JP2006117950A - Energy ray-curing resin composition - Google Patents

Energy ray-curing resin composition Download PDF

Info

Publication number
JP2006117950A
JP2006117950A JP2005350738A JP2005350738A JP2006117950A JP 2006117950 A JP2006117950 A JP 2006117950A JP 2005350738 A JP2005350738 A JP 2005350738A JP 2005350738 A JP2005350738 A JP 2005350738A JP 2006117950 A JP2006117950 A JP 2006117950A
Authority
JP
Japan
Prior art keywords
component
curing
resin composition
energy ray
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005350738A
Other languages
Japanese (ja)
Other versions
JP4241721B2 (en
Inventor
Noriya Hayashi
宣也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005350738A priority Critical patent/JP4241721B2/en
Publication of JP2006117950A publication Critical patent/JP2006117950A/en
Application granted granted Critical
Publication of JP4241721B2 publication Critical patent/JP4241721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly curable energy ray-curing resin composition which has an extremely higher curing ability than conventional energy ray-curing resins, is simple, and has a high design flexibility. <P>SOLUTION: This composition contains an epoxy resin having a cyclic ether structure in its molecular structure as a photopolymerizable resin component, a photo-initializing agent component which enables the cure of the photopolymerizable resin component by an energy ray radiation, and a curing agent component using for the ambient temperature or high temperature cure of the photopolymerizable resin component. As the photo-initializing agent component, a predetermined sulfonium salt is contained. The curing agent is an acid anhydride. The content of the curing agent is 0.1-1.4 mol against 1 mol of the photopolymerizable resin component that can react with the curing agent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

樹脂成分を含有し、UV(紫外線)、EB(電子線)、赤外線、X線、可視光線、アルゴン,CO2もしくはエキシマ等のレーザー、太陽光線、および、放射や輻射等の熱線等といったエネルギー線によって硬化可能な組成物、いわゆるエネルギー線硬化樹脂組成物において、高硬化性のエネルギー線硬化樹脂組成物に関する。特に、エネルギー線硬化樹脂組成物をもとにこの硬化性を向上させた樹脂組成物、及びかかる硬化能力の向上した組成物の製法等に関する。
ここで、上記エネルギー線硬化樹脂組成物は、使用される光増感剤、光鋭感剤、反応性希釈剤、その他充填材や添加剤等に関係なく有効であり、また、光重合開始剤成分に適切なもの(例えば光・熱重合開始剤や連鎖硬化型光重合開始剤成分)を用いることで、充填材や添加剤の形状やUV遮蔽性の有無、硬化物の膜厚や形状に関係なく有効であり、利用分野も一般成形材や注型材の他に、ペースト材、複合材、砥石材、接着剤、封止材、ワニス、塗料、インキ、トナー、コーティグ材等、硬化樹脂が対応可能な多種分野に適用可能である。
Contains resin components, UV (ultraviolet rays), EB (electron beam), infrared rays, X-rays, visible rays, argon, CO 2 or excimer lasers, solar rays, and heat rays such as radiation and radiation The present invention relates to a highly curable energy beam curable resin composition in a so-called energy beam curable resin composition. In particular, the present invention relates to a resin composition having improved curability based on an energy ray curable resin composition, a method for producing such a composition having improved curing ability, and the like.
Here, the energy ray curable resin composition is effective irrespective of the photosensitizer, photosensitizer, reactive diluent, other fillers and additives used, and the photopolymerization initiator. By using an appropriate component (for example, a photo / thermal polymerization initiator or a chain-curing photopolymerization initiator component), the shape of the filler or additive, the presence or absence of UV shielding, the film thickness or shape of the cured product In addition to general molding materials and casting materials, it is effective regardless of paste materials, composite materials, grinding stone materials, adhesives, sealants, varnishes, paints, inks, toners, coating materials, etc. It is applicable to various fields that can be handled.

近年、様々な分野で、低コスト化、易成形化、加工性向上、生産性向上、作業性向上、施工性向上、省エネルギー化、省スペース化、安全性向上、環境保全性向上等を考え、UV硬化に代表されるエネルギー線硬化という特徴をもつエネルギー線硬化樹脂の適用が検討されているが、適用を妨げる要因としてエネルギー線硬化の能力不足があげられる。UV硬化樹脂に代表されるエネルギー線硬化樹脂は、一定量以上のエネルギー線が照射された部位のみを硬化するという特徴を有し、また、UVに代表されるエネルギー線は、樹脂を透過する過程で減衰するという特徴を有するため、エネルギー線硬化という現象は、樹脂自体の硬化能力、エネルギー線の強度、照射時間、減衰特性等に大きく影響されるという特徴を有する。今後、この技術の利用拡大や様々な分野へ適用を図っていくためには、高い硬化能力が求められる場合が多々あるが、従来、エネルギー線硬化能力を向上させるために行ってきた方法としては、光開始剤の高性能化、照射するエネルギー線の強度UP、照射時間増大、エネルギー線の種類の変更等が挙げられる。   In recent years, in various fields, considering cost reduction, easy molding, workability improvement, productivity improvement, workability improvement, workability improvement, energy saving, space saving, safety improvement, environmental conservation improvement, etc. Application of an energy beam curable resin having a characteristic of energy beam curing typified by UV curing has been studied, but a lack of ability of energy beam curing can be cited as a factor that hinders application. The energy ray curable resin represented by the UV curable resin has a feature of curing only a portion irradiated with an energy ray of a certain amount or more, and the energy ray represented by the UV passes through the resin. Therefore, the phenomenon of energy ray curing has a feature that it is greatly influenced by the curing ability of the resin itself, the intensity of the energy rays, the irradiation time, the attenuation characteristics, and the like. In the future, in order to expand the use of this technology and to apply it to various fields, there are many cases where high curing ability is required. However, as a conventional method for improving energy beam curing ability, , Improvement of the performance of the photoinitiator, increase of the intensity of the energy beam to be irradiated, increase of the irradiation time, change of the type of the energy beam, and the like.

しかしながら、上記の方法を採用する場合、樹脂組成の側では、開始剤の開発に時間と費用がかかる、あるいは、樹脂組成物が高価等の問題があった。また、エネルギー線照射装置・設備の側では、装置の大型化、消費エネルギーの増大、ランニングコスト増大、生産性の低下、線源の特殊化、装置・設備が高価、安全性の低下等の問題があった。このため、エネルギー線硬化の利点の消失、トータルコストの増大等の問題が解消されなければ、結果的に上記方法自体が利用・適用が困難な状況になっていた。例えば、一般的なエネルギー線硬化樹脂の硬化膜厚は有効なエネルギー線の到達する表層数μm〜mmで、エネルギー線の透過距離が長くなると有効なエネルギー線が届かないためそれ以上は未硬化である。硬化能力の向上を考えた場合、効果の大小を別にすれば、樹脂組成物の変更、照射するエネルギー線の強度UP、線源の変更等、が考えられるが、ここでも前述の問題点が障害になってくる。従って、これまでのエネルギー線硬化の利用分野は、フォトレジスト、コーティング、塗料、接着剤、ワニス等の限定された領域が中心であった。   However, when the above method is employed, there are problems such as time and cost for development of the initiator on the resin composition side, or high cost of the resin composition. On the energy beam irradiation equipment / equipment side, there are problems such as larger equipment, increased energy consumption, increased running costs, reduced productivity, specialized radiation sources, expensive equipment / equipment, and reduced safety. was there. For this reason, unless problems such as loss of advantages of energy beam curing and increase in total cost are not solved, the above method itself is difficult to use and apply. For example, the cured film thickness of a general energy beam curable resin is the number of surface layers that an effective energy beam reaches, and the effective energy beam does not reach when the transmission distance of the energy beam becomes long. is there. When considering the improvement of the curing ability, it is possible to change the resin composition, increase the intensity of irradiated energy rays, change the radiation source, etc. It becomes. Therefore, the energy ray curing application field so far has centered on limited areas such as photoresists, coatings, paints, adhesives and varnishes.

エネルギー線硬化能力を向上させた代表的な例としては、高UV硬化性樹脂(三菱レイヨン株式会社、活性エネルギー線硬化性組成物、特許文献1:特開平8−283388号公報)やUV・加熱併用硬化型樹脂(旭電化工業株式会社:オプトマーKSシリーズ、日立化成工業株式会社:ラデキュア、東洋紡績:UE樹脂、特許文献2:特公昭61−38023号公報等)等がある。しかし、高UV硬化性樹脂に代表されるこれまでの高硬化性エネルギー線硬化樹脂は、エネルギー線硬化に有効な新規光重合性開始剤の開発か、あるいはこれより例は少ないが新規光重合性オリゴマーの開発によるものであり、前述の問題点を内包しており、且つ、用途に適切な組成を容易に得ることが可能とは言い難い状況であった。また、UV・加熱併用硬化型樹脂はより幅広い硬化条件を備えているという特徴を有する反面、これまでの高硬化性エネルギー線硬化樹脂が有する前述の問題点はそのままであり、更には、加熱プロセスの必要性から加熱装置および設備が必要となるため、装置および設備の方面でもエネルギー線硬化の利点を損なっていた。
特開平8−283388号公報 特公昭61−38023号公報
Typical examples of improved energy ray curing ability include high UV curable resins (Mitsubishi Rayon Co., Ltd., active energy ray curable composition, Patent Document 1: JP-A-8-283388) and UV / heating. Combination curing type resins (Asahi Denka Kogyo Co., Ltd .: Optomer KS series, Hitachi Chemical Co., Ltd .: Radicure, Toyobo: UE resin, Patent Document 2: Japanese Patent Publication No. 61-38023, etc.) and the like. However, conventional high-curing energy beam curable resins represented by high UV curable resins have been developed with new photopolymerization initiators effective for energy beam curing, or new photopolymerizability, although there are few examples. This was due to the development of the oligomer, and it was difficult to say that it was possible to easily obtain a composition suitable for the application, including the above-mentioned problems. In addition, UV / heating combined curable resins are characterized by having a wider range of curing conditions, but the above-mentioned problems of conventional high-curing energy ray curable resins remain as they are. Because of the necessity, a heating device and equipment are required, so that the advantages of energy ray curing have been impaired in the direction of the equipment and equipment.
JP-A-8-283388 Japanese Examined Patent Publication No. 61-38023

そこで、本発明者らは、上記した従来エネルギー線硬化性樹脂の欠点や硬化能力向上の必要性、および従来の高硬化性エネルギー線硬化樹脂の欠点や硬化能力向上方法の欠点に鑑み、新規な高硬化性エネルギー線硬化樹脂組成物について鋭意研究した。その結果、本発明者らは、光重合性樹脂成分および光重合開始剤成分に加えて、該光重合性樹脂成分をエネルギー線照射以外の方法で硬化させる硬化剤成分を含む新規な高硬化性エネルギー線硬化樹脂組成物、さらに、エネルギー線照射以外の方法で硬化させる際に硬化を促進する硬化促進剤成分を含むエネルギー線硬化樹脂組成物によれば、従来のエネルギー線硬化樹脂よりも硬化能力が高く、かつ、簡便で設計自由度も高く、エネルギー線硬化樹脂が有していた前述の問題点を解決できることを見いだした。本発明は、かかる見地より完成されたものである。   Therefore, the present inventors have taken into consideration the above-described drawbacks of the conventional energy beam curable resin and the necessity of improving the curing ability, and the novel drawbacks of the conventional highly curable energy beam curable resin and the curing ability improvement method. We have intensively studied high-curable energy ray-curable resin compositions. As a result, in addition to the photopolymerizable resin component and the photopolymerization initiator component, the present inventors have a novel high curability containing a curing agent component that cures the photopolymerizable resin component by a method other than energy beam irradiation. According to the energy ray curable resin composition and, further, the energy ray curable resin composition containing a curing accelerator component that accelerates the curing when cured by a method other than the energy ray irradiation, the curing ability is higher than that of the conventional energy ray curable resin. It has been found that the above-mentioned problems that the energy ray curable resin has can be solved. The present invention has been completed from such a viewpoint.

すなわち、すなわち、本発明の目的は、下記の構成を有することによって、効果的に達成することができる。
(1)光重合性オリゴマー又は光重合性モノマーのようなエネルギー線照射によって硬化可能な光重合性樹脂成分と、エネルギー線を照射した際に該光重合性樹脂成分の硬化を可能にする光重合開始剤成分と、該光重合性樹脂成分のうち少なくとも1種を常温硬化もしくは加熱硬化のようなエネルギー線硬化以外の方法で硬化させるのに利用可能な硬化剤成分と、を含むことを特徴とするエネルギー線硬化樹脂組成物、
(2)前記光重合性樹脂成分の少なくとも1種と前記硬化剤成分とを、常温硬化もしくは熱硬化のようなエネルギー線照射以外の方法で硬化させる際に、該硬化を促進する硬化促進剤成分を含むことを特徴とする上記(1)に記載のエネルギー線硬化樹脂組成物、
That is, the object of the present invention can be effectively achieved by having the following configuration.
(1) A photopolymerizable resin component that can be cured by irradiation with energy rays, such as a photopolymerizable oligomer or a photopolymerizable monomer, and photopolymerization that enables curing of the photopolymerizable resin component when irradiated with energy rays. An initiator component and a curing agent component that can be used to cure at least one of the photopolymerizable resin components by a method other than energy ray curing such as room temperature curing or heat curing. Energy ray curable resin composition,
(2) A curing accelerator component that accelerates the curing when curing at least one of the photopolymerizable resin components and the curing agent component by a method other than energy ray irradiation such as room temperature curing or thermal curing. An energy ray curable resin composition according to the above (1), comprising:

(3)前記光重合性樹脂成分として、分子構造に環状エーテル構造を有するエポキシ樹脂成分を含むことを特徴とする上記(1)又は(2)に記載のエネルギー線硬化樹脂組成物、(4)前記硬化剤成分として、酸無水物、又はジカルボン酸若しくはそのエステル化物のような酸無水物の誘導体を含むことを特徴とする上記(1)〜(3)のいずれかに記載のエネルギー線硬化樹脂組成物、(5)前記硬化剤成分として、1価又は多価のアルコール類を含むことを特徴とする上記(1)〜(3)のいずれかに記載のエネルギー線硬化樹脂組成物、 (3) The energy ray curable resin composition according to (1) or (2), wherein the photopolymerizable resin component includes an epoxy resin component having a cyclic ether structure in the molecular structure, (4) The energy beam curable resin according to any one of the above (1) to (3), wherein the curing agent component comprises an acid anhydride or a derivative of an acid anhydride such as dicarboxylic acid or an esterified product thereof. Composition, (5) The energy ray curable resin composition according to any one of (1) to (3) above, which contains a monovalent or polyvalent alcohol as the curing agent component,

(6)前記硬化剤成分もしくは前記硬化促進剤成分として、酸無水物又はその誘導体と、1価又は多価のアルコール類と、を含むことを特徴とする上記(2)又は(3)に記載のエネルギー線硬化樹脂組成物、
(7)前記硬化剤成分もしくは前記硬化促進剤成分が、前記エポキシ樹脂成分と反応可能であり、且つ、分子構造内に窒素原子を有しない化合物からなることを特徴とする上記(3)〜(6)のいずれかに記載のエネルギー線硬化樹脂組成物、
(6) The said hardening | curing agent component or the said hardening accelerator component contains an acid anhydride or its derivative (s), and monohydric or polyhydric alcohol, The said (2) or (3) characterized by the above-mentioned. Energy ray curable resin composition,
(7) The above (3) to (3), wherein the curing agent component or the curing accelerator component is composed of a compound that can react with the epoxy resin component and does not have a nitrogen atom in the molecular structure. 6) The energy beam curable resin composition according to any one of

(8)前記光重合性樹脂成分として、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートを含むことを特徴とする上記(3)〜(7)のいずれかに記載のエネルギー線硬化樹脂組成物、
(9)前記酸無水物又はその誘導体として、マレイン酸無水物又はその誘導体を含むことを特徴とする上記(4)又は(6)〜(8)のいずれかに記載のエネルギー線硬化樹脂組成物、
(10)前記アルコール類として、ポリエチレングリコールを含むことを特徴とする上記(5)〜(8)のいずれかに記載のエネルギー線硬化樹脂組成物、
(8) The energy beam according to any one of the above (3) to (7), wherein the photopolymerizable resin component includes 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. Cured resin composition,
(9) The energy ray curable resin composition according to any one of (4) or (6) to (8) above, wherein maleic anhydride or a derivative thereof is included as the acid anhydride or a derivative thereof. ,
(10) The energy ray curable resin composition according to any one of the above (5) to (8), which contains polyethylene glycol as the alcohol.

