JP2006118040A - Method for producing nanocrystal magnetic material with oriented crystal grain - Google Patents

Method for producing nanocrystal magnetic material with oriented crystal grain Download PDF

Info

Publication number
JP2006118040A
JP2006118040A JP2005269873A JP2005269873A JP2006118040A JP 2006118040 A JP2006118040 A JP 2006118040A JP 2005269873 A JP2005269873 A JP 2005269873A JP 2005269873 A JP2005269873 A JP 2005269873A JP 2006118040 A JP2006118040 A JP 2006118040A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnetic material
crystal grain
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269873A
Other languages
Japanese (ja)
Inventor
Sadahiro Tsurekawa
貞弘 連川
Tadao Watanabe
忠雄 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005269873A priority Critical patent/JP2006118040A/en
Publication of JP2006118040A publication Critical patent/JP2006118040A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a nanocrystal material having aggregated structure in which crystal grains are oriented, and having improved magnetic properties. <P>SOLUTION: The method for producing the nanocrystal material with oriented crystal grains is characterized in that in a step where a thin sheet-shaped amorphous soft magnetic substance of Fe-Si-B-Cu-Nb or the like is heated and crystallized, when the crystallization temperature of a crystal phase is defined as TC, and further the Curie temperature of the crystal phase is defined as Tcc, the amorphous soft magnetic substance thin sheet is heated to a temperature of TC to Tcc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高周波トランス磁心や磁気ヘッド等に用いるナノ結晶軟磁性材料の製造方法に関し、更に詳細にはナノサイズの結晶粒の方位が配向したナノ結晶磁性材料薄膜の製造方法に関するものである。   The present invention relates to a method for producing a nanocrystalline soft magnetic material used for a high-frequency transformer magnetic core, a magnetic head or the like, and more particularly to a method for producing a nanocrystalline magnetic material thin film in which the orientation of nanosized crystal grains is oriented.

従来の結晶粒径を有する多結晶材料に比べ、結晶粒径をナノスケール化することにより優れた磁気特性や力学特性が発現することが一般的に知られている。このようなナノ結晶材料の作製方法としては、ガス急冷・固化法、電着法、強加工法、急冷凝固法、アモルファス合金を前駆体とする結晶化法などが用いられており、特にナノ結晶軟磁性材料の製造方法では、アモルファス金属合金の結晶化法が主に用いられている。(例えば、特許文献1,2,3 非特許文献1参照)また、このようなナノ結晶材料の作製技術についても、詳しい解説記事がある。(例えば、非特許文献2参照)
一方、Fe−Si合金のいわゆる電磁鋼板の研究例からもわかるように、結晶粒方位を配向し、集合組織を形成させることにより、飛躍的に軟磁気特性が向上する。したがって、ナノ結晶軟磁性材料の結晶粒方位を配向することによって、磁気特性のさらなる向上が期待される。しかしながら、このような着想に基づいて、アモルファス合金からのナノ結晶化法において結晶粒方位の配向を試みた研究はほとんど無い。
It is generally known that superior magnetic properties and mechanical properties are manifested by making the crystal grain size nanoscale compared to conventional polycrystalline materials having a crystal grain size. As a method for producing such a nanocrystal material, a gas rapid cooling / solidification method, an electrodeposition method, a strong processing method, a rapid solidification method, a crystallization method using an amorphous alloy as a precursor, and the like are used. In the method for producing a soft magnetic material, an amorphous metal alloy crystallization method is mainly used. (For example, refer to Patent Documents 1, 2 and 3 Non-Patent Document 1) Further, there is a detailed explanation article about the technology for producing such a nanocrystal material. (For example, see Non-Patent Document 2)
On the other hand, as can be seen from research examples of so-called electromagnetic steel sheets made of Fe—Si alloy, the soft magnetic properties are dramatically improved by orienting the crystal grains and forming a texture. Therefore, further improvement in magnetic properties is expected by orienting the crystal grain orientation of the nanocrystalline soft magnetic material. However, based on such an idea, there has been almost no research that attempted the orientation of crystal grain orientation in the nanocrystallization method from an amorphous alloy.

