニルアルコール)(株式会社クラレ)、(3)の例として、「ワンダースターケン」(トウモロコシ澱粉とポリエチレン)(ワンダー株式会社)等々が挙げられる。   The compound (2) having a hydroxyl group or a carboxyl group is preferably an aliphatic compound. Specific examples of these biodegradable plastics include “Pionore” (aliphatic polyester of polyol and dicarboxylic acid) (Showa Polymer Co., Ltd. and Showa Denko Co., Ltd.), “Cell” Examples of “green” (cellulose acetate, polycaprolactone) (Daicel Chemical Industries, Ltd.), “lacty (lactic acid)” (Shimadzu Corporation), (2), “Poval” (polyvinyl alcohol) (Ltd.) Examples of (Kuraray) and (3) include “Wonder Starken” (corn starch and polyethylene) (Wonder Corporation) and the like.

上記生物分解性プラスチックスには、ポリヒドロキシプチレート、ポリ乳酸、ポリグリコシド等の高融点生物分解性プラスチックスをブレンドすることにより、加工性を向上させ、織物、不織布とすることにより袋体としても使用できる。これらの主原料は、土中ではバクテリアにより、例えば90〜300日程度の日数で分解される。   By blending the above biodegradable plastics with high melting point biodegradable plastics such as polyhydroxypropylate, polylactic acid, polyglycoside, etc., the processability is improved, and a woven fabric or non-woven fabric is used as a bag. Can also be used. These main raw materials are decomposed in the soil by bacteria for, for example, about 90 to 300 days.

なお、生物分解性プラスチックスは、その成形品と微生物の体内より代謝される酵素の表面反応であるため、成形品の厚みが厚いほど分解時間は長くなる。他方、注入材がアルカリ性の場合には、エステル結合を有する生物分解性プラスチックスが加水分解を受けやすい。また、注入地盤は、酸性からアルカリ性まで、あるいは海水浸透等、種々の異なる条件下にあり、さらに、注入材の注入によっても大きく変わってくる。したがって、注入管の分解速度は一概にはいえないが、掘削しない場合についてみると、1年といえども充分短時間といえる。また、注入後掘削する場合には、脆性のより大きな生物分解性プラスチックスを使用するのが好ましい。   Biodegradable plastics is a surface reaction between the molded product and an enzyme that is metabolized from the body of the microorganism. Therefore, the thicker the molded product, the longer the degradation time. On the other hand, when the injection material is alkaline, biodegradable plastics having an ester bond are susceptible to hydrolysis. Moreover, the injection | pouring ground exists in various different conditions, such as acidic to alkaline or seawater penetration, and also changes with injection | pouring of injection | pouring materials. Therefore, the decomposition rate of the injection pipe cannot be generally determined, but when it is not excavated, it can be said that it is sufficiently short even for one year. Also, when drilling after injection, it is preferable to use more brittle biodegradable plastics.

本発明にかかる生物分解性プラスチックスは必要に応じて耐候性を落とすことによって分解、あるいは強度の低下を促進させることもでき、そのような注入管を使用する場合には、特に、注入操作前の管理に配慮し、例えば直射日光に長期間曝すとか、雨中に放置することはできるだけ避けるのが好ましい。   The biodegradable plastics according to the present invention can be decomposed or reduced in strength by reducing the weather resistance as required. When such an injection tube is used, particularly before the injection operation. For example, it is preferable to avoid exposure to direct sunlight for a long time or leaving it in the rain as much as possible.

生物分解性プラスチックスとして酢酸セルローズ系およびポリエステル系について引張破断強度、引張破断伸度、および分解評価を測定し、結果を表2に示した。   As the biodegradable plastics, tensile strength at break, tensile elongation at break, and degradation evaluation were measured for cellulose acetate type and polyester type, and the results are shown in Table 2.