(11)硬化剤成分と反応可能な前記光重合性樹脂成分1molに対し、前記硬化剤成分を0.1mol〜1.4molの比率で含有することを特徴とする上記(1)〜(10)のいずれかに記載のエネルギー線硬化樹脂組成物、
(12)前記硬化剤成分1molに対し、前記硬化促進剤成分を0.04mol〜0.6molの比率で含有することを特徴とする上記(2)、(3)又は(6)〜(11)のいずれかに記載のエネルギー線硬化樹脂組成物、
(11) The above (1) to (10), wherein the curing agent component is contained in a ratio of 0.1 mol to 1.4 mol with respect to 1 mol of the photopolymerizable resin component capable of reacting with the curing agent component. The energy beam curable resin composition according to any one of
(12) The above (2), (3) or (6) to (11), wherein the curing accelerator component is contained in a ratio of 0.04 mol to 0.6 mol with respect to 1 mol of the curing agent component. The energy beam curable resin composition according to any one of

(13)前記光重合開始剤成分として、カチオン系光重合開始剤成分を含むことを特徴とする上記(1)〜(12)のいずれかに記載のエネルギー線硬化樹脂組成物、(14)前記光重合開始剤成分として、下記一般式(I)、(II)又は(III) (13) The energy ray curable resin composition according to any one of (1) to (12) above, which contains a cationic photopolymerization initiator component as the photopolymerization initiator component, (14) As a photopolymerization initiator component, the following general formula (I), (II) or (III)

Figure 2006117950
Figure 2006117950

で示される鉄−アレン系化合物を含むことを特徴とする上記(1)〜(13)のいずれかに記載のエネルギー線硬化樹脂組成物、
(15)前記光重合開始剤成分として、光および熱の双方で重合を開始させることができる光・熱重合開始剤を含むことを特徴とする上記(1)〜(14)のいずれかに記載のエネルギー線硬化樹脂組成物、
(16)前記光重合開始剤成分として、下記の一般式(IV),(IV’)又は(V)
An energy ray curable resin composition according to any one of the above (1) to (13), comprising an iron-allene compound represented by:
(15) The photopolymerization initiator component includes a photo / thermal polymerization initiator capable of initiating polymerization with both light and heat, as described in any one of (1) to (14) above Energy ray curable resin composition,
(16) As the photopolymerization initiator component, the following general formula (IV), (IV ′) or (V)

Figure 2006117950
Figure 2006117950

で示されるスルホニウム塩を含むことを特徴とする上記(1)〜(15)のいずれかに記載のエネルギー線硬化樹脂組成物、
(17)前記光重合開始剤成分が、光重合開始剤と光・熱重合開始剤とを含む2元系以上からなる重合開始剤成分を含むことを特徴とする上記(1)〜(16)のいずれかに記載のエネルギー線硬化樹脂組成物、
An energy ray-curable resin composition according to any one of the above (1) to (15), comprising a sulfonium salt represented by
(17) The above (1) to (16), wherein the photopolymerization initiator component includes a polymerization initiator component comprising a binary system or more including a photopolymerization initiator and a photo / thermal polymerization initiator. The energy beam curable resin composition according to any one of

(18)前記2元系以上からなる重合開始剤成分が、光重合開始剤として、アリール系スルホニウム塩類又は上記一般式(I)、(II)若しくは(III)で示される鉄−アレン系化合物の少なくとも1種を含み、光・熱重合開始剤として、上記一般式(IV)若しくは(V)で示されるスルホニウム塩の少なくとも1種を含むことを特徴とする上記(17)記載のエネルギー線硬化樹脂組成物、
(19)前記2元系以上からなる重合開始剤成分が、光・熱重合開始剤を重量比10〜100重量%の割合で含有することを特徴とする上記(17)又は(18)に記載のエネルギー線硬化樹脂組成物、並びに、
(20)前記光重合開始剤成分以外の成分の総重量100重量部に対し、前記光重合開始剤成分が0.1重量部〜6.0重量部の比率であることを特徴とする上記(1)〜(19)のいずれかに記載のエネルギー線硬化樹脂組成物、である。
(18) The polymerization initiator component composed of the binary system or more is an aryl sulfonium salt or an iron-allene compound represented by the above general formula (I), (II) or (III) as a photopolymerization initiator. The energy ray curable resin according to (17) above, comprising at least one of the sulfonium salts represented by the general formula (IV) or (V) as a photo / thermal polymerization initiator. Composition,
(19) The above (17) or (18), wherein the polymerization initiator component comprising the binary system or more contains a photo / thermal polymerization initiator in a ratio of 10 to 100% by weight. Energy beam curable resin composition, and
(20) The above (characteristic), wherein the photopolymerization initiator component is in a ratio of 0.1 parts by weight to 6.0 parts by weight with respect to 100 parts by weight of the total weight of the components other than the photopolymerization initiator component. It is an energy beam curable resin composition in any one of 1)-(19).

上記樹脂組成物は、上記(1)〜(20)の構成を有することによって高い硬化特性を示すが、これらの特徴(効果)は上記(1)〜(20)の構成を有することで、他のあらゆる全てのエネルギー線硬化樹脂組成物にも応用可能である。一般的にエネルギー線硬化樹脂組成物は、光硬化性樹脂成分と光重合開始剤成分とを含む。従って、上記(1)〜(20)において、エネルギー線硬化樹脂組成物に含まれている成分(例えば光重合性樹脂成分と光重合開始剤成分)をエネルギー線硬化樹脂組成物として置き換えて、上記(1)〜(20)を満足させることで、他のエネルギー線硬化樹脂組成物に同様の特徴を与えること(例えば高い硬化特性の付与)が可能となる。具体的には例えば、(i)エネルギー線硬化樹脂組成物に、該エネルギー線硬化樹脂組成物の光重合性樹脂成分の少なくとも1種を常温硬化もしくは加熱硬化のようなエネルギー線照射以外の方法で硬化させるのに用いることができる硬化剤成分を、該エネルギー線硬化樹脂組成物に加えることで硬化能力が向上し、(ii)エネルギー線硬化樹脂組成物に、上記(i)に記載の硬化剤成分と、該エネルギー線硬化樹脂組成物の光重合性樹脂成分の少なくとも1種と該硬化剤成分とを、常温硬化もしくは加熱硬化のようなエネルギー線照射以外の方法で硬化させる際に、該硬化を促進させる硬化促進剤成分とを、該エネルギー線硬化樹脂組成物に加えることで硬化能力が向上し、(iii)エネルギー線硬化樹脂組成物が、分子構造に環状エーテル構造を有するエポキシ樹脂成分を含む場合に、該エポキシ樹脂成分の少なくとも1種を常温硬化もしくは加熱硬化のようなエネルギー線照射以外の方法で硬化させる際に用いる硬化剤成分を、該エネルギー線硬化樹脂組成物に加えることで硬化能力が向上し、更に、該エポキシ樹脂成分の少なくとも1種と該硬化剤成分とを硬化させる際に該硬化を促進させる硬化促進剤成分を、該エネルギー線硬化樹脂組成物に加えることで硬化能力が向上し、   Although the said resin composition shows a high hardening characteristic by having the structure of said (1)-(20), these characteristics (effects) are other by having the structure of said (1)-(20). It can be applied to any energy ray curable resin composition. Generally, the energy ray curable resin composition includes a photocurable resin component and a photopolymerization initiator component. Therefore, in the above (1) to (20), the components (for example, the photopolymerizable resin component and the photopolymerization initiator component) contained in the energy beam curable resin composition are replaced with the energy beam curable resin composition, By satisfying (1) to (20), it is possible to give the same characteristics to other energy ray curable resin compositions (for example, imparting high curing characteristics). Specifically, for example, (i) at least one photopolymerizable resin component of the energy beam curable resin composition is applied to the energy beam curable resin composition by a method other than energy beam irradiation such as room temperature curing or heat curing. By adding a curing agent component that can be used for curing to the energy ray curable resin composition, the curing ability is improved, and (ii) the energy ray curable resin composition is added to the curing agent according to (i) above. When curing the component, at least one photopolymerizable resin component of the energy beam curable resin composition, and the curing agent component by a method other than energy beam irradiation such as room temperature curing or heat curing, the curing is performed. The curing ability is improved by adding a curing accelerator component that promotes the curing to the energy beam curable resin composition, and (iii) the energy beam curable resin composition has a cyclic structure in the molecular structure. When the epoxy resin component having a tellurium structure is contained, the curing agent component used for curing at least one of the epoxy resin components by a method other than energy ray irradiation such as room temperature curing or heat curing is used. The curing ability is improved by adding to the resin composition, and further, a curing accelerator component that accelerates the curing when curing at least one of the epoxy resin component and the curing agent component is added to the energy ray curable resin. Adding to the composition improves the curing ability,

(iv)上記(i)〜(iii)に記載の硬化剤成分が酸無水物又はその誘導体を含むことで硬化能力が向上し、(v)上記(i)〜(iii)に記載の硬化剤成分が1価又は多価のアルコール類を含むことで硬化能力が向上し、(vi)上記(ii)又は(iii)に記載の硬化剤成分もしくは硬化促進剤成分として、酸無水物又はその誘導体と、1価又は多価のアルコール類と、を含むことで硬化能力が向上し、(vii)上記(iii)〜(vi)に記載の硬化剤成分もしくは硬化促進剤成分が、エポキシ樹脂成分と反応可能であり、且つ、分子構造内に窒素原子を有しない化合物からなることで硬化能力が向上し、   (Iv) Curing ability improves because the hardening | curing agent component as described in said (i)-(iii) contains an acid anhydride or its derivative (v) The hardening | curing agent as described in said (i)-(iii) When the component contains a monovalent or polyhydric alcohol, the curing ability is improved, and (vi) an acid anhydride or a derivative thereof as the curing agent component or the curing accelerator component described in (ii) or (iii) above And a monovalent or polyhydric alcohol, the curing ability is improved, and (vii) the curing agent component or curing accelerator component described in (iii) to (vi) above is an epoxy resin component. Curing ability is improved by comprising a compound that can react and does not have a nitrogen atom in the molecular structure,

(viii)上記(iv)又は(vi)に記載の酸無水物又はその誘導体として、マレイン酸無水物又はその誘導体を含むことで硬化能力が向上し、(ix)上記(v)又は(vi)に記載のアルコール類として、ポリエチレングリコールを含むのでエネルギー線硬化能力が向上し、(x)エネルギー線硬化樹脂組成物に、上記(i)〜(ix)に加えて、光・熱重合開始剤を該エネルギー線硬化樹脂組成物に加えることで硬化能力が向上する。   (Viii) Curing ability is improved by including maleic anhydride or a derivative thereof as the acid anhydride or derivative thereof described in (iv) or (vi), and (ix) (v) or (vi) above In addition to the above (i) to (ix), a photo / thermal polymerization initiator is added to the energy ray curable resin composition because polyethylene glycol is included as the alcohol described in 1. Curing ability is improved by adding to the energy ray curable resin composition.

上記組成物は、以下のような用途がある。
(21)上記(1)〜(20)のいずれかに記載のエネルギー線硬化樹脂組成物を、エネルギー線照射もしくは常温硬化もしくは熱硬化等の何らかの硬化手段により硬化させたことを特徴とするエネルギー線硬化樹脂成形体(主として本発明に係るエネルギー線硬化樹脂成形体であり、樹脂硬化物、樹脂製造物等を含む)、
(22)上記(1)〜(20)のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とするペースト材料(磁気ペースト、導電ペースト、ハンダ、金属ペースト、無機ペースト、(薄型ディスプレイパネル等の)リブペースト等を含む)、
(23)上記(1)〜(20)のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とする複合成形材料(成形材料、注型材料、フィラー(無機フィラー、有機フィラー、金属フィラー等)充填材料、繊維(ガラス繊維、炭素繊維、無機繊維、有機繊維、金属繊維等)強化複合材料、砥石材料(砥粒結着剤)等を含む)、
The composition has the following uses.
(21) An energy beam obtained by curing the energy beam curable resin composition according to any one of (1) to (20) above by some curing means such as energy beam irradiation, room temperature curing, or heat curing. Cured resin molded body (mainly an energy beam curable resin molded body according to the present invention, including a cured resin, a resin product, etc.),
(22) Paste material (magnetic paste, conductive paste, solder, metal paste, inorganic paste, (thin film) containing the energy ray curable resin composition according to any one of (1) to (20) above Including rib paste etc.),
(23) A composite molding material (molding material, casting material, filler (inorganic filler, organic filler, or the like) characterized by containing the energy ray-curable resin composition according to any one of (1) to (20) above. Including metal fillers) filler materials, fibers (glass fibers, carbon fibers, inorganic fibers, organic fibers, metal fibers, etc.) reinforced composite materials, grinding stone materials (abrasive binder), etc.),

(24)上記(1)〜(20)のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とする接着剤(封止材等を含む)、並びに、(25)上記(1)〜(20)のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とするコーティング材(ワニス(絶縁ワニス等)、封止材(ダイオード、IC、コンデンサ、電子基盤等)、塗料、トナー又はインキ等を含む)、である。 (24) An adhesive (including a sealing material) containing the energy ray curable resin composition according to any one of (1) to (20), and (25) (1) ) To (20) a coating material (varnish (insulating varnish etc.)), sealing material (diode, IC, capacitor, electronic substrate etc.) characterized by containing the energy ray curable resin composition according to any one of Paint, toner or ink).