また、アモルファス軟磁性体のキュリー温度をTca、アモルファス軟磁性体を加熱して結晶相とした時、該結晶相の結晶化温度をTC、さらに、前記結晶相のキュリー温度をTcxとすると、一般的に、Tca<TC<Tccの関係にあることが知られている。(例えば、非特許文献3参照)
特開2002−316243号公報 特開2001−252749号公報 特開2001−295005号公報 Y. Yoshizawa, S. Oguma and K. Yamaguchi, J. Appl. Phys. 64 (1988), 6044-6046. M. E. McHenry, M. A. Willard and D. E. Laughlin, Prog. Mater. Sci., 44 (1999), 291-433. 近角聡信,「強磁性体の物理(上) −物質の磁性−」,裳華房,(2001),p.262
In addition, when the Curie temperature of the amorphous soft magnetic material is Tca, the amorphous soft magnetic material is heated to a crystalline phase, the crystallization temperature of the crystalline phase is TC, and the Curie temperature of the crystalline phase is Tcx. In particular, it is known that Tca <TC <Tcc. (For example, see Non-Patent Document 3)
JP 2002-316243 A JP 2001-252749 A JP 2001-295005 A Y. Yoshizawa, S. Oguma and K. Yamaguchi, J. Appl. Phys. 64 (1988), 6044-6046. ME McHenry, MA Willard and DE Laughlin, Prog. Mater. Sci., 44 (1999), 291-433. Naoko Kakunobu, “Physics of Ferromagnetic Material (Part 1) -Magnetics of Matter-”, Saika Huafusa, (2001), p.262

前述の先行文献における、従来のアモルファス合金の結晶化技術では、結晶粒方位の配向が全く行われていない。また従来技術のように、結晶化温度以上での熱処理のみによるナノ結晶化では、結晶粒方位の配向は難しいと考えられる。そこで、本発明は、熱処理による結晶化の際に外部磁場を印加することにより、磁場作用によって結晶粒方位を配向させた集合組織をもち、磁気特性が向上した超微細結晶粒材料薄膜およびナノ結晶材料薄膜の製造方法を提供することを目的としている。   In the conventional amorphous alloy crystallization technique in the above-mentioned prior literature, the orientation of crystal grain orientation is not performed at all. In addition, as in the prior art, it is considered that the orientation of the crystal grain orientation is difficult by nanocrystallization only by heat treatment above the crystallization temperature. Therefore, the present invention provides an ultrafine-grain material thin film and a nanocrystal having an improved magnetic property, having a texture in which grain orientation is oriented by magnetic field action by applying an external magnetic field during crystallization by heat treatment. It aims at providing the manufacturing method of a material thin film.

本発明によれば、アモルファス軟磁性体薄板を加熱して結晶化する工程において、前記アモルファス軟磁性体を加熱し結晶相とした時の該結晶相の晶出温度をTC、さらに、前記結晶相のキュリー温度をTccとすると、強直流磁場中で、TC以上でTcc以下の温度に前記アモルファス軟磁性体薄板を加熱した後結晶化することを特徴とする結晶粒方位配向ナノ結晶磁性材料薄板の製造方法が得られる。   According to the present invention, in the step of heating and crystallizing the amorphous soft magnetic thin plate, the crystallization temperature of the crystalline phase when the amorphous soft magnetic body is heated to be a crystalline phase is set to TC, and further the crystalline phase A crystal grain orientation-oriented nanocrystalline magnetic material sheet characterized in that the amorphous soft magnetic thin film is crystallized after heating the amorphous soft magnetic thin film to a temperature not lower than TC and not higher than Tcc in a strong DC magnetic field. A manufacturing method is obtained.

また、本発明によれば、前記アモルファス軟磁性体は、Fe−Si−Bからなる合金であることを特徴とする結晶粒方位配向超微細結晶粒磁性材料薄板の製造方法が得られる。   Further, according to the present invention, there is obtained a method for producing a crystal grain orientation oriented ultrafine grain magnetic material thin plate, wherein the amorphous soft magnetic material is an alloy made of Fe-Si-B.