Figure 2006118631
Figure 2006118631

本発明土中埋設管は調査管、配水管、給水管、地盤への薬液注入のための土中埋設管等、水中、あるいは土中において使用され、目的を達した後、シールド工事等の地下掘削工事で容易に破壊される。このため、シールド工法等の掘削工事において作業性の低下を低減することができ、上述土中埋設管を使用する技術分野において利用可能性が高い。   The underground buried pipe of the present invention is used in the underground or underground, such as a survey pipe, water distribution pipe, water supply pipe, underground chemical pipe for injecting chemical solution into the ground, and after reaching the purpose, It is easily destroyed by excavation work. For this reason, the fall of workability | operativity can be reduced in excavation works, such as a shield construction method, and its applicability is high in the technical field which uses the above-mentioned underground pipe.

一軸圧縮前の土中埋設管の写真である。It is a photograph of the underground pipe before uniaxial compression. 一軸圧縮後の土中埋設管の写真である。It is a photograph of the underground pipe after uniaxial compression. 圧縮強度(kgf/cm)と歪み距離(mm)との関係を示したグラフである。It is the graph which showed the relationship between compressive strength (kgf / cm < 2 >) and strain distance (mm).

Claims (8)

熱可塑性樹脂にセルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材として形成されてなる粉砕の容易な土中埋設管。  A buried underground tube that is easily pulverized and made of a thermoplastic resin containing cellulose fiber to make it easily pulverized. 全部または一部が生物分解性プラスチックスで形成され、この中にセルローズ繊維を含有せしめて粉砕されやすい樹脂とし、この樹脂を素材として形成されてなる粉砕の容易な土中埋設管。   An easily pulverized underground pipe formed entirely or partially of biodegradable plastics, containing cellulose fibers therein to be easily pulverized, and made of this resin as a raw material. 請求項1または2において、土中埋設管が地質や地下水の調査のための調査管、配水管、給水管、または薬液注入のための土中埋設管である請求項1または2に記載の土中埋設管。   3. The soil according to claim 1 or 2, wherein the underground pipe is a survey pipe, a water distribution pipe, a water supply pipe, or a underground pipe for injecting a chemical solution for investigation of geology and groundwater. Inside buried pipe. 請求項1において、熱可塑性樹脂がポリエチレン、ポリプロピレン、ポリアセタール、ポリスチレン、ナイロン、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレートの群から選択される一種または複数種である請求項1に記載の土中埋設管。   The thermoplastic resin according to claim 1, wherein the thermoplastic resin is selected from the group consisting of polyethylene, polypropylene, polyacetal, polystyrene, nylon, acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, polyethylene terephthalate, and polybutylene terephthalate. The underground pipe according to claim 1, which is a seed. 請求項1または2において、セルローズ繊維が古紙、木粉、麻、コットンパルプ、または木材パルプの植物繊維を解繊した繊維である請求項1または2に記載の土中埋設管。   The underground tube according to claim 1 or 2, wherein the cellulose fiber is a fiber obtained by defibrating waste paper, wood flour, hemp, cotton pulp, or wood pulp plant fiber. 請求項2において、生物分解性プラスチックスが微生物により分解される熱可塑性高分子化合物である請求項2に記載の土中埋設管。   3. The underground pipe according to claim 2, wherein the biodegradable plastic is a thermoplastic polymer compound that is decomposed by microorganisms. 請求項2において、生物分解性プラスチックスがアルカリ性の条件下で溶解するプラスチックスである請求項2に記載の土中埋設管。   3. The underground pipe according to claim 2, wherein the biodegradable plastic is a plastic that dissolves under alkaline conditions. 請求項2において、生物分解性プラスチックスが次の1、2または3である請求項2に記載の土中埋設管。
(1)主鎖が脂肪族で、これにエーテル結合またはエステル結合を有するもの、
(2)主鎖または側鎖に水酸基またはカルボキシル基を有するもの、
(3)プラスチックスの光分解および微生物分解を誘因、促進する添加剤を含有することにより生物分解性が良好なプラスチックスであって、澱粉系、酢酸セルローズ系、ポリ乳酸系、脂肪族ポリエステル系およびポリビニルアルコール系の群から選択される生物分解性プラスチックス。
The underground pipe according to claim 2, wherein the biodegradable plastics is 1, 2 or 3 below.
(1) The main chain is aliphatic and has an ether bond or an ester bond.
(2) Those having a hydroxyl group or a carboxyl group in the main chain or side chain,
(3) Plastics with good biodegradability by containing additives that induce and promote photodegradation and microbial degradation of plastics, starch-based, cellulose acetate-based, polylactic acid-based, aliphatic polyester-based And biodegradable plastics selected from the group of polyvinyl alcohols.
JP2004307864A 2004-10-22 2004-10-22 Easily crushed land burial pipe Pending JP2006118631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307864A JP2006118631A (en) 2004-10-22 2004-10-22 Easily crushed land burial pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307864A JP2006118631A (en) 2004-10-22 2004-10-22 Easily crushed land burial pipe