すなわち上記要約すると、本明細書で説明される発明は、エネルギー線硬化樹脂組成物の必須成分である光重合性樹脂成分および光重合性開始剤成分に加え、該光重合性樹脂成分の少なくとも1種を常温硬化もしくは加熱硬化のようなエネルギー線硬化以外の硬化方法で硬化させる際に利用可能な硬化剤成分を必須成分として含む高硬化性エネルギー線硬化樹脂組成物、また、この樹脂組成に加え、常温硬化もしくは熱硬化のようなエネルギー線硬化以外の硬化方法で硬化させる際に、その硬化反応の促進を可能とする成分である硬化促進剤成分を含む高硬化性エネルギー線硬化樹脂組成物、並びに、エネルギー線硬化樹脂組成物に、該エネルギー線硬化樹脂組成物の樹脂成分の少なくとも1種を常温硬化もしくは熱硬化のようなエネルギー線照射以外の方法で硬化させる際に利用可能な硬化剤成分や、該樹脂成分と該硬化剤成分の硬化反応の促進を可能とする成分である硬化促進剤成分を加えることで、エネルギー線硬化樹脂組成物のエネルギー線硬化能力を向上させる方法、さらには、これら特定のエネルギー線硬化樹脂組成物を用いた樹脂成形体や適用材料(ペースト材、複合材料、接着剤、コーティング材等)、および適用可能材料に関するものである。そして、特に光重合性樹脂成分としては物性に優れ硬化剤種類の豊富なエポキシ樹脂、硬化剤成分としてはマレイン酸無水物に代表される酸無水物又は酸無水物誘導体、および、硬化促進剤成分としてはポリエチレングリコールに代表される1価又は多価のアルコール類、を含むことが好ましい。また、本発明は硬化剤成分の組成比率、硬化促進剤成分の組成比率に関するものである。   That is, in summary, the invention described in the present specification includes at least one of the photopolymerizable resin component in addition to the photopolymerizable resin component and the photopolymerizable initiator component, which are essential components of the energy ray curable resin composition. A highly curable energy ray curable resin composition containing a curing agent component as an essential component that can be used when the seed is cured by a curing method other than energy ray curing such as room temperature curing or heat curing, and in addition to this resin composition When curing by a curing method other than energy beam curing such as room temperature curing or heat curing, a highly curable energy beam curable resin composition containing a curing accelerator component that is a component that enables acceleration of the curing reaction, And energy energy such as room temperature curing or thermosetting at least one resin component of the energy beam curable resin composition. By adding a curing accelerator component that can be used for curing by a method other than irradiation, and a curing accelerator component that can accelerate the curing reaction between the resin component and the curing agent component, an energy ray curable resin Methods for improving the energy ray curing ability of the composition, as well as resin moldings and application materials (paste materials, composite materials, adhesives, coating materials, etc.) using these specific energy ray curable resin compositions, and applications It relates to possible materials. In particular, an epoxy resin with excellent physical properties as a photopolymerizable resin component and abundant types of curing agents, an acid anhydride or an acid anhydride derivative typified by maleic anhydride as a curing agent component, and a curing accelerator component It is preferable to include monohydric or polyhydric alcohols represented by polyethylene glycol. The present invention also relates to a composition ratio of the curing agent component and a composition ratio of the curing accelerator component.

更に、光重合開始剤成分としては、特に好ましくはカチオン系光重合開始剤、光・熱重合開始剤、光重合開始剤と光・熱重合開始剤との2元系以上からなる光重合開始剤系を用いるものである。特に、上記一般式(I)ないし一般式(III)の鉄−アレン化合物タイプ、ホスホニウム塩タイプ、スルホニウム塩タイプや、上記一般式(IV)ないし一般式(V)の光・熱重合開始剤や、上記一般式(I)ないし一般式(III)の鉄−アレン化合物タイプ、スルホニウム塩タイプ、アリール系スルホニウム塩タイプ(トリアリールスルホニウム塩)の少なくとも1種と、一般式(IV)ないし一般式(V)の光・熱重合開始剤の少なくとも1種とを含む2元系以上からなる光重合開始剤を含むものが好適に用いられる。そして、本発明は上記2元系以上からなる光重合開始剤系の組成比率に関するものでもある。
また、本発明は、上記特定の成分を樹脂組成の構成成分に加えることによって、エネルギー線硬化樹脂組成物の硬化能力を一層向上させるものであり、該樹脂組成物を用いた樹脂組成物の硬化物、成形物、製造物、及び該樹脂組成物やエネルギー線硬化法による製造等の利用方法に関するものである。
Further, the photopolymerization initiator component is particularly preferably a cationic photopolymerization initiator, a photo / thermal polymerization initiator, or a photopolymerization initiator comprising a binary system of a photopolymerization initiator and a photo / thermal polymerization initiator. The system is used. In particular, the iron-allene compound type, phosphonium salt type, sulfonium salt type of the above general formula (I) to general formula (III), the photo / thermal polymerization initiator of the above general formula (IV) to general formula (V), , At least one of the above-described general formula (I) to general formula (III) iron-allene compound type, sulfonium salt type, aryl sulfonium salt type (triarylsulfonium salt), and general formula (IV) to general formula ( Those containing a photopolymerization initiator comprising at least one binary system including at least one of the photo / thermal polymerization initiators V) are suitably used. The present invention also relates to a composition ratio of a photopolymerization initiator system comprising the above binary system or more.
The present invention further improves the curing ability of the energy ray curable resin composition by adding the above specific component to the constituent components of the resin composition, and curing of the resin composition using the resin composition. The present invention relates to a product, a molded product, a product, and a utilization method such as production by the resin composition or energy beam curing method.

本発明によれば、従来のエネルギー線硬化樹脂よりも極めて硬化能力が高く、かつ、簡便で設計自由度も高いエネルギー線硬化樹脂を使用し、様々な硬化物、成形物、製造物を得ることができる。なお、用いたエネルギー線硬化樹脂は、成形材料、繊維強化複合材料、炭素繊維強化複合材料、その他複合材料、接着剤、封止材、ワニス、塗料又はコーティング材、インキ又はトナー等にも利用可能である。     According to the present invention, various cured products, molded products, and manufactured products can be obtained by using an energy beam curable resin that has an extremely high curing capability than conventional energy beam curable resins, is simple, and has a high degree of design freedom. Can do. The energy ray curable resin used can also be used for molding materials, fiber reinforced composite materials, carbon fiber reinforced composite materials, other composite materials, adhesives, sealants, varnishes, paints or coating materials, inks or toners, etc. It is.

本発明者らはまず、樹脂組成物の開発に時間と費用がかかる、樹脂組成物が高価、用途毎に容易に適切な樹脂組成物を得難い、という従来の高硬化性エネルギー線硬化樹脂組成物の欠点は、新規光重合性開始剤の開発やこれに関連する光増感剤、光鋭感剤の開発、及び新規光重合性オリゴマー等の開発が原因であることと、光硬化機構自体は従来と同様の硬化機構であること、硬化能力の向上を装置に負担させるとエネルギー線硬化の利点を損ないやすいことに着目し、光重合開始剤、光増感剤、光鋭感剤、光重合性オリゴマー等の従来開発対象成分以外の樹脂組成成分による硬化能力の向上、樹脂組成に新規成分の組合せによる硬化能力の向上、従来光硬化機構以外の硬化能力の付与、安価な硬化能力向上組成、用途毎に容易な樹脂特性制御、について鋭意研究した結果、以下に示す従来エネルギー線硬化樹脂よりも硬化能力が高く、樹脂組成物が安価で、容易に樹脂特性制御可能で、従来高硬化性エネルギー線硬化樹脂のかかる問題点を解決した新規な高硬化性エネルギー線硬化樹脂組成物、及びかかる簡便で設計自由度が高いエネルギー線硬化能力の向上方法を開発した。   First, the inventors of the present invention require a long time and cost to develop a resin composition, the resin composition is expensive, and it is difficult to easily obtain a suitable resin composition for each application. The disadvantages of this are due to the development of new photopolymerization initiators and related photosensitizers, the development of photosensitizers, and the development of new photopolymerizable oligomers. Paying attention to the fact that the curing mechanism is the same as before, and that it is easy to impair the advantages of energy beam curing if the improvement of the curing capacity is burdened on the equipment, photopolymerization initiator, photosensitizer, photosensitizer, photopolymerization Improvement of curing ability by resin composition components other than the conventionally developed target components such as functional oligomers, improvement of curing ability by combination of new components to the resin composition, provision of curing ability other than conventional photocuring mechanism, inexpensive curing ability improvement composition, Easy resin characteristics for each application As a result of intensive research on the above, the following problems are associated with the conventional high-curing energy beam curable resin, which has higher curing ability than the conventional energy beam curable resin, the resin composition is inexpensive, and the resin characteristics can be easily controlled. A new high-curing energy ray-curable resin composition that has been solved and a method for improving the energy ray-curing ability that is simple and has a high degree of design freedom have been developed.

ここでエネルギー線としては紫外線のほか電子線、X線、赤外線、太陽光線、可視光線、各種レーザー(エキシマレーザー、CO2レーザー、アルゴンレーザー等)、熱線(放射や輻射等)等が挙げられる。また、開発した高硬化性エネルギー線硬化樹脂組成物は硬化剤成分を含有するという樹脂組成の特徴が示すように、付与するエネルギーとしては光や電磁波の他に、熱等でも硬化可能であり、更に、かかる樹脂組成の特徴から予め樹脂組成物を硬化しない程度に加温しておくことはエネルギー線硬化の特性を向上させるのに有効である。 Examples of the energy rays include electron rays, X rays, infrared rays, sunlight rays, visible rays, various lasers (excimer laser, CO 2 laser, argon laser, etc.), heat rays (radiation, radiation, etc.) and the like. In addition, the developed high-curing energy beam curable resin composition can be cured by heat or the like as light or electromagnetic waves as the energy to be applied, as shown by the characteristics of the resin composition containing a curing agent component. Furthermore, it is effective to improve the energy ray curing characteristics by preheating the resin composition to such an extent that the resin composition is not cured from the characteristics of the resin composition.

まず、高硬化性エネルギー線硬化樹脂組成物として、光重合性オリゴマー又は光重合性モノマーといったようなエネルギー線硬化に使用可能ないわゆる光重合性樹脂成分と、該樹脂成分のエネルギー線硬化を可能とする光重合開始剤成分と、該樹脂成分の少なくとも1種を常温硬化や加熱硬化といったエネルギー線硬化以外の硬化方法で硬化させる際に利用可能な硬化剤成分と、を必須成分として含む高硬化性エネルギー線硬化樹脂組成物、並びに、該高硬化性エネルギー線硬化樹脂組成に加え、該樹脂成分と該硬化剤成分を熱硬化等で硬化させる際にその硬化反応の促進を可能とする硬化促進剤成分を含むことを特徴とする高硬化性エネルギー線硬化樹脂組成物、エネルギー線硬化樹脂組成物(例えば既存のエネルギー線硬化樹脂組成物や関連材料、新規エネルギー線硬化樹脂組成物等)に、該エネルギー線硬化樹脂の樹脂成分特に光重合性樹脂成分の少なくとも1種を常温硬化もしくは熱硬化等のようなエネルギー線照射以外の方法で硬化させる際に利用可能な硬化剤成分を必須成分として加えてエネルギー線硬化樹脂組成物の硬化能力を向上させる方法、並びに、該樹脂成分と該硬化剤成分を熱硬化等で硬化させる際にその硬化反応の促進を可能とする硬化促進剤成分をエネルギー線硬化樹脂組成に加えてエネルギー線硬化樹脂組成物の硬化能力を向上させる方法、を開発した。これら本発明においては、硬化樹脂組成物(関連材料等含む)に適切な光開始剤成分を加えてエネルギー線硬化特性を持たせたものにも有効である。また、以上の組成物により、従来エネルギー線硬化樹脂の物性制御方法の中心であった光重合性樹脂成分と充填材や添加剤等による材料設計に、硬化剤や硬化促進剤による物性制御という熱硬化で一般的な材料設計の手法を複合可能であり、材料設計手法の幅が広がり且つ容易となる。   First, as a highly curable energy ray curable resin composition, a so-called photopolymerizable resin component that can be used for energy ray curing such as a photopolymerizable oligomer or a photopolymerizable monomer, and energy ray curing of the resin component are possible. A photopolymerization initiator component to be cured and a curing agent component that can be used when curing at least one of the resin components by a curing method other than energy ray curing, such as room temperature curing or heat curing, as essential components Energy ray curable resin composition, and curing accelerator capable of accelerating the curing reaction when the resin component and the curing agent component are cured by thermal curing or the like in addition to the highly curable energy ray curable resin composition A high-curing energy beam curable resin composition, an energy beam curable resin composition (for example, an existing energy beam curable resin composition or A continuous material, a new energy ray curable resin composition, etc.) are cured by a method other than energy ray irradiation, such as room temperature curing or thermosetting, at least one of the resin components of the energy ray curable resin, particularly the photopolymerizable resin component. A curing agent component that can be used as an essential component to improve the curing ability of the energy ray curable resin composition, and curing when the resin component and the curing agent component are cured by thermal curing or the like A method of improving the curing ability of the energy ray curable resin composition by adding a curing accelerator component that enables the acceleration of the reaction to the energy ray curable resin composition has been developed. In the present invention, it is also effective for those obtained by adding an appropriate photoinitiator component to a cured resin composition (including related materials) to impart energy ray curing characteristics. In addition, with the above composition, the material design by the photopolymerizable resin component and the fillers and additives, which has been the center of the conventional physical property control method of the energy ray curable resin, is the heat of physical property control by a curing agent and a curing accelerator. It is possible to combine general material design techniques for curing, which broadens and facilitates the material design techniques.

上記各成分を有するエネルギー線硬化樹脂組成物の硬化能力が向上する理由としては次のように考えられる。まず、エネルギー線を樹脂組成物に照射すると光重合開始剤成分により光重合性樹脂成分が硬化し、この際硬化発熱により熱を発散する。次に、この熱を受け光重合性樹脂成分と硬化剤成分との間で熱硬化が発生する。以上のようなエネルギー線硬化と熱硬化という異なる硬化機構がほぼ同時に機能し、場合によっては硬化不足を補填するため、本発明はエネルギー線硬化単体に比べ総合的な硬化能力が向上する。   The reason why the curing ability of the energy ray curable resin composition having each of the above components is improved is considered as follows. First, when an energy beam is irradiated to the resin composition, the photopolymerizable resin component is cured by the photopolymerization initiator component, and at this time, heat is dissipated by heat generated by curing. Next, receiving this heat, thermosetting occurs between the photopolymerizable resin component and the curing agent component. The different curing mechanisms of energy beam curing and thermal curing as described above function almost simultaneously and, in some cases, make up for insufficient curing, so that the present invention improves the overall curing capability compared to energy beam curing alone.

ここで、光重合性樹脂成分としては、例えば、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ビニル/アクリレート、ポリスチリルエチルメタクリレート等に代表される各種アクリレート、脂環型エポキシ、グリシジルエーテル型エポキシ、ビスフェノール型エポキシ、ノボラック型エポキシ等に代表される各種エポキシ、不飽和ポリエステル、ポリエン/チオール、シリコン、ポリブタジエン、ビニルエーテル化合物、エポキシ化ポリオレフィン等の各種光重合性オリゴマーや、エポキシモノマー、アクリルモノマー、ビニルエーテル、環状エーテル等の各種光重合性モノマーが例示できるが、これに限定されるものではない。光重合開始剤成分としては、ラジカル系光重合開始剤、カチオン系光重合開始剤、アニオン系光重合開始剤等、対象とする光重合性樹脂成分で適性が異なるが、例えば、下記表1に示すようなジアゾニウム塩タイプの化合物、表2に示すようなヨードニウム塩タイプの化合物、下記一般式   Here, as a photopolymerizable resin component, for example, various acrylates represented by epoxy acrylate, epoxidized oil acrylate, urethane acrylate, polyester acrylate, polyether acrylate, vinyl / acrylate, polystyrylethyl methacrylate, and alicyclic type Various photopolymerizable oligomers such as epoxy, glycidyl ether type epoxy, bisphenol type epoxy, novolak type epoxy, etc., unsaturated polyester, polyene / thiol, silicon, polybutadiene, vinyl ether compound, epoxidized polyolefin, etc. Although various photopolymerizable monomers, such as a monomer, an acrylic monomer, vinyl ether, and cyclic ether, can be illustrated, it is not limited to this. As the photopolymerization initiator component, the suitability differs depending on the target photopolymerizable resin component such as a radical photopolymerization initiator, a cationic photopolymerization initiator, an anionic photopolymerization initiator, etc. Diazonium salt type compounds as shown, iodonium salt type compounds as shown in Table 2, the following general formula

Figure 2006117950
Figure 2006117950

に示されるようなピリジニウム塩タイプの化合物、特開平6−157624号公報、特開平7−82283号公報に示されるようなホスホニウム塩タイプの化合物、後述の表3に示されるようなスルホニウム塩タイプの化合物、上記一般式(I)、(II)、(III)で示される鉄−アレン化合物タイプの化合物、スルホン酸エステルタイプの化合物、上記一般式(IV)、(V)で示される光・熱重合開始剤、後述の表4に示されるP1型光重合開始剤、及び後述の表5に示されるP2型光重合開始剤、Co−アミンmin錯体、O−アシルオキシム、ベンジルオキシカルボニル誘導体、ホルムアミド等の光塩基発生剤等が例示できるがこれに限定されるものではない。 Compounds of the pyridinium salt type as shown in FIG. 6, phosphonium salt type compounds as shown in JP-A-6-157624, JP-A-7-82283, and sulfonium salt type compounds as shown in Table 3 to be described later Compound, iron-allene compound type compound represented by the above general formulas (I), (II), (III), sulfonate type compound, light / heat represented by the above general formulas (IV), (V) Polymerization initiator, P1-type photopolymerization initiator shown in Table 4 below, and P2-type photopolymerization initiator shown in Table 5 below, Co-amine min complex, O-acyl oxime, benzyloxycarbonyl derivative, formamide Examples of such a photobase generator include, but are not limited to.

最近、カチオン系光重合開始剤のアニオンtetrakis(pentafluorophenyl)borateB(C654 -というこれまでの代表的なもの(例えば六フッ化アンチモンSbF6 -)に比べ性能がよいものが報告されており、これによる更なる性能UPも期待できる。これらの樹脂成分や光重合開始剤成分及び後述する充填材や添加剤の詳細については、著者 加藤清視「紫外線硬化システム」発行総合技術センター(平成元年2月28日)、編 高分子学会「第6巻 光機能材料」共立出版(株)(1991年6月15日)、講師 加藤清視「UV硬化における光開始剤の動向と選び方・使い方」講習会テキスト 主催 テクノフォーラム(株)(平成4年11月27日(金))、講師 角岡正弘「最近の光架橋システムの技術動向とその応用―光酸・塩基発生剤の化学とポリマー材料系での応用―」講習会テキスト 主催 企業研修協会(1996年9月17日(火))等の成書や文献に記載されているものを参考にできる。 Recently, anionic tetrakis cationic photopolymerization initiator (pentafluorophenyl) borateB (C 6 F 5) 4 - hitherto typical (e.g. hexafluoroantimonate SbF 6 -) of that in the comparison performance is reported good Therefore, further improvement in performance can be expected. For details on these resin components, photopolymerization initiator components, and fillers and additives described below, the General Technical Center (February 28, 1989) issued by the author, Kiyomi Kato “UV Curing System”, edited by the Society of Polymer Science "Volume 6 Optical Functional Materials" Kyoritsu Publishing Co., Ltd. (June 15, 1991), Lecturer Kiyomi Kato "Trends and How to Select and Use Photoinitiators for UV Curing" Workshop Text Organized by Techno Forum Co., Ltd. ( November 27, 1992 (Friday)), Lecturer Masahiro Tsunooka “Recent Trends in Photocrosslinking Systems and Their Applications: Chemistry of Photoacid / Base Generators and Applications in Polymer Materials” You can refer to the documents and documents listed in the Association for Corporate Training (Tuesday, September 17, 1996).

硬化剤成分は相手となる樹脂成分に対応して異なり、例えば光重合性樹脂成分が水酸基含有時にはエポキシ類、イソシアネート類等、エポキシ基含有時にはアミン類、酸無水物類、ポリオール類等が例示できるがこれに限定されるものではない。ここで重要なことは、必須成分としている硬化剤成分と光重合性樹脂成分の少なくとも1種との間で、常温硬化や加熱硬化といったエネルギー線硬化以外の硬化(化学反応)が可能な関係が成り立つことである。硬化剤成分、光重合性樹脂成分、および光開始剤成分は、それぞれ複数成分であっても良い。また、場合によっては、硬化剤成分と光重合性樹脂成分の位置関係を入れ替えて光重合性樹脂成分が硬化剤成分として位置付けられていても(通常組成物の主成分が樹脂成分で副成分が硬化剤成分であるが、これら逆転し、組成物の主成分が硬化剤成分で副成分が光重合性樹脂成分の様な場合(この際光開始剤成分は副成分と関連をもつことになる))上記関係が成り立つ以上、本発明によるところであるし、ある1種の光重合性樹脂成分の硬化剤成分が光重合性樹脂成分であっても何等問題ない。特に主剤成分と硬化剤成分の双方が光重合性樹脂成分の様な場合、主剤成分と硬化剤成分の少なくとも片方に適した光重合開始剤成分であれば良いことから選択幅が大きい等の利点をはじめ、幅広いエネルギー線硬化特性の材料設計が可能である。さらに、各必須成分からなる本発明の樹脂組成物にその他の成分が加わっていてもよく、例えば必須の硬化剤成分と無関係な他の光重合性樹脂成分やこれと関係がある光重合開始剤成分が加わっていてもよい。   The curing agent component differs depending on the resin component as a partner, and examples thereof include epoxies and isocyanates when the photopolymerizable resin component contains a hydroxyl group, and amines, acid anhydrides, polyols and the like when the epoxy group contains. However, it is not limited to this. What is important here is that a curing (chemical reaction) other than energy ray curing such as room temperature curing or heat curing is possible between at least one of a curing agent component and a photopolymerizable resin component as essential components. It is true. Each of the curing agent component, the photopolymerizable resin component, and the photoinitiator component may be a plurality of components. In some cases, even if the photopolymerizable resin component is positioned as a curing agent component by switching the positional relationship between the curing agent component and the photopolymerizable resin component (usually the main component of the composition is the resin component and the subcomponent is The hardener component is reversed, but the main component of the composition is the hardener component and the subcomponent is a photopolymerizable resin component (in this case, the photoinitiator component is related to the subcomponent) )) As long as the above relationship is established, there is no problem even if the curing agent component of one kind of photopolymerizable resin component is a photopolymerizable resin component. In particular, when both the main agent component and the curing agent component are photopolymerizable resin components, the photopolymerization initiator component suitable for at least one of the main agent component and the curing agent component may be used. In addition, it is possible to design materials with a wide range of energy beam curing characteristics. Further, other components may be added to the resin composition of the present invention comprising each essential component, for example, other photopolymerizable resin components unrelated to the essential curing agent component and photopolymerization initiators related thereto. Ingredients may be added.

硬化促進剤成分も光重合性樹脂成分と硬化剤成分に対応して異なり、例えば、アミン類に対する1価又は多価のアルコール類、酸無水物等、酸無水物に対する1価又は多価のアルコール類、アミンが例示できるがこれに限定されるものではない。ここで重要なことは、必須成分とした硬化促進剤成分が、前述の必須成分とした硬化剤成分と光重合性樹脂成分の少なくとも1つとの間で起こりうる硬化反応(化学反応)を促進する機能を有することである。ここでは硬化剤成分の場合と同様に、他の成分や硬化促進剤成分がそれぞれ複数成分であっても良く、場合によっては、硬化促進剤成分が硬化剤成分や光重合性樹脂成分の機能を有する場合や、光重合開始剤成分が本発明で定義した硬化剤成分の機能を有する場合(この場合、別途硬化剤成分がなくても良い)等が考えられるが、いずれの場合も上記硬化反応促進機能を有している以上、本発明によるところである。一般的に、硬化剤成分としても硬化促進剤成分としても機能する成分(物質)同士の場合、該成分(物質)の位置付けは組成物中に含まれる含有量の割合によって区別される場合が多く、例えば前述の(6)を例にすれば、酸無水物等の割合が多い場合には、酸無水物等が硬化剤成分として作用し、アルコール類が硬化促進剤として作用する。一方、アルコール類の割合が多い場合には、アルコール類が硬化剤成分として作用し、酸無水物等が硬化促進剤として作用する。双方の量が多い場合には双方が両方の機能を有することとなる。加えて、硬化促進剤成分と硬化剤成分の双方が光重合性樹脂成分の少なくとも1つと反応可能な場合はより容易な硬化が期待できる。また、上記各成分からなる本発明樹脂組成物にその他の成分が加わっていてもよく、例えば硬化剤成分や硬化促進剤成分と無関係な他の光重合性樹脂成分や、これと関係がある光重合開始剤成分が加わっていてもよい。   The curing accelerator component also differs depending on the photopolymerizable resin component and the curing agent component. For example, monovalent or polyhydric alcohols for amines, monohydric or polyhydric alcohols for acid anhydrides such as acid anhydrides, etc. The amine can be exemplified, but is not limited thereto. What is important here is that the curing accelerator component as an essential component accelerates a curing reaction (chemical reaction) that can occur between the above-described essential curing agent component and at least one of the photopolymerizable resin components. It has a function. Here, as in the case of the curing agent component, the other component and the curing accelerator component may each be a plurality of components, and in some cases, the curing accelerator component functions as a curing agent component or a photopolymerizable resin component. It can be considered that the photopolymerization initiator component has the function of the curing agent component defined in the present invention (in this case, the curing agent component may not be provided separately). As long as it has an accelerating function, it is the present invention. Generally, in the case of components (substances) that function as both a curing agent component and a curing accelerator component, the positioning of the component (substance) is often distinguished by the proportion of the content contained in the composition. For example, taking the above (6) as an example, when the proportion of acid anhydride or the like is large, the acid anhydride or the like acts as a curing agent component, and the alcohol acts as a curing accelerator. On the other hand, when the proportion of alcohols is large, alcohols act as curing agent components, and acid anhydrides and the like act as curing accelerators. When the amount of both is large, both have both functions. In addition, when both the curing accelerator component and the curing agent component can react with at least one of the photopolymerizable resin components, easier curing can be expected. In addition, other components may be added to the resin composition of the present invention composed of the above components, for example, other photopolymerizable resin components unrelated to the curing agent component and the curing accelerator component, and light related thereto. A polymerization initiator component may be added.

具体的な高硬化性エネルギー線硬化樹脂組成物の例としては、例えば、エポキシアクリレート(光重合性樹脂成分)、ラジカル系光重合開始剤(光重合開始剤成分)、酸無水物(硬化剤成分)およびポリオール(硬化促進剤成分)を含む樹脂組成物、エポキシアクリレートとエポキシ樹脂(光重合性樹脂成分)、ラジカル系光重合開始剤とカチオン系光重合開始剤(光重合開始剤成分)および酸無水物(硬化剤成分)を含む樹脂組成物、エポキシ樹脂(光重合性樹脂成分)、カチオン系光重合開始剤(光重合開始剤成分)、酸無水物(硬化剤成分)およびポリオール(硬化促進剤成分)を含む樹脂組成物、エポキシ樹脂(光重合性樹脂成分)、アニオン系光重合開始剤(光重合開始剤成分)、アミン類(硬化剤成分)および酸無水物(硬化促進剤成分)を含む樹脂組成物、等を挙げることができるが、これに限定されるものではない。以上の材料設計の注意点としては、樹脂組成物中の各種成分間で硬化阻害を発生させないこと、特に光重合開始剤成分と他成分との間で硬化阻害を発生させないことが重要であり、例えば、カチオン系光開始剤成分の硬化阻害物質であるアミン類は、カチオン系光開始剤成分を用いる際は使用を避けるべきである。   Specific examples of highly curable energy ray curable resin compositions include, for example, epoxy acrylate (photopolymerizable resin component), radical photopolymerization initiator (photopolymerization initiator component), acid anhydride (curing agent component). ) And polyol (curing accelerator component), epoxy acrylate and epoxy resin (photopolymerizable resin component), radical photopolymerization initiator and cationic photopolymerization initiator (photopolymerization initiator component) and acid Resin composition containing anhydride (curing agent component), epoxy resin (photopolymerizable resin component), cationic photopolymerization initiator (photopolymerization initiator component), acid anhydride (curing agent component), and polyol (curing acceleration) Resin component, epoxy resin (photopolymerizable resin component), anionic photopolymerization initiator (photopolymerization initiator component), amines (curing agent component) and acid anhydride (curing accelerator) Resin composition comprising a component), but it can be given, but is not limited thereto. As a precaution for the above material design, it is important not to cause curing inhibition between various components in the resin composition, particularly not to cause curing inhibition between the photopolymerization initiator component and other components, For example, amines that are curing inhibitors of cationic photoinitiator components should be avoided when using cationic photoinitiator components.

Figure 2006117950
Figure 2006117950

Figure 2006117950
Figure 2006117950

Figure 2006117950
Figure 2006117950

Figure 2006117950
Figure 2006117950

Figure 2006117950
Figure 2006117950

特に、硬化剤成分や硬化促進剤成分の種類が豊富で、硬化物の物性が良好である点から光重合性樹脂成分としてはエポキシ樹脂成分が好ましく、特に3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートが好ましい。また、特に硬化剤成分もしくは硬化促進剤成分としては、酸無水物又は酸無水物の誘導体、1価又は多価のアルコール類が好ましい。例えば、酸無水物としては表6に示す化合物、1価又は多価のアルコール類としてはフェノール、ノボラック、グリコール、アルコール、ポリオール等の化学構造中に水酸基を有する化合物が挙げられ、これらは特に前述のエポキシ樹脂成分の場合にも好ましい。   In particular, the epoxy resin component is preferred as the photopolymerizable resin component from the viewpoint that the types of the curing agent component and the curing accelerator component are abundant and the physical properties of the cured product are good, and in particular, 3,4-epoxycyclohexylmethyl-3, 4-Epoxycyclohexanecarboxylate is preferred. In particular, as the curing agent component or the curing accelerator component, acid anhydrides or acid anhydride derivatives, monovalent or polyhydric alcohols are preferable. For example, examples of the acid anhydride include compounds shown in Table 6, and examples of the monovalent or polyvalent alcohols include compounds having a hydroxyl group in a chemical structure such as phenol, novolak, glycol, alcohol, polyol, and the like. It is also preferable in the case of the epoxy resin component.

Figure 2006117950
Figure 2006117950

光重合性樹脂成分としてエポキシ樹脂成分を用いた場合の硬化剤成分及び硬化促進剤成分としては、エポキシ基と反応可能な官能基(無水カルボン酸基、カルボン酸基、水酸基、アミン基、アミド基、ウレタン基、ウレア基、イソシアネート基、その他表7記載の官能基等)を有する化合物が考えられるが、一般的なものとしては、硬化剤成分としてアミン類、アミド類(ポリアミド)、酸無水物、フェノール類、等、硬化促進剤成分として酸無水物、ポリオール、アミン類等が例示できる。特に、酸無水物又は酸無水物の誘導体と、1価又は多価のアルコール類と、を成分とするものが好ましい。また、かかる成分の分子構造内に窒素原子を含まない化合物は、カチオン系光重合開始剤と組み合わせたときに硬化阻害を起こしにくいので材料設計をする上で好ましい。エポキシ樹脂成分及び硬化剤成分と硬化促進剤成分の種類や組合せ等の詳細については、編 垣内弘「エポキシ樹脂」発行 昭晃堂(株)、編著者 垣内弘「エポキシ樹脂―最近の進歩―」発行 昭晃堂(株)(1990年5月30日)等の成書を参考できる。   When the epoxy resin component is used as the photopolymerizable resin component, the curing agent component and the curing accelerator component include a functional group capable of reacting with an epoxy group (an carboxylic anhydride group, a carboxylic acid group, a hydroxyl group, an amine group, an amide group). , Urethane groups, urea groups, isocyanate groups, other functional groups described in Table 7 and the like), but generally, amines, amides (polyamides), acid anhydrides as curing agent components Examples of curing accelerator components such as phenols and the like include acid anhydrides, polyols, and amines. In particular, an acid anhydride or an acid anhydride derivative and a monovalent or polyhydric alcohol are preferred. Further, a compound that does not contain a nitrogen atom in the molecular structure of such a component is preferable in designing a material because it hardly causes inhibition of curing when combined with a cationic photopolymerization initiator. For details on the types and combinations of epoxy resin components, curing agent components and curing accelerator components, published by Hiroshi Kakiuchi “Epoxy Resins”, Shoshodo Co., Ltd., Editor Hiroshi Kakiuchi “Epoxy Resins—Recent Advances” Issued books such as Shosodo Co., Ltd. (May 30, 1990) can be referred to.

特に、酸無水物としては価格、反応性、特性の点からマレイン酸無水物又はその誘導体が好ましく、特に3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートと、マレイン酸無水物又はその誘導体と、カチオン系光重合開始剤と、を含む樹脂組成物が好ましい。また、特に、1価又は多価のアルコール類としては反応性制御、分子量制御、特性制御の点からポリエチレングリコールが好ましく、特に3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートと、マレイン酸無水物又はその誘導体と、ポリエチレングリコールと、カチオン系光重合開始剤と、を含む樹脂組成物が好ましい。   In particular, as the acid anhydride, maleic anhydride or a derivative thereof is preferable from the viewpoint of cost, reactivity, and characteristics, and in particular, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate and maleic anhydride or A resin composition containing the derivative and a cationic photopolymerization initiator is preferred. In particular, as the monovalent or polyhydric alcohols, polyethylene glycol is preferable from the viewpoint of reactivity control, molecular weight control, and characteristic control, particularly 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, A resin composition containing maleic anhydride or a derivative thereof, polyethylene glycol, and a cationic photopolymerization initiator is preferable.

Figure 2006117950
Figure 2006117950

更に、樹脂組成物の組成比率としては、硬化剤成分と反応可能な樹脂成分1molに対し、硬化剤成分が0.1〜1.4molの比率であることが好ましく、特に、硬化剤成分と反応可能な樹脂成分1molに対し、硬化剤成分が0.3〜1.0molの比率であることが好ましい。熱硬化の場合、樹脂成分と硬化剤成分の割合はある程度化学量論的に決定でき、その範囲を超えた場合には良好な物性の硬化物を得ることが困難となる。一方、エネルギー線硬化の場合、光重合開始剤により樹脂成分単体で硬化が進行する。本発明はエネルギー線硬化と熱硬化の双方の特徴を有する。従って、硬化剤成分が上記範囲を外れて少なすぎると、本発明の特徴であるエネルギー線照射以外の硬化機構による硬化能力向上効果(エネルギー線硬化とその際の硬化発熱による熱硬化という異なる硬化機構のほぼ同時進行、並びに硬化不足解消等)が発揮されにくく、逆に多すぎると、相対的にエネルギー線硬化に必要な樹脂成分が少なくなるためエネルギー線硬化能力の低下や硬化発熱量の低下がおこり硬化特性が低下する。また、化学量論的な限度を超えて多い場合は良好な物性の硬化物を得ることが困難となる。また、硬化剤成分1molに対し、硬化促進剤成分が0.04〜0.6molの比率であることが好ましく、特に、硬化剤成分1molに対し、硬化促進剤成分が0.08〜0.4molの比率であることが好ましい。上記範囲を外れて少なすぎると硬化反応の促進効果を発揮できず、一方多すぎても適正量添加時以上の硬化反応促進効果は期待できず、かえって硬化反応の鈍化、エネルギー線硬化の阻害、硬化発熱量の浪費等を引き起こす点で好ましくない。   Furthermore, the composition ratio of the resin composition is preferably a ratio of 0.1 to 1.4 mol of the curing agent component with respect to 1 mol of the resin component capable of reacting with the curing agent component, and in particular, reacting with the curing agent component. It is preferable that the ratio of the curing agent component is 0.3 to 1.0 mol with respect to 1 mol of the possible resin component. In the case of thermosetting, the ratio between the resin component and the curing agent component can be determined to some extent stoichiometrically, and when the range is exceeded, it becomes difficult to obtain a cured product having good physical properties. On the other hand, in the case of energy ray curing, curing proceeds with the resin component alone by the photopolymerization initiator. The present invention has features of both energy ray curing and heat curing. Accordingly, if the amount of the curing agent component is too small outside the above range, the curing ability improvement effect by the curing mechanism other than the energy beam irradiation, which is a feature of the present invention (different curing mechanism of energy beam curing and thermal curing by curing heat generation at that time) Are difficult to achieve, and insufficient curing is difficult to achieve. On the other hand, if too much is used, the amount of resin components required for energy beam curing will be relatively small, resulting in a decrease in energy beam curing capability and a decrease in the amount of heat generated by curing. Boil hardening characteristics are reduced. If the amount exceeds the stoichiometric limit, it becomes difficult to obtain a cured product having good physical properties. Moreover, it is preferable that a hardening accelerator component is a ratio of 0.04-0.6 mol with respect to 1 mol of hardening | curing agent components, and 0.08-0.4 mol of hardening accelerator components are especially with respect to 1 mol of hardening | curing agent components. It is preferable that the ratio is If the amount is too small outside the above range, the curing reaction cannot be promoted.On the other hand, if the amount is too large, the curing reaction cannot be promoted more than when an appropriate amount is added. This is not preferable in that it causes waste of the amount of heat generated by curing.

必須成分とする光重合開始剤成分としては、特にカチオン系光重合開始剤が好ましく、特に上記一般式(I)、(II)、(III)で示される鉄−アレン系化合物は本発明の樹脂組成物に含まれると大きく硬化特性が向上するため好ましい。例えば、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートと、マレイン酸無水物と、上記一般式(I)と、を含む樹脂組成物は太陽光で容易に硬化する程、硬化能力が向上し高硬化性を示す。また、光・熱重合開始剤を用いることも好ましく、特に上記一般式(IV),(IV’)又は(V)で示されるスルホニウム塩
は本発明の樹脂組成物に含まれると大きく硬化特性が向上し、且つ、従来2元系光重合開始剤を用いないと困難だった連鎖硬化反応が単一の重合開始剤でも可能となる。例えば、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートと、マレイン酸無水物と、一般式(IV)等の化合物と、を含む樹脂組成物は、一般式(IV)等で示される化合物が約0.5wt%含有されているだけで連鎖硬化反応する程、硬化能力が向上し高硬化性を示す。
As the photopolymerization initiator component as an essential component, a cationic photopolymerization initiator is particularly preferable. In particular, the iron-allene compounds represented by the general formulas (I), (II), and (III) are resins of the present invention. When it is contained in the composition, it is preferable because the curing characteristics are greatly improved. For example, a resin composition containing 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, maleic anhydride, and the above general formula (I) is cured to the extent that it is easily cured by sunlight. Ability improves and shows high curability. It is also preferable to use a photo / thermal polymerization initiator. In particular, the sulfonium salt represented by the general formula (IV), (IV ′) or (V) has a large curing property when included in the resin composition of the present invention. The chain curing reaction, which has been difficult without conventional binary photopolymerization initiators, can be improved even with a single polymerization initiator. For example, a resin composition containing 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, maleic anhydride, and a compound such as general formula (IV) is represented by general formula (IV) or the like. As the compound shown is only contained in an amount of about 0.5 wt%, the curing ability increases and the curability increases as the chain curing reaction occurs.

更に、光重合開始剤と光・熱重合開始剤を成分とする2元系以上からなる光重合開始剤も好ましく、特にアリール系スルホニウム塩タイプもしくは上記一般式(I)、(II)、(III)で示される鉄−アレン系化合物の少なくとも1種と、上記一般式(IV),(IV’)又は(V)で示されるスルホニウム塩の少なくとも1種と、を含んで
なる2元系以上からなる光重合開始剤は本発明樹脂組成物に用いると大きく硬化特性が向上する。例えば、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートと、マレイン酸無水物と、上記2元系以上からなる光重合開始剤と、を含んでなる樹脂組成物は硬化能力が向上し高硬化性を示すため、容易に連鎖硬化反応する。また、光重合開始剤、光・熱重合開始剤、上記2元系以上から成る重合開始剤成分等に、適当な熱重合開始剤成分(例えば、プレニル・テトラメチレンスルホニウム・ヘキサフルオロアンチモネート等)を加えた光重合開始剤成分も好ましく、熱硬化能力の向上からより容易な硬化が期待できる。
Furthermore, a photopolymerization initiator comprising a photopolymerization initiator and a light / thermal polymerization initiator as a component is also preferable. In particular, an aryl sulfonium salt type or the general formulas (I), (II), (III And at least one of the iron-allene compounds represented by the formula (IV), and at least one of the sulfonium salts represented by the general formula (IV), (IV ′) or (V). When this photopolymerization initiator is used in the resin composition of the present invention, the curing characteristics are greatly improved. For example, a resin composition comprising 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, maleic anhydride, and a photopolymerization initiator composed of the above binary system has a curing ability. Because it improves and exhibits high curability, it undergoes chain curing reaction easily. Also suitable for photopolymerization initiators, photo / thermal polymerization initiators, polymerization initiator components composed of the above two or more systems, etc., such as prenyl, tetramethylenesulfonium, hexafluoroantimonate, etc. The photopolymerization initiator component to which is added is also preferable, and easier curing can be expected from the improvement of the thermosetting ability.

更に、樹脂組成物の組成比率としては、光重合開始剤成分以外の他成分の総重量100重量部に対し、光重合開始剤成分が0.1〜6.0重量部の比率であることが好ましく、特に0.5〜3.0重量部が好ましい。光重合開始剤成分の割合が0.1重量部未満ではその効果が殆どなく、全体に対する量が少ないためそのものが機能しにくい。一方、6.0重量部を超えても光硬化機能そのものは変わらない。また、2元系以上からなる光重合開始を構成する光・熱重合開始剤光の重量比が10〜100wt%であることが好ましく、特に20〜80wt%であることが好ましい。従来の2元系以上からなる光重合開始剤では、光・熱重合開始剤光の重量比50〜80wt%が好ましかったが、本発明では上記比率においても連鎖硬化の機能を発揮する。但し、重量比が少ないと連鎖硬化の特徴を発揮しにくく、重量比が大きいと連鎖硬化を制御しにくい傾向にある。   Furthermore, the composition ratio of the resin composition is such that the photopolymerization initiator component is 0.1 to 6.0 parts by weight relative to 100 parts by weight of the total weight of the other components other than the photopolymerization initiator component. Particularly preferred is 0.5 to 3.0 parts by weight. If the ratio of the photopolymerization initiator component is less than 0.1 parts by weight, the effect is hardly obtained, and the amount of the photopolymerization initiator component is less likely to function because the amount thereof is small. On the other hand, even if it exceeds 6.0 parts by weight, the photocuring function itself does not change. Further, the weight ratio of the light / thermal polymerization initiator light constituting the initiation of photopolymerization consisting of a binary system or more is preferably 10 to 100 wt%, and particularly preferably 20 to 80 wt%. In conventional photopolymerization initiators composed of two or more binary systems, a light / thermal polymerization initiator light weight ratio of 50 to 80 wt% was preferred. In the present invention, the chain curing function is exhibited even at the above ratio. However, when the weight ratio is small, it is difficult to exhibit the characteristics of chain curing, and when the weight ratio is large, chain curing tends to be difficult to control.

更には、上記の樹脂組成物に硬化可能な範囲で添加することのできる添加剤としては、エネルギー線遮蔽性物質(例えば炭素及び炭素繊維(短繊維、長繊維、連続繊維、カーボンクロス等)、無機フィラー、金属粉等)及び各種フィラー、有機成分、光増感剤、反応性希釈剤、光鋭感剤、増酸剤等慣用される添加剤を1種以上添加することができるし、本発明樹脂組成物及び硬化能力向上方法は、様々な硬化物、成形物、製造物、例えば、成形材料、注型材料、フィラー充填材量、繊維強化複合材料、炭素繊維強化複合材料、その他複合材料、ペースト材、接着剤、封止材、ワニス、塗料又はコーティング材、インキ又はトナー等に利用可能である。   Furthermore, as an additive that can be added to the above resin composition within a curable range, energy ray shielding substances (for example, carbon and carbon fibers (short fibers, long fibers, continuous fibers, carbon cloth, etc.), Inorganic fillers, metal powders, etc.) and various fillers, organic components, photosensitizers, reactive diluents, photosensitizers, acidifiers and other commonly used additives can be added. Inventive resin composition and method for improving curing ability include various cured products, molded products, manufactured products such as molding materials, casting materials, filler filler amounts, fiber reinforced composite materials, carbon fiber reinforced composite materials, and other composite materials. , Paste materials, adhesives, sealing materials, varnishes, paints or coating materials, inks or toners.

次に、本発明に係るエネルギー線硬化樹脂組成物の製造方法について説明する。
本発明の樹脂組成物の製造方法としては、例えば図1に示す製造フロー1、あるいは図2に示す製造フロー2〜4を挙げることができるが、本発明の樹脂組成物の製法はこれらに限定されるものではない。つまり、最終的に本発明の必須成分を含む樹脂組成物であれば良いので、例えば製造する樹脂組成物の成分や特徴によって、温度、攪拌時間、遮光の有無、投入順序等は適宜定めることができる。硬化剤成分、硬化促進剤成分、光重合開始剤成分の各成分と、光重合性樹脂成分との反応性が高い場合、特に温度に対する反応性が高く常温で短時間に硬化が可能な場合には、反応が進行しない様に考慮した低温での攪拌が好ましい。また、固体や溶解しにくい成分を攪拌する場合には、長時間の攪拌や予め溶媒等に溶解させて液状にしておく等の処置が好ましい。製造環境で容易に光重合開始剤成分が光反応可能であったり、光重合開始剤成分が投入されてから製造終了までに長時間を要する場合には、遮光や投入順序の入れ替えが有効となる。また、投入順序によっては硬化反応が開始及び進行したり、副反応が発生したりすることもあるため、この場合も投入順序の入れ替えが有効である。本発明で採用する樹脂組成物は高硬化性であり、熱及びエネルギー線双方で硬化可能なため、硬化反応が起きないように製造条件を決定することが重要となる。
Next, the manufacturing method of the energy-beam curable resin composition which concerns on this invention is demonstrated.
Examples of the method for producing the resin composition of the present invention include the production flow 1 shown in FIG. 1 or the production flows 2 to 4 shown in FIG. 2, but the production method of the resin composition of the present invention is limited to these. Is not to be done. In other words, any resin composition that finally contains the essential components of the present invention may be used. For example, depending on the components and characteristics of the resin composition to be produced, the temperature, stirring time, presence / absence of light shielding, the order of addition, etc. may be appropriately determined. it can. When the reactivity of each component of the curing agent component, curing accelerator component, photopolymerization initiator component, and photopolymerizable resin component is high, especially when the reactivity to temperature is high and curing is possible at room temperature in a short time Is preferably stirred at a low temperature so that the reaction does not proceed. In addition, when stirring a solid or a component that is difficult to dissolve, it is preferable to perform a long-time stirring or a solution such as dissolving in a solvent in advance to make it liquid. When the photopolymerization initiator component can be easily photoreacted in the production environment, or when it takes a long time from the photopolymerization initiator component to the end of production, it is effective to block the light or change the order of injection. . In addition, since the curing reaction may start and proceed or a side reaction may occur depending on the charging order, it is effective to change the charging order in this case as well. Since the resin composition employed in the present invention is highly curable and can be cured by both heat and energy rays, it is important to determine the production conditions so that no curing reaction occurs.

以下に、図1の製造フロー1をもとに製造方法の一例を説明する。本発明で用いる樹脂組成物の製造に用いる各成分を、成分A、成分B、成分C、成分D、成分Eおよび成分Fとして表し、成分Aが光重合性樹脂成分、成分Bが硬化剤成分、成分Cが光重合開始剤成分、成分Dが硬化促進剤成分、成分Eが光増感剤、光鋭感剤、安定化剤等のその他添加剤成分、成分Fが反応性希釈剤、希釈剤、顔料、フィラー等のその他成分を示す。この内、成分A〜Cが必須成分であることから、製造フロー1を例にすれば、混合成分2以降の各混合成分は全て本発明の樹脂組成物である。また、各成分はそれぞれ複数種から成ることもあるため、各成分を構成する種類の数だけ各成分のアルファベットの小文字に番号を付けて表し、例えば成分Aが3種類から成る場合、3種類の各々a1、a2、a3として示す。製造フロー1では便宜上全ての成分が3種類から成るとした。ここでは、製造方法の理解を容易にするため、より具体的な製造手順や使用装置を示すが、本発明で採用する樹脂組成物の製法はここで用いられる方法や装置等によって何ら限定されるものではない。   Below, an example of a manufacturing method is demonstrated based on the manufacturing flow 1 of FIG. Each component used for manufacture of the resin composition used in the present invention is represented as Component A, Component B, Component C, Component D, Component E and Component F, where Component A is a photopolymerizable resin component and Component B is a curing agent component. , Component C is a photopolymerization initiator component, component D is a curing accelerator component, component E is a photosensitizer, photosensitizer, other additive components such as a stabilizer, component F is a reactive diluent, diluted Other components such as agents, pigments and fillers are shown. Among these, since components A to C are essential components, if manufacturing flow 1 is taken as an example, all the mixed components after mixed component 2 are the resin composition of the present invention. In addition, since each component may be composed of a plurality of types, each component is represented by the number of lowercase letters of each component as many as the number of types constituting each component. For example, when component A is composed of three types, Shown as a1, a2, and a3, respectively. In the production flow 1, all components are assumed to be composed of three types for convenience. Here, in order to facilitate understanding of the production method, a more specific production procedure and use apparatus will be shown, but the production method of the resin composition employed in the present invention is limited by the method and apparatus used here. It is not a thing.

まず、所定量の成分A(a1、a2、a3)に所定量の成分B(b1、b2、b3)を一度にフラスコに投入し、プロペラ型攪拌翼にて室温で約1hr、回転数300rpmで攪拌して完全に溶解させる(混合成分1)。勿論、予め成分Aや成分Bをそれぞれ1つに調製した後、プロペラ型攪拌翼にて室温、回転数約300rpmで成分Bが完全に溶解するまで攪拌する方法や、成分Aに成分Bを各種別に投入して、プロペラ型攪拌翼にて室温、回転数300rpmで成分Bが完全に溶解するまで攪拌する方法でも良い。成分Aと成分Bが常温硬化可能、特に短時間で硬化可能な場合には、成分Aや成分B及びその混合成分を硬化の防止及び抑制が可能な温度(例えば0℃以下)に保った方が良い。また、投入も徐々に行った方が良い。   First, a predetermined amount of component B (b1, b2, b3) is put into a flask at a time into a predetermined amount of component A (a1, a2, a3), about 1 hr at room temperature with a propeller-type stirring blade at a rotation speed of 300 rpm. Stir to dissolve completely (mixed component 1). Of course, after preparing component A and component B in advance in one each, stirring with a propeller-type stirring blade at room temperature and rotation speed of about 300 rpm until component B is completely dissolved, Alternatively, a method may be used in which the mixture is stirred with a propeller-type stirring blade at room temperature at a rotation speed of 300 rpm until component B is completely dissolved. When component A and component B can be cured at room temperature, especially when it can be cured in a short time, the component A, component B and their mixed components are kept at a temperature (for example, 0 ° C. or lower) at which curing can be prevented and suppressed. Is good. In addition, it is better to gradually introduce.

次に、所定量のc1、c2、c3を濃度50wt%に成るように良溶媒と共にサンプル瓶に封入し、攪拌子にて遮光、室温の条件で1hr攪拌してc1、c2、c3を完全に溶解させて予め1つに調製し、これを混合成分1に一度に投入して、プロペラ型攪拌翼にて遮光、室温で約0.2hr、回転数300rpmで攪拌して完全に溶解させる(混合成分2)。勿論、所定量の成分C(c1、c2、c3)を一度に混合成分1に投入したり、或いは、成分Cを混合成分1に各種別に投入して、例えばプロペラ型攪拌翼にて遮光、室温、回転数300rpmで成分Cが完全に溶解するまで攪拌する方法でも良い。また、混合成分1調整時と同様に混合成分1と成分Cの反応性が高い場合、特に成分C中に光・熱重合開始剤を含有し熱に対する反応性が高い場合には、混合成分1や成分C及びその混合成分を硬化の防止及び抑制が可能な温度(例えば0℃以下)に保った方が良い。また、投入も徐々に行った方が良い。   Next, a predetermined amount of c1, c2, c3 is sealed in a sample bottle together with a good solvent so as to have a concentration of 50 wt%, shielded with a stirrer, and stirred for 1 hr at room temperature to completely remove c1, c2, c3. Dissolve and prepare in advance, add it to the mixed component 1 at once, shield it with a propeller-type stirring blade, stir at room temperature for about 0.2 hr, and rotate at 300 rpm for complete dissolution (mixing) Ingredient 2). Of course, a predetermined amount of component C (c1, c2, c3) is added to mixed component 1 at a time, or component C is added to mixed component 1 in various ways, for example, shielded by a propeller-type stirring blade, Alternatively, a method of stirring until the component C is completely dissolved at a rotational speed of 300 rpm may be used. Further, as in the case of adjusting the mixed component 1, when the reactivity of the mixed component 1 and the component C is high, particularly when the component C contains a photo / thermal polymerization initiator and the reactivity to heat is high, the mixed component 1 It is better to keep the component C and the mixed component at a temperature (for example, 0 ° C. or less) at which the curing can be prevented and suppressed. In addition, it is better to gradually introduce.

そして、所定量のd1、d2、d3をプロペラ型攪拌翼にて、室温で約0.5hr、回転数300rpmで攪拌して予め1つに調製し、これを混合成分2に一度に投入して、プロペラ型攪拌翼にて遮光、室温で約0.2hr、回転数300rpmで攪拌して完全に溶解させる(混合成分3)。勿論、所定量の成分D(d1、d2、d3)を一度に混合成分2に投入したり、或いは、成分Dを混合成分2に各種別に投入して、例えばプロペラ型攪拌翼にて遮光、室温、回転数300rpmで成分Dが完全に溶解するまで攪拌する方法でも良い。また、混合成分2と成分Dの反応性が高い場合や混合成分2中に光・熱重合開始剤を含有し熱に対する反応性が高い場合等、成分D投入により混合成分の反応が開始しやすい場合には、混合成分2や成分D及びその混合成分を硬化の防止及び抑制が可能な温度(例えば0℃以下)に保った方が良い。また、投入も徐々に行った方が良い。   Then, a predetermined amount of d1, d2, and d3 is stirred with a propeller-type stirring blade at room temperature for about 0.5 hr and at a rotation speed of 300 rpm to prepare one in advance. Then, the mixture is shielded from light with a propeller type stirring blade, stirred at room temperature for about 0.2 hr, at a rotation speed of 300 rpm, and completely dissolved (mixed component 3). Of course, a predetermined amount of component D (d1, d2, d3) is added to the mixed component 2 at once, or the component D is added to the mixed component 2 in various ways, for example, shielded by a propeller type stirring blade, Alternatively, a stirring method may be used until the component D is completely dissolved at a rotation speed of 300 rpm. In addition, when the mixed component 2 and the component D are highly reactive, or when the mixed component 2 contains a photo / thermal polymerization initiator and has high reactivity to heat, the reaction of the mixed component is easily started by adding the component D. In this case, it is better to keep the mixed component 2 or component D and the mixed component at a temperature (for example, 0 ° C. or lower) at which curing can be prevented and suppressed. In addition, it is better to gradually introduce.

さらに、所定量のe1、e2(e3を安定剤とした場合)を濃度50wt%に成るように良溶媒と共にサンプル瓶に封入し、攪拌子にて遮光、室温の条件で1hr攪拌してe1、e2を完全に溶解させて予め1つに調製し、これを混合成分3に一度に投入して、プロペラ型攪拌翼にて遮光、室温で約0.2hr、回転数300rpmで攪拌して完全に溶解させる。これにe3(e3を安定剤とした場合)を投入し、プロペラ型攪拌翼にて遮光、室温、回転数300rpmでe3が完全に溶解するまで攪拌した(混合成分4)。勿論、所定量の成分E(e1、e2、e3)を一度に混合成分4に投入したり、所定量のe1、e2を一度に混合成分に投入後e3を投入したり、或いは、成分Eを混合成分3に各種別に投入して、例えばプロペラ型攪拌翼にて遮光、室温、回転数300rpmで成分Eが完全に溶解するまで攪拌する方法でも良い。また、混合成分3と成分Eの反応性が高い場合や混合成分3中に光・熱重合開始剤を含有し熱に対する反応性が高い場合等、成分E投入により混合成分の反応が開始しやすい場合には、混合成分3や成分E及びその混合成分を硬化の防止及び抑制が可能な温度(例えば0℃以下)に保った方が良い。また、投入も徐々に行った方が良い。更に、成分Dと成分Eの投入順序を入れ替えて、混合成分2に成分Eを投入した後成分Dを投入したり、成分Cと同時期に成分Eを投入する順序も考えられるが、成分Eの安定剤は樹脂組成物の保存下での反応性を抑制しポットライフ向上を狙うものでもあり、硬化反応性や安定性効果の極端な失活等を防止するため最終的で投入する方が好ましい場合もある。   Furthermore, a predetermined amount of e1, e2 (when e3 is used as a stabilizer) is sealed in a sample bottle together with a good solvent so as to have a concentration of 50 wt%, shielded with a stirrer, and stirred for 1 hr at room temperature to e1, e2 is completely dissolved and prepared in advance, and it is added to the mixed component 3 at once. The mixture is light-shielded with a propeller-type stirring blade, and stirred at room temperature for about 0.2 hr and at a rotation speed of 300 rpm. Dissolve. This was charged with e3 (when e3 was used as a stabilizer), shielded with a propeller-type stirring blade, and stirred at room temperature at a rotation speed of 300 rpm until e3 was completely dissolved (mixed component 4). Of course, a predetermined amount of component E (e1, e2, e3) is added to the mixed component 4 at a time, a predetermined amount of e1, e2 is added to the mixed component at a time and then e3 is added, or the component E is added. For example, a method may be used in which the components are separately added to the mixed component 3 and light-shaded with a propeller-type stirring blade, and stirred until the component E is completely dissolved at room temperature and a rotational speed of 300 rpm. In addition, when the reactivity of the mixed component 3 and the component E is high, or when the mixed component 3 contains a photo / thermal polymerization initiator and the reactivity to heat is high, the reaction of the mixed component is easily started by adding the component E. In this case, it is better to keep the mixed component 3 or component E and the mixed component at a temperature (for example, 0 ° C. or lower) at which curing can be prevented and suppressed. In addition, it is better to gradually introduce. Furthermore, the order in which the components D and E are charged is changed so that the component E is added to the mixed component 2 and then the component D is added. Alternatively, the order in which the component E is added at the same time as the component C is conceivable. These stabilizers are intended to suppress the reactivity of the resin composition under storage and improve pot life, and should be added at the end to prevent extreme inactivation of curing reactivity and stability effects. It may be preferable.

最後に、所定量の成分F(f1、f2、f3)を一度に混合成分4に投入し、プロペラ型攪拌翼にて遮光、室温で約1hr、回転数300rpmで攪拌して樹脂組成物とする。勿論、所定量の成分Fを予め1つに調製した後に混合成分2に投入したり、或いは、成分Fを混合成分4に各種別に投入して、例えばプロペラ型攪拌翼にて遮光、室温、回転数300rpmで約1hr攪拌する方法でも良い。また、成分Fの投入・攪拌による反応開始、例えば攪拌時の発熱による反応開始等が考えられる場合には、混合成分4や成分F及びその混合成分を硬化の防止及び抑制が可能な温度(例えば0℃以下)に保った方が良い。また、投入も徐々に行った方が良い。また、成分Fは本発明樹脂組成物の特徴を活かして実際に様々な用途に用いる際に必要な成分であり、実使用直前に投入する方法でも良い。   Finally, a predetermined amount of the component F (f1, f2, f3) is added to the mixed component 4 at once, light-shielded with a propeller-type stirring blade, and stirred at room temperature for about 1 hr at a rotation speed of 300 rpm to obtain a resin composition. . Of course, a predetermined amount of the component F is prepared in advance and then added to the mixed component 2, or the component F is added to the mixed component 4 in various ways, for example, shielded with a propeller-type stirring blade, at room temperature, and rotated. A method of stirring for about 1 hour at several 300 rpm may be used. In addition, when the reaction start by the introduction and stirring of the component F, for example, the reaction start by heat generation during stirring, can be considered, the temperature at which the mixed component 4 or the component F and the mixed component can be prevented and suppressed from being cured (for example, It is better to keep it below 0 ° C. In addition, it is better to gradually introduce. In addition, component F is a component necessary when actually used in various applications by taking advantage of the characteristics of the resin composition of the present invention, and may be a method of adding just before actual use.

各成分の投入の仕方であるが、投入量については投入する成分と投入される側の製造時の反応性で異なり、反応性が高い場合、混合物の温度上昇に注意しながら徐々に投入して混合物を低温に保つようにするのが基本的であり、反応性が低い場合には一度に投入しても問題はない。但し、高反応性溶液同士の混合方法の例としては高速攪拌等により瞬時に分散させて反応を防止する方法もある。また、複数種から成る成分を投入・添加する場合、複数種の各々を1つ1つ投入しても、予め複数種を混合し1つにまとめた後投入しても、複数種を同時に投入しても良いが、安定化剤や最終的に粘度を調製する際の反応性希釈剤等、種類と用途によっては別途投入した方が良いものもあるし、溶解しにくいものなどは予め良溶媒等に溶解させた方が良い場合もある。遮光については、基本的には光反応性成分が含まれるものは全て行うべきである。製造フロー2〜4については製造フロー1の投入順序を変更したものであり、基本的には、温度は反応が進行しない様考慮した低温、攪拌時間は各攪拌工程において成分が完全に溶解するまで、遮光の有無については光反応性物質添加以降製造終了時までとなる。但し、製造フロー3については硬化性が高い混合成分に成分C(光重合開始剤成分)添加するため他に比べて硬化反応が発生しやすいと考えられ、遮光は勿論、冷却により温度も低温(例えば0℃以下)として、徐々に添加した方が好ましい。   The amount of each component is charged, but the amount to be charged differs depending on the component to be charged and the reactivity at the time of production. If the reactivity is high, gradually add while paying attention to the temperature rise of the mixture. Basically, the mixture is kept at a low temperature, and if the reactivity is low, there is no problem even if it is added at once. However, as an example of a method of mixing highly reactive solutions, there is a method of preventing the reaction by instantaneously dispersing by high-speed stirring or the like. In addition, when adding / adding multiple types of components, whether multiple types are added one by one, or multiple types are mixed together before being added together, multiple types are added simultaneously. However, depending on the type and application, it may be better to add a stabilizer or a reactive diluent for final viscosity adjustment. In some cases, it may be better to dissolve them. Regarding light shielding, basically, all those containing a photoreactive component should be performed. For production flows 2 to 4, the order of addition of production flow 1 was changed. Basically, the temperature was a low temperature in consideration of the reaction not proceeding, and the stirring time was until the components were completely dissolved in each stirring step. The presence or absence of light shielding is from the addition of the photoreactive substance to the end of production. However, in the production flow 3, since component C (photopolymerization initiator component) is added to a highly curable mixed component, it is considered that a curing reaction is likely to occur compared to other components. For example, it is preferable to add gradually as 0 ° C. or less.

また、本発明に係る樹脂組成物の実用を考えた場合、最終的とは実際に樹脂組成物を硬化させる時点迄に本発明で意図する必須成分を含む樹脂組成物であればよい。従って、最初から必須成分を含む一液状態となっている樹脂組成物を製造しておくのではなく、最初は樹脂組成物を異なる2つ以上の組成物に分けて製造しておき、実際に使用する前に攪拌、混合して硬化させてもよい。その成分分割の例を下記表8に示すがこれに限定するものではなく、使用する成分の種類や比率、保存条件、製造条件等から様々なケースが考えられる。   Further, when the practical use of the resin composition according to the present invention is considered, the final may be a resin composition containing essential components intended by the present invention by the time when the resin composition is actually cured. Therefore, instead of preparing a one-component resin composition containing essential components from the beginning, the resin composition is initially manufactured by dividing it into two or more different compositions. You may stir, mix and harden before using. Examples of the component division are shown in Table 8 below, but are not limited thereto, and various cases are conceivable from the types and ratios of the components used, storage conditions, manufacturing conditions, and the like.

Figure 2006117950
なお、表中、樹脂組成物の構成成分および構成種は、成分A(構成種a1,a2)、成分B、成分C、成分Eとする。また、成分Fを追加する場合、基本的は配合量が多い成分Aを含有する方に追加するが、逆の場合もある。
Figure 2006117950
In the table, the constituent components and constituent species of the resin composition are component A (constituent species a1, a2), component B, component C, and component E. Moreover, when adding the component F, it adds to the direction containing the component A with much compounding quantity fundamentally, However, the reverse may be sufficient.

成分の分割は、従来の2液性硬化樹脂と同様に保存安定性が向上する利点がある反面、実作業において攪拌の手間が増える。以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Dividing the components has the advantage of improving the storage stability as in the case of the conventional two-component curable resin, but increases the labor of stirring in actual work. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1
セロキサイド2021P(ダイセル化学(株)製:脂環式エポキシ樹脂;3,4−シクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート)1molに対し、マレイン酸無水物0.65molを加えて攪拌・溶解させたもの100重量部にイルガキュア261(チバガイギー(株)製:鉄−アレン系光重合開始剤;一般式(I))1.5重量部を配合した。(A)(A)をガラス容器(φ40mm×H50mm)に50g注入した。これを太陽光(4月、午後1時頃、晴天)にあてた。(B)上記サンプルは10min以内に完全に硬化した。
Example 1
To 1 mol of Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd .: alicyclic epoxy resin; 3,4-cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate), 0.65 mol of maleic anhydride is added and stirred and dissolved. Irgacure 261 (manufactured by Ciba Geigy Co., Ltd .: iron-allene photopolymerization initiator; general formula (I)) 1.5 parts by weight was blended with 100 parts by weight of the sauce. (A) 50 g of (A) was poured into a glass container (φ40 mm × H50 mm). This was applied to sunlight (April, 1 pm, fine weather). (B) The sample was completely cured within 10 min.

実施例2
セロキサイド2021P 1molに対し、マレイン酸無水物0.65molを加えて攪拌・溶解させたもの100重量部にサンエイドSI−80L(三新化学(株)製:カチオン系光・熱重合開始剤;一般式(IV)50wt%+溶剤50wt%、添加剤微量)1.0重量部を配合した。(C)(C)をガラス容器(φ40mm×H50mm)に50g注入した。これにUVを3min照射した。UV照射条件はUV照射装置:UVL−1500M2(ウシオ電機(株))、ランプ種類:メタルハライドランプ、ランプ強度:120W/cm、ランプ長:125mm、雰囲気・温度・圧力:空気中・室温・大気圧、照射距離:15cmで行った。(D)上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 2
To 100 parts by weight of 0.65 mol of maleic anhydride added to 1 mol of Celoxide 2021P and stirred and dissolved, Sun-Aid SI-80L (manufactured by Sanshin Chemical Co., Ltd .: cationic photo / thermal polymerization initiator; general formula (IV) 50 wt% + solvent 50 wt%, additive trace amount) 1.0 part by weight was blended. (C) 50 g of (C) was poured into a glass container (φ40 mm × H50 mm). This was irradiated with UV for 3 min. UV irradiation conditions are UV irradiation apparatus: UVL-1500M2 (Ushio Electric Co., Ltd.), lamp type: metal halide lamp, lamp intensity: 120 W / cm, lamp length: 125 mm, atmosphere / temperature / pressure: in air / room temperature / atmospheric pressure The irradiation distance was 15 cm. (D) The sample was completely cured in a few minutes while chain curing.

実施例3
実施例2の(C)でサンエイドSI−80LのかわりにサンエイドSI−60(三新化学(株)製:カチオン系光・熱重合開始剤;一般式(IV))0.5重量部を配合する以外は、実施例2同様の試験を行った。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 3
In Example 2 (C), 0.5 part by weight of Sun-Aid SI-60 (manufactured by Sanshin Chemical Co., Ltd .: cationic photo / thermal polymerization initiator; general formula (IV)) instead of Sun-Aid SI-80L The same test as in Example 2 was performed except that. The sample cured completely in a few minutes while chain curing.

実施例4
セロキサイド2021P 1molに対し、マレイン酸無水物0.65molを加えて攪拌・溶解させたもの100重量部にイルガキュア261 1.0重量部、サンエイドSI−60L(三新化学(株)製:カチオン系光・熱重合開始剤;一般式(IV)/溶剤=1/2、添加剤微量)1.0重量部を配合した。(E)(E)をガラス容器(φ40mm×H50mm)に50g注入し、実施例1の(B)と同様に太陽光にあてた。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 4
To 100 parts by weight of 1.05 parts by weight of Irgacure 261, Sun Aid SI-60L (manufactured by Sanshin Chemical Co., Ltd .: Cationic light) -Thermal polymerization initiator: 1.0 part by weight of general formula (IV) / solvent = 1/2, a small amount of additive was blended. (E) 50 g of (E) was injected into a glass container (φ40 mm × H50 mm) and exposed to sunlight in the same manner as in Example 1 (B). The sample cured completely in a few minutes while chain curing.

実施例5
実施例4の(E)をガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 5
50 g of (E) in Example 4 was injected into a glass container (φ40 mm × H50 mm), and UV was irradiated in the same manner as in Example 2 (D). The sample cured completely in a few minutes while chain curing.

実施例6
実施例4の(E)の光開始剤配合量を、イルガキュア261 1.0重量部、サンエイドSI−60L 0.5重量部に変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 6
Example 4 (E) photoinitiator compounding amount was changed to 1.0 part by weight of Irgacure 261 and 0.5 part by weight of Sun-Aid SI-60L, and 50 g was injected into a glass container (φ40 mm × H50 mm). UV was irradiated in the same manner as 2 (D). The sample cured completely in a few minutes while chain curing.

実施例7
実施例4の(E)の光開始剤配合量を、イルガキュア261 0.5重量部、サンエイドSI−60L 1.0重量部に変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 7
Example 4 (E) photoinitiator compounding amount was changed to 0.5 parts by weight of Irgacure 261 and 1.0 parts by weight of Sun-Aid SI-60L, and 50 g was injected into a glass container (φ40 mm × H50 mm). UV was irradiated in the same manner as 2 (D). The sample cured completely in a few minutes while chain curing.

実施例8
実施例4の(E)の樹脂組成物において、マレイン酸無水物0.65molを0.3molに変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例5よりは硬化に時間がかかったが、連鎖硬化しながら数分で完全に硬化した。
Example 8
In the resin composition of Example 4 (E), 0.65 mol of maleic anhydride was changed to 0.3 mol, and 50 g was injected into a glass container (φ40 mm × H50 mm), and the same method as in Example 2 (D) With UV irradiation. Although the sample took longer to cure than Example 5, it was completely cured in several minutes while chain curing.

実施例9
実施例4の(E)の樹脂組成物において、マレイン酸無水物0.65molをヘキサヒドロフタル酸無水物0.65molに変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例5よりは硬化に時間がかかったが、連鎖硬化しながら数分で完全に硬化した。
Example 9
In the resin composition of Example 4 (E), 0.65 mol of maleic anhydride was changed to 0.65 mol of hexahydrophthalic anhydride, and 50 g was injected into a glass container (φ40 mm × H50 mm). UV was irradiated in the same manner as in D). Although the sample took longer to cure than Example 5, it was completely cured in several minutes while chain curing.

実施例10
実施例4の(E)の樹脂組成物において、マレイン酸無水物0.65molをポリエチレングリコール300(分子量平均300)0.3molに変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 10
In the resin composition of Example 4 (E), 0.65 mol of maleic anhydride was changed to 0.3 mol of polyethylene glycol 300 (molecular weight average 300), and 50 g was injected into a glass container (φ40 mm × H50 mm). UV was irradiated in the same manner as 2 (D). The sample cured completely in a few minutes while chain curing.

実施例11
実施例4の(E)の光開始剤成分を、DAICAT11(ダイセル化学(株)製:アリール系スルホニウム塩タイプ/溶剤=1/1)0.3重量部、サンエイドSI−80L 0.7重量部に変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 11
The photoinitiator component (E) of Example 4 was 0.3 parts by weight of DAICAT11 (manufactured by Daicel Chemical Industries, Ltd .: aryl sulfonium salt type / solvent = 1/1), 0.7 parts by weight of Sun-Aid SI-80L Then, 50 g was injected into a glass container (φ40 mm × H50 mm) and irradiated with UV in the same manner as in Example 2 (D). The sample cured completely in a few minutes while chain curing.

実施例12
セロキサイド2021P/マレイン酸無水物/ポリエチレングリコール300(モル比 1.0/0.65/0.17)100重量部にイルガキュア261 1.0重量部、サンエイドSI−60L 1.0重量部を配合した。(F)(F)をガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例5より容易に連鎖硬化しながら数分で完全に硬化した。
Example 12
Celacide 2021P / maleic anhydride / polyethylene glycol 300 (molar ratio 1.0 / 0.65 / 0.17) 100 parts by weight, Irgacure 261 1.0 part by weight, Sun Aid SI-60L 1.0 part by weight were blended. . (F) 50 g of (F) was injected into a glass container (φ40 mm × H50 mm) and irradiated with UV in the same manner as in Example 2 (D). The sample cured completely in a few minutes while chain curing easier than in Example 5.

実施例13
実施例12の(F)の樹脂組成物において、ポリエチレングリコール300のモル比を0.085に変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例12よりは硬化に時間がかかったが、実施例5より容易に連鎖硬化しながら数分で完全に硬化した。
Example 13
In the resin composition of Example 12 (F), the molar ratio of polyethylene glycol 300 was changed to 0.085, and 50 g was injected into a glass container (φ40 mm × H50 mm), and the same method as in Example 2 (D). Irradiated with UV. Although the sample took longer to cure than Example 12, it cured completely in a few minutes while chain curing easier than Example 5.

実施例14
実施例12の(F)の樹脂組成物において、ポリエチレングリコール300のモル比を0.65に変更してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。実施例12と比較すると硬化したサンプルは硬度が低く、ラバーとしての性質を強く示した。
Example 14
In the resin composition of Example 12 (F), the molar ratio of polyethylene glycol 300 was changed to 0.65, and 50 g was injected into a glass container (φ40 mm × H50 mm), and the same method as in Example 2 (D). Irradiated with UV. The sample cured completely in a few minutes while chain curing. Compared with Example 12, the cured sample had low hardness and strongly exhibited rubber properties.

実施例15
セロキサイド2021P/セロキサイド2000(ダイセル化学(株):光重合性希釈剤;シクロヘキセンビニルモノオキサイド)/マレイン酸無水物/ヘキサヒドロフタル酸無水物/ポリエチレングリコール300(モル比 0.95/0.05/0.48mol/0.16mol/0.145mol)100重量部と、イルガキュア261 0.072重量部、DAICAT11 0.288、サンエイドSI−60 0.504重量部を配合した。調製する際はポリエチレングリコール300を最後に投入した。(G)(G)をガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 15
Celoxide 2021P / Celoxide 2000 (Daicel Chemical Co., Ltd .: photopolymerizable diluent; cyclohexene vinyl monooxide) / maleic anhydride / hexahydrophthalic anhydride / polyethylene glycol 300 (molar ratio 0.95 / 0.05 / 0.48 mol / 0.16 mol / 0.145 mol) and 100 parts by weight of Irgacure 261 0.072 parts by weight, DAICAT11 0.288, and Sun Aid SI-60 0.504 parts by weight were blended. At the time of preparation, polyethylene glycol 300 was added last. (G) 50 g of (G) was injected into a glass container (φ40 mm × H50 mm) and irradiated with UV in the same manner as in Example 2 (D). The sample cured completely in a few minutes while chain curing.

実施例16
実施例15の(G)の光開始剤成分を、イルガキュア261 0.1重量部、DAICAT11 0.2重量部、サンエイドSI−60L 0.7重量部に変更する以外は同様に樹脂組成物を調製してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 16
A resin composition was prepared in the same manner except that the photoinitiator component (G) in Example 15 was changed to 0.1 parts by weight of Irgacure 261, 0.2 parts by weight of DAICAT11, and 0.7 parts by weight of Sun-Aid SI-60L. Then, 50 g was injected into a glass container (φ40 mm × H50 mm) and irradiated with UV in the same manner as in Example 2 (D). The sample cured completely in a few minutes while chain curing.

実施例17
実施例15の(G)の光開始剤成分を、イルガキュア261 0.2重量部、DAICAT11 0.8重量部、サンエイドSI−60 1.4重量部に変更する以外は同様に樹脂組成物を調製した。(H)(H)をガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは激しく連鎖硬化しながら実施例15より早く完全に硬化した。
Example 17
A resin composition was prepared in the same manner except that the photoinitiator component (G) of Example 15 was changed to 0.2 parts by weight of Irgacure 261, 0.8 parts by weight of DAICAT11, and 1.4 parts by weight of Sun-Aid SI-60. did. (H) 50 g of (H) was injected into a glass container (φ40 mm × H50 mm) and irradiated with UV in the same manner as in Example 2 (D). The sample cured completely faster than Example 15 with intense chain curing.

実施例18
実施例17の(H)のセロキサイド2021PをARALDITE AER 260(旭チバ(株)製:ビスフェノールA型液状エポキシ樹脂)に変更する以外は同様に樹脂組成物を調製してガラス容器(φ40mm×H50mm)に50g注入し、実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 18
A resin composition was prepared in the same manner as in Example 17 except that the ceroxide 2021P of (H) was changed to ARALDITE AER 260 (Asahi Ciba Co., Ltd .: bisphenol A type liquid epoxy resin), and a glass container (φ40 mm × H50 mm) 50 g was injected and UV was irradiated in the same manner as in Example 2 (D). The sample cured completely in a few minutes while chain curing.

実施例19
実施例15の(G)をガラス試験管(φ15mm×H150mm)に高さ120mmまで注入し、照射距離を10cmにする以外は実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化しながら数分で完全に硬化した。
Example 19
UV was irradiated in the same manner as in Example 2 (D) except that (G) of Example 15 was poured into a glass test tube (φ15 mm × H150 mm) to a height of 120 mm and the irradiation distance was 10 cm. The sample cured completely in a few minutes while chain curing.

実施例20
銅管(φ19mm×L500mm)にカーボンファイバーの不織布を充填したものに実施例17の(H)と同様の樹脂組成物を注入し、片端をゴム栓にて封じた。照射距離を10cm及び照射時間5minにする以外は実施例2(D)と同様の方法で照射した。上記サンプルは連鎖硬化しながら数時間以内に完全に硬化した。
Example 20
A resin composition similar to (H) of Example 17 was poured into a copper tube (φ19 mm × L500 mm) filled with a carbon fiber nonwoven fabric, and one end was sealed with a rubber stopper. Irradiation was performed in the same manner as in Example 2 (D) except that the irradiation distance was 10 cm and the irradiation time was 5 min. The sample cured completely within a few hours while chain curing.

実施例21
銅管(φ19mm×L500mm)にカーボンファイバーの不織布を充填したものに実施例15の(G)を注入し、片端をゴム栓にて封じた。これを70℃に保持したオーブンに2hr入れた後取り出した。上記サンプルは熱によっても硬化していた。
Example 21
(G) of Example 15 was poured into a copper tube (φ19 mm × L500 mm) filled with a carbon fiber nonwoven fabric, and one end was sealed with a rubber stopper. This was placed in an oven maintained at 70 ° C. for 2 hours and then taken out. The sample was cured by heat.

比較例1
セロキサイド2021P 100重量部と、イルガキュア261 1.5重量部の樹脂組成物(実施例1の(A)からマレイン酸無水物を除いた組成)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これを実施例1の(B)と同様に太陽光にあてた。上記サンプルを5hr太陽光にあてても未硬化であった。
Comparative Example 1
A resin composition of 100 parts by weight of Celoxide 2021P and 1.5 parts by weight of Irgacure 261 (a composition obtained by removing maleic anhydride from (A) of Example 1) was prepared, and 50 g was injected into a glass container (φ40 mm × H50 mm). did. This was exposed to sunlight in the same manner as in Example 1 (B). Even when the sample was exposed to sunlight for 5 hours, it was uncured.

比較例2
セロキサイド2021P 100重量部と、サンエイドSI−80L 1.0重量部の樹脂組成物(実施例2の(C)からマレイン酸無水物を除いて組成構築)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これに実施例2の(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化が発生せず、表層のみ硬化し、残りは未硬化であった。
Comparative Example 2
A resin composition of 100 parts by weight of Celoxide 2021P and 1.0 part by weight of Sun Aid SI-80L (composition construction excluding maleic anhydride from (C) of Example 2) was prepared, and a glass container (φ40 mm × H50 mm) 50 g was injected. This was irradiated with UV in the same manner as in Example 2 (D). In the sample, chain curing did not occur, only the surface layer was cured, and the rest was uncured.

比較例3
セロキサイド2021P 100重量部と、サンエイドSI−60 1.0重量部の樹脂組成物(実施例3の樹脂組成物からマレイン酸無水物を除いて組成構築)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これに実施例2の(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化が発生せず、表層のみ硬化し、残りは未硬化であった。
Comparative Example 3
A resin composition of 100 parts by weight of Celoxide 2021P and 1.0 part by weight of Sun-Aid SI-60 (composition construction excluding maleic anhydride from the resin composition of Example 3) was prepared, and a glass container (φ40 mm × H50 mm) 50 g was injected. This was irradiated with UV in the same manner as in Example 2 (D). In the sample, chain curing did not occur, only the surface layer was cured, and the rest was uncured.

比較例4
セロキサイド2021P 100重量部と、イルガキュア261 1.0重量部と、サンエイドSI−60L 0.5重量部の樹脂組成物(実施例6の樹脂組成物からマレイン酸無水物を除いて組成構築)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これに実施例2(D)と同様の方法でUVを照射した。上記サンプルは連鎖硬化が発生せず、表層のみ硬化し、残りは未硬化であった。
Comparative Example 4
Prepare 100 parts by weight of Celoxide 2021P, 1.0 part by weight of Irgacure 261, and 0.5 parts by weight of Sun-Aid SI-60L (excluding maleic anhydride from the resin composition of Example 6). 50 g was poured into a glass container (φ40 mm × H50 mm). This was irradiated with UV in the same manner as in Example 2 (D). In the sample, chain curing did not occur, only the surface layer was cured, and the rest was uncured.

比較例5
セロキサイド2021P 100重量部と、DAICAT11 0.3重量部と、サンエイドSI−80L 0.7重量部の樹脂組成物(実施例11の樹脂組成物からマレイン酸無水物を除いて組成構築)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これに実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例11と比較すると明らかに硬化能力が低かった。
Comparative Example 5
A resin composition of 100 parts by weight of Celoxide 2021P, 0.3 parts by weight of DAICAT11, and 0.7 parts by weight of Sun-Aid SI-80L was prepared (excluding maleic anhydride from the resin composition of Example 11). 50 g was poured into a glass container (φ40 mm × H50 mm). This was irradiated with UV in the same manner as in Example 2 (D). The above sample clearly had lower curing ability when compared with Example 11.

比較例6
セロキサイド2021P/セロキサイド2000(モル比 0.95/0.05)100重量部と、イルガキュア261 0.072重量部、DAICAT110.288、サンエイドSI−60 0.504重量部の樹脂組成物(比較対象:実施例15)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これに実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例15と比較すると明らかに硬化能力が低かった。
Comparative Example 6
A resin composition of 100 parts by weight of Celoxide 2021P / Celoxide 2000 (molar ratio 0.95 / 0.05), 0.072 parts by weight of Irgacure 261, 110.288 of DAICAT, and 0.504 parts by weight of Sun-Aid SI-60 (comparative object: Example 15) was prepared and 50 g was poured into a glass container (φ40 mm × H50 mm). This was irradiated with UV in the same manner as in Example 2 (D). The above sample clearly had lower curing ability when compared with Example 15.

比較例7
セロキサイド2021P/セロキサイド2000(モル比 0.95/0.05)100重量部と、イルガキュア261 0.1重量部、DAICAT11 0.2重量部、サンエイドSI−60L 0.7重量部の樹脂組成物(比較対象:実施例16)を調製し、ガラス容器(φ40mm×H50mm)に50g注入した。これに実施例2(D)と同様の方法でUVを照射した。上記サンプルは実施例16と比較すると明らかに硬化能力が低かった。
Comparative Example 7
100 parts by weight of Celoxide 2021P / Celoxide 2000 (molar ratio 0.95 / 0.05), 0.1 part by weight of Irgacure 261, 0.2 part by weight of DAICAT11, 0.7 part by weight of Sun Aid SI-60L ( Comparative