また、本発明によれば、前記アモルファス軟磁性体は、Fe−Si−B−Cu−Nbからなる合金であることを特徴とする結晶粒方位配向ナノ結晶磁性材料薄板の製造方法が得られる。   In addition, according to the present invention, there is obtained a method for producing a crystal grain orientation oriented nanocrystalline magnetic material thin plate, wherein the amorphous soft magnetic material is an alloy made of Fe-Si-B-Cu-Nb.

また、本発明によれば、前記強直流磁場は、磁束密度が2T以上で、磁場の方向は前記薄板状アモルファス軟磁性体の平面と平行方向であることを特徴とする結晶粒方位配向超微細結晶粒磁性材料薄膜およびナノ結晶磁性材料薄板の製造方法が得られる。   According to the present invention, the strong DC magnetic field has a magnetic flux density of 2T or more, and the direction of the magnetic field is parallel to the plane of the thin plate-like amorphous soft magnetic material. A method for producing a crystalline magnetic material thin film and a nanocrystalline magnetic material thin plate is obtained.

また、本発明によれば、前記強強直流磁場中で結晶化した結晶粒方位配向ナノ結晶磁性材料薄板磁場の飽和磁束密度が、無磁場中で結晶化した結晶粒方位配向ナノ結晶磁性材料薄板磁場の飽和磁束密度より、大きいことを特徴とする結晶粒方位配向ナノ結晶磁性材料薄板の製造方法が得られる。   Further, according to the present invention, the saturation magnetic flux density of the crystal orientation-oriented nanocrystalline magnetic material thin plate crystallized in the strong direct current magnetic field is a crystal orientation oriented nanocrystalline magnetic material thin plate crystallized in the absence of a magnetic field. A method for producing a crystal grain orientation-oriented nanocrystalline magnetic material thin plate characterized by being larger than the saturation magnetic flux density of the magnetic field is obtained.

本発明によれば、2T程度の通常の電磁石でも容易に作れる磁場強度で、結晶粒方位を配向させた集合組織をもち、磁気特性が向上したナノ結晶材料薄膜を作製する製造方法を提供することができる。   According to the present invention, there is provided a manufacturing method for producing a nanocrystalline material thin film having an improved texture and a texture in which crystal grains are oriented with a magnetic field intensity that can be easily produced even with a normal electromagnet of about 2T. Can do.

以下、本発明の実施の最良の形態について図面を参照して詳細に説明する。図1は、本発明のアモルファス合金の磁場中結晶化の概念図である。アモルファス相からの結晶化による微細組織形成は、結晶核の形成およびその後の結晶相の粒成長によって起こる。一般には、ランダムな結晶方位を有する核が形成され、またある方位の結晶が優先成長することは無いので、結晶粒方位が集合化した組織は得られない。しかし、強磁性相である結晶相には磁気異方性があり、結晶核形成段階において強磁場を印加することにより、磁気異方性エネルギーを最も小さくすることができる方位の結晶核が優先して形成され、また、その後そのような核が優先成長することが期待される。その結果、結晶粒方位がシャープに配向した集合組織を形成することができる。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for carrying out the present invention will be described below in detail with reference to the drawings. FIG. 1 is a conceptual diagram of crystallization of an amorphous alloy of the present invention in a magnetic field. Microstructure formation by crystallization from the amorphous phase occurs by the formation of crystal nuclei and subsequent grain growth of the crystal phase. In general, nuclei having random crystal orientations are formed, and crystals with a certain orientation never preferentially grow, so that a structure in which crystal grain orientations are aggregated cannot be obtained. However, the crystalline phase, which is a ferromagnetic phase, has magnetic anisotropy. By applying a strong magnetic field during the formation of crystal nuclei, crystal nuclei with the orientation that can minimize the magnetic anisotropy energy take precedence. It is also expected that such nuclei will grow preferentially. As a result, it is possible to form a texture in which the crystal grain orientation is oriented sharply.

図2は、Fe78Si913アモルファス合金薄板をアモルファス相の結晶化温度(800K)以上、結晶化相のキュリー温度(970K)以下の温度853Kで30分間、0〜6Tの磁場作用下で結晶化させた後のX線回折プロファイルである。磁場はアモルファス合金薄板の平面と平行方向で、この場合は平面長手方向に印かされている。図2から明らかに、6Tの磁場を印加することにより、Siを固溶したα鉄(α-Fe(Si))に於ける{110}のピークが非常に強くなっており、結晶化した相が{110}方位へ配向していることを示唆している。ここでFe2Bも若干形成される為記載してあるがその寄与度は低い。 FIG. 2 shows that an Fe 78 Si 9 B 13 amorphous alloy sheet is subjected to a magnetic field of 0 to 6 T for 30 minutes at a temperature of 853 K, which is not lower than the crystallization temperature (800 K) of the amorphous phase and not higher than the Curie temperature (970 K) of the crystallization phase. It is an X-ray diffraction profile after crystallization. The magnetic field is in the direction parallel to the plane of the amorphous alloy sheet, in this case the plane longitudinal direction. As apparent from FIG. 2, by applying a magnetic field of 6T, the {110} peak in α-iron (α-Fe (Si)) in which Si is dissolved is very strong, and the crystallized phase Is oriented in the {110} orientation. Here, Fe 2 B is also formed because it is slightly formed, but its contribution is low.

図3は、前記Fe78Si913アモルファス合金を温度853Kで30分間、結晶化した後の微細組織を方位像顕微鏡 (OIM)により観察した結果である。図3(a)は無磁場中結晶化、図3(b)は試料長さ方向に平行に6Tの磁場を印加したもの、図3(c)は試料表面に垂直に6Tの磁場を印加したものである。図3(a)および図3(c)では、結晶粒の方位はランダムに分布しているのに対し、試料表面に平行に6Tの磁場を印加した図3(b)の試料では、試料表面法線方向が<110>方位にシャープに配向しているのがわかる。 FIG. 3 shows the result of observation of the microstructure after crystallization of the Fe 78 Si 9 B 13 amorphous alloy at a temperature of 853 K for 30 minutes with an orientation image microscope (OIM). 3A shows crystallization in the absence of a magnetic field, FIG. 3B shows a 6T magnetic field applied in parallel to the sample length direction, and FIG. 3C shows a 6T magnetic field applied perpendicular to the sample surface. Is. 3 (a) and 3 (c), the orientation of crystal grains is randomly distributed, whereas in the sample of FIG. 3 (b) in which a 6T magnetic field is applied in parallel to the sample surface, the sample surface It can be seen that the normal direction is sharply oriented in the <110> direction.

また、図4は図3に示した各試料の逆極点図である。図4(a)は無磁場中結晶化、図4(b)は試料長さ方向に平行に6Tの磁場を印加したもの、図4(c)は試料表面に垂直に6Tの磁場を印加したものである。図4(a)および図4(c)では、結晶粒は試料表面内方位はランダムに分布している。これに対して、図4(b)では、密度分布が各極付近集中しており、磁場作用により1軸集合組織が形成されていることが明らかである。
図5は、Fe73.5Si13.59Nb3Cu1アモルファス合金薄板をアモルファス相の結晶化温度(750K)以上、結晶化相のキュリー温度(920K)以下の温度823Kで30分間、真空中において0〜6Tの磁場作用下で結晶化させた後のX線回折プロファイルである。磁場はアモルファス合金薄板の平面と平行方向で、この場合は平面長手方向に印加されている。磁場強度の増加とともに、Siを固溶したα鉄(α−Fe(Si))の{110}のピークがしだいに強くなっており、結晶化した相が{110}方位へ配向、または結晶化が促進されていることを示唆している。また、X線回折プロファイルから求めた結晶粒径は25nmであった。
図6はFe73.5Si13.59Nb3Cu1アモルファス合金薄板を磁場中(823K, 30分)および無磁場中で結晶化した試料の磁化曲線を示している。無磁場中で結晶化した試料の飽和磁束密度は1.22Tであり,アモルファス状態の試料の1.29Tに比べ減少するのに対し,磁場中で結晶化した試料の飽和磁束密度は1.36Tから1.40Tと増加することが見出された.また,6Tの磁場中で結晶化した試料では透磁率が,無磁場中で結晶化した試料に比べ約31%大きくなった。
FIG. 4 is a reverse pole figure of each sample shown in FIG. 4A shows crystallization in the absence of a magnetic field, FIG. 4B shows a case where a 6T magnetic field is applied parallel to the sample length direction, and FIG. 4C shows a case where a 6T magnetic field is applied perpendicularly to the sample surface. Is. In FIG. 4A and FIG. 4C, the crystal grains are randomly distributed in the sample surface orientation. On the other hand, in FIG. 4B, the density distribution is concentrated near each pole, and it is clear that a uniaxial texture is formed by the magnetic field action.
FIG. 5 shows that an Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 amorphous alloy sheet is heated at 823 K for 30 minutes at a temperature not lower than the crystallization temperature (750 K) of the amorphous phase and not higher than the Curie temperature (920 K) of the crystallization phase. It is an X-ray-diffraction profile after crystallizing under the magnetic field effect of -6T. The magnetic field is applied in a direction parallel to the plane of the amorphous alloy thin plate, in this case, in the plane longitudinal direction. As the magnetic field strength increases, the {110} peak of α-iron (α-Fe (Si)) in which Si is dissolved is gradually strengthened, and the crystallized phase is oriented or crystallized in the {110} direction. Suggests that this is being promoted. The crystal grain size obtained from the X-ray diffraction profile was 25 nm.
FIG. 6 shows a magnetization curve of a sample obtained by crystallizing a Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 amorphous alloy thin plate in a magnetic field (823 K, 30 minutes) and in a non-magnetic field. The saturation magnetic flux density of the sample crystallized in the magnetic field is 1.22 T, which is lower than that of the amorphous sample 1.29 T, whereas the saturation magnetic flux density of the sample crystallized in the magnetic field is 1.36 T. It was found to increase to 1.40T. Further, the permeability of the sample crystallized in the 6T magnetic field was about 31% larger than that of the sample crystallized in the absence of a magnetic field.

さらに、磁場中結晶化したFe73.5Si13.59Nb3Cu1試料について、結晶化の際に印加した磁場に平行な方向とそれに垂直な方向に磁場を印加して測定された磁化曲線から測定された磁気異方性定数Kuは約80J/m3であり、無磁場結晶化された試料について報告されているKu=15J/m3の5倍以上となった。これらのことは、磁場中結晶化によりナノ結晶材料の優れた軟磁気特性と結晶磁気異方性を兼ねそなえた特徴を有する磁性材料の開発が可能であることを示している。この特徴は、特に高周波領域でのナノ結晶軟磁性材料の使用を可能とするものである。 Furthermore, the Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 sample crystallized in the magnetic field was measured from the magnetization curve measured by applying the magnetic field in the direction parallel to and perpendicular to the magnetic field applied during crystallization. The measured magnetic anisotropy constant Ku was about 80 J / m 3 , which was more than 5 times the Ku = 15 J / m 3 reported for the sample subjected to magnetic field crystallization. These facts indicate that it is possible to develop a magnetic material having characteristics that combine excellent soft magnetic properties and crystal magnetic anisotropy of a nanocrystalline material by crystallization in a magnetic field. This feature enables the use of nanocrystalline soft magnetic materials, particularly in the high frequency region.

また、本発明である磁場中結晶化によるナノ結晶材料の結晶粒方位配向は、実施例に記載したFe78Si913アモルファス合金に限らず、強磁性材料であるならば同様の効果が期待でき、特にFe−Si−B合金に限定されるものではない。さらに、近年、強磁場作用下では、非磁性材料に関しても磁場の影響が発現することが報告されており、そのような強磁性材料以外の材料に関しても応用可能である。 Further, the crystal grain orientation orientation of the nanocrystalline material by crystallization in a magnetic field according to the present invention is not limited to the Fe 78 Si 9 B 13 amorphous alloy described in the examples, and the same effect is expected if it is a ferromagnetic material. In particular, it is not limited to the Fe—Si—B alloy. Furthermore, in recent years, it has been reported that the influence of a magnetic field is exerted even on nonmagnetic materials under the action of a strong magnetic field, and the present invention can be applied to materials other than such ferromagnetic materials.

本発明に係る製造方法で得られるアモルファス合金の磁場中結晶化による結晶粒方位配向ナノ結晶材料は高周波トランス、磁気ヘッド、磁気シールド等の電子機器の様々な分野に利用できる。   The crystal grain orientation oriented nanocrystalline material obtained by crystallization of an amorphous alloy in a magnetic field obtained by the production method according to the present invention can be used in various fields of electronic equipment such as a high frequency transformer, a magnetic head, and a magnetic shield.

アモルファス合金の磁場中結晶化の概念図。The conceptual diagram of crystallization in the magnetic field of an amorphous alloy. Fe78Si913アモルファス合金を853Kで30分間、0〜6Tの磁場作用下で結晶化させた後のX線回折プロファイル。X-ray diffraction profile after crystallization of Fe 78 Si 9 B 13 amorphous alloy at 853 K for 30 minutes under a magnetic field action of 0 to 6T. 磁場中結晶化(853K、30分間)したFe78Si913合金の結晶方位像 (OIM像)。 図3(a):無磁場中結晶化 図3(b): 試料表面に平行に6Tの磁場印加 図3(c):試料表面に垂直に6Tの磁場印加Crystal orientation image (OIM image) of Fe 78 Si 9 B 13 alloy crystallized in a magnetic field (853 K, 30 minutes). Fig. 3 (a): Crystallization in the absence of magnetic field Fig. 3 (b): Application of 6T magnetic field parallel to the sample surface Fig. 3 (c): Application of 6T magnetic field perpendicular to the sample surface 磁場中結晶化(853K、30分間)したFe78Si913合金の逆極点図。 図4(a):無磁場中結晶化 図4(b): 試料表面に平行に6Tの磁場印加 図4(c):試料表面に垂直に6Tの磁場印加Magnetic field during crystallization (853K, 30 minutes) Fe 78 Si 9 B 13 inverse pole figure of the alloy. Fig. 4 (a): Crystallization in the absence of magnetic field Fig. 4 (b): Application of 6T magnetic field parallel to the sample surface Fig. 4 (c): Application of 6T magnetic field perpendicular to the sample surface Fe73.5Si13.59Nb3Cu1アモルファス合金を823Kで30分間、0〜6Tの磁場作用下で結晶化させた後のX線回折プロファイル。X-ray diffraction profile after crystallization of an Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 amorphous alloy at 823 K for 30 minutes under a magnetic field action of 0 to 6 T. Fe73.5Si13.59Nb3Cu1アモルファス合金薄板を磁場中および無磁場中で結晶化した試料の磁化曲線。 Fe 73.5 Si 13.5 B 9 Nb 3 Cu magnetization curve of the crystallized sample at 1 Amorphous alloy sheet in the magnetic field and no magnetic field.

Claims (6)

アモルファス軟磁性体薄板を加熱して結晶化する工程において、前記アモルファス軟磁性体を加熱し結晶相とした時の該結晶相の晶出温度をTC、さらに、前記結晶相のキュリー温度をTccとするとき、強直流磁場中で、TC以上でTcc以下の温度に前記アモルファス軟磁性体薄板を加熱した後、結晶化することを特徴とする結晶粒方位配向ナノ結晶磁性材料薄板の製造方法。   In the step of heating and crystallizing the amorphous soft magnetic thin plate, the crystallization temperature of the crystalline phase when the amorphous soft magnetic body is heated to the crystalline phase is TC, and the Curie temperature of the crystalline phase is Tcc. A method for producing a crystal grain orientation-oriented nanocrystalline magnetic material sheet, wherein the amorphous soft magnetic thin sheet is heated to a temperature of TC or more and Tcc or less in a strong DC magnetic field and then crystallized. 前記アモルファス軟磁性体は、Fe−Si−Bからなる合金であることを特徴とする請求項1記載の結晶粒方位配向超微細結晶粒磁性材料薄板の製造方法。   2. The method for producing a grain-oriented ultrafine grain magnetic material thin plate according to claim 1, wherein the amorphous soft magnetic material is an alloy made of Fe-Si-B. 前記アモルファス軟磁性体は、Fe−Si−B−Cu−Nbからなる合金であることを特徴とする請求項2記載の結晶粒方位配向ナノ結晶磁性材料薄板の製造方法。   3. The method for producing a crystal grain orientation-oriented nanocrystalline magnetic material thin plate according to claim 2, wherein the amorphous soft magnetic material is an alloy made of Fe-Si-B-Cu-Nb. 前記強直流磁場は、磁束密度が2T以上であることを特徴とする請求項1〜3記載の結晶粒方位配向ナノ結晶磁性材料薄板の製造方法。   4. The method for producing a crystal grain orientation-oriented nanocrystalline magnetic material thin plate according to claim 1, wherein the strong DC magnetic field has a magnetic flux density of 2T or more. 前記強直流磁場は、磁場の方向が前記薄板状アモルファス軟磁性体の平面と平行の方向であることを特徴とする請求項1〜4記載の結晶粒方位配向ナノ結晶磁性材料薄板の製造方法。   5. The method for producing a crystal grain orientation-oriented nanocrystalline magnetic material thin plate according to claim 1, wherein the direction of the magnetic field of the strong DC magnetic field is parallel to the plane of the thin plate-like amorphous soft magnetic material. 前記強直流磁場中で結晶化した結晶粒方位配向ナノ結晶磁性材料薄板磁場の飽和磁束密度が、無磁場中で結晶化した結晶粒方位配向ナノ結晶磁性材料薄板磁場の飽和磁束密度より、大きいことを特徴とする請求項1および3〜5記載の結晶粒方位配向ナノ結晶磁性材料薄板の製造方法。










The saturation magnetic flux density of the grain orientation oriented nanocrystalline magnetic material thin plate magnetic field crystallized in the strong DC magnetic field is larger than the saturation magnetic flux density of the crystal grain orientation oriented nanocrystalline magnetic material thin magnetic field crystallized in the absence of a magnetic field. A method for producing a crystal grain orientation-oriented nanocrystalline magnetic material thin plate according to claim 1 and 3-5.










JP2005269873A 2004-09-27 2005-09-16 Method for producing nanocrystal magnetic material with oriented crystal grain Pending JP2006118040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269873A JP2006118040A (en) 2004-09-27 2005-09-16 Method for producing nanocrystal magnetic material with oriented crystal grain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004279857 2004-09-27
JP2005269873A JP2006118040A (en) 2004-09-27 2005-09-16 Method for producing nanocrystal magnetic material with oriented crystal grain

Publications (1)

Publication Number Publication Date
JP2006118040A true JP2006118040A (en) 2006-05-11

Family

ID=36536186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269873A Pending JP2006118040A (en) 2004-09-27 2005-09-16 Method for producing nanocrystal magnetic material with oriented crystal grain

Country Status (1)

Country Link
JP (1) JP2006118040A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142895A (en) * 2006-12-05 2008-06-26 Fujifilm Corp Mold structure
JP2009543370A (en) * 2006-07-12 2009-12-03 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー Method for manufacturing magnetic core, magnetic core and inductive member with magnetic core
CN101787498A (en) * 2010-03-12 2010-07-28 江苏大学 Method for directional heating crystallization on block amorphous alloy
CN103117153A (en) * 2013-03-06 2013-05-22 安泰科技股份有限公司 Common mode inductance iron-based nanocrystalline iron core and preparation method of the same
JP2016020835A (en) * 2014-07-14 2016-02-04 愛知時計電機株式会社 Electromagnetic flowmeter and core
JP6260667B1 (en) * 2016-09-30 2018-01-17 Tdk株式会社 Soft magnetic alloy
KR101878078B1 (en) * 2016-11-30 2018-07-13 현대자동차주식회사 MAGNETIC SUBSTANCES BASED ON Fe-Mn-Bi, FABRICATION METHOD THEREOF, SINTERED MAGNET BASED ON Fe-Mn-Bi AND ITS FABRICATION METHOD
WO2019189614A1 (en) * 2018-03-29 2019-10-03 新東工業株式会社 Iron-based soft magnetic powder, method of manufacturing same, article including iron-based soft magnetic alloy powder, and method of manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543370A (en) * 2006-07-12 2009-12-03 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー Method for manufacturing magnetic core, magnetic core and inductive member with magnetic core
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
JP2008142895A (en) * 2006-12-05 2008-06-26 Fujifilm Corp Mold structure
CN101787498A (en) * 2010-03-12 2010-07-28 江苏大学 Method for directional heating crystallization on block amorphous alloy
CN103117153A (en) * 2013-03-06 2013-05-22 安泰科技股份有限公司 Common mode inductance iron-based nanocrystalline iron core and preparation method of the same
CN103117153B (en) * 2013-03-06 2016-03-02 安泰科技股份有限公司 Common mode inductance iron based nano crystal iron core and preparation method thereof
JP2016020835A (en) * 2014-07-14 2016-02-04 愛知時計電機株式会社 Electromagnetic flowmeter and core
JP6260667B1 (en) * 2016-09-30 2018-01-17 Tdk株式会社 Soft magnetic alloy
KR101878078B1 (en) * 2016-11-30 2018-07-13 현대자동차주식회사 MAGNETIC SUBSTANCES BASED ON Fe-Mn-Bi, FABRICATION METHOD THEREOF, SINTERED MAGNET BASED ON Fe-Mn-Bi AND ITS FABRICATION METHOD
WO2019189614A1 (en) * 2018-03-29 2019-10-03 新東工業株式会社 Iron-based soft magnetic powder, method of manufacturing same, article including iron-based soft magnetic alloy powder, and method of manufacturing same
JPWO2019189614A1 (en) * 2018-03-29 2021-04-22 新東工業株式会社 Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder and its manufacturing method
JP7024859B2 (en) 2018-03-29 2022-02-24 新東工業株式会社 Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder and its manufacturing method

Similar Documents

Publication Publication Date Title
Zhukov et al. Giant magnetoimpedance in rapidly quenched materials
Ohta et al. New high-Bs Fe-based nanocrystalline soft magnetic alloys
JP2006118040A (en) Method for producing nanocrystal magnetic material with oriented crystal grain
Zhang et al. Morphologically templated growth of aligned spinel CoFe2O4 nanorods
JP6860486B2 (en) Magnetic core based on nanocrystalline magnetic alloy
Bran et al. Tuning the magnetization reversal process of FeCoCu nanowire arrays by thermal annealing
JP6867744B2 (en) Method for manufacturing Fe-based nanocrystalline alloy
Qin et al. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays
JP6080094B2 (en) Winding core and magnetic component using the same
Kang et al. (001) oriented FePt–Ag composite nanogranular films on amorphous substrate
Urata et al. Fe–Si–B–P–Cu Nanocrystalline Alloy Ribbons With High Saturation Magnetic Flux Density Prepared Using Industrial Materials
Wei et al. Effects of temperature gradients on magnetic anisotropy of SmCo based films
Masoudpanah et al. Preparation of strontium hexaferrite film by pulsed laser deposition with in situ heating and post annealing
Singh et al. Effect of aspect ratio and temperature on magnetic properties of permalloy nanowires
Ma et al. A study of sputtering process for nanocrystalline FeAlN soft magnetic thin films
Dmitrieva et al. Fe-and co-based nanocrystalline soft magnetic alloys modified with Hf, Mo, and Zr: Magnetic properties, thermal stability, and structure. Alloys (Fe 0.6 Co 0.4) 86 Hf 7 B 6 Cu 1 and (Fe 0.7 Co 0.3) 88 Hf 7 B 4 Cu 1
Fu et al. Effects of annealing temperature on structure and magnetic properties of amorphous Fe61Co27P12 nanowire arrays
JP2024506431A (en) High magnetic induction high frequency nanocrystalline soft magnetic alloy and its manufacturing method
Pan et al. Lowering of L10 phase transition temperature of FePt thin films by single shot H+ ion exposure using plasma focus device
CN109754974B (en) Nanocrystalline alloy magnetic core and preparation method thereof
Wang et al. Structural evolution mechanism of early-stage nanocrystallization of Finemet amorphous ribbons
KR19980073499A (en) Fe-based amorphous soft magnetic material and manufacturing method thereof
Kaewrawang et al. Self-assembled strontium ferrite dot array on Au underlayer
Lee et al. Effects of Cu addition on magnetic properties and microstructures of annealed Zr–Co–Cu–B ribbons
Ali et al. Magnetic field annealing effect and superparamagnetic contributions in one-dimensional CoPt nanostructures