Publications (1)

Publication Number Publication Date
JP2006118631A true JP2006118631A (en) 2006-05-11

Family

ID=36536703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307864A Pending JP2006118631A (en) 2004-10-22 2004-10-22 Easily crushed land burial pipe

Country Status (1)

Country Link
JP (1) JP2006118631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080224A (en) * 2009-10-06 2011-04-21 Kyokado Kk Grouting method
KR101647607B1 (en) * 2015-11-11 2016-08-10 주식회사 월드케미칼 Wall filling pipe for junction secession prevention and improving strength
JP2017214731A (en) * 2016-05-31 2017-12-07 日特建設株式会社 Injection outer pipe and chemical feeding method
CN111849151A (en) * 2020-06-04 2020-10-30 昆山运融新材料科技有限公司 Photolysis nylon film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080224A (en) * 2009-10-06 2011-04-21 Kyokado Kk Grouting method
KR101647607B1 (en) * 2015-11-11 2016-08-10 주식회사 월드케미칼 Wall filling pipe for junction secession prevention and improving strength
JP2017214731A (en) * 2016-05-31 2017-12-07 日特建設株式会社 Injection outer pipe and chemical feeding method
CN111849151A (en) * 2020-06-04 2020-10-30 昆山运融新材料科技有限公司 Photolysis nylon film

Similar Documents

Publication Publication Date Title
JP6359888B2 (en) Diameter-expandable annular degradable seal member for downhole tool, well drilling plug, and well drilling method
JP6359355B2 (en) Plug for well excavation comprising an annular rubber member that can be expanded and formed from a decomposable rubber material
CN110318699B (en) Method for manufacturing decomposable rubber member for drilling tool
JP6441649B2 (en) Decomposable sealing member for downhole tool, downhole tool, and well drilling method
JP6221475B2 (en) Dispersion liquid for excavation and excavation method using the same
JPWO2015072317A1 (en) Temporary sealant for well drilling
JP2015108281A (en) Well drilling plug having ring-shaped ratchet mechanism
WO2014092146A1 (en) Fluid dispersion for drilling, and mining method for underground resources using same
JP6183039B2 (en) Dispersion liquid for excavation and mining method using the same
JP2006118631A (en) Easily crushed land burial pipe
JP3406567B2 (en) Ground injection method
Borowski et al. Effect of flax fibers addition on the mechanical properties and biodegradability of biocomposites based on thermoplastic starch
US20190002667A1 (en) Composition, composition for downhole tools, degradable rubber member for downhole, downhole tool, and method for well drilling
JP5156988B1 (en) Ground improvement method
JP4240497B2 (en) Purification method for contaminated ground
WO2015133544A1 (en) Seal member for degradable downhole tool, downhole tool, and well-drilling method
WO2015046330A1 (en) Method for degrading biodegradable resin
JP6343924B2 (en) Drilling dispersion and drilling method using the dispersion
JP4827910B2 (en) Observation well for environmental monitoring
JP2006130401A (en) Method for decontaminating contaminated ground
JP6233566B2 (en) Degradation method of biodegradable resin
Bateni Stabilization Mechanisms of Oil Palm Empty Fruit Bunch (Opefb) Fibre Reinforced Silty Sand
US20220348727A1 (en) Composite resin molded product with adjusted decomposition rate, and production method therefor
WO2022230962A1 (en) Diverting agent and method for filling fracture of winze with same
JP2010065503A (en) Improved soil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090714

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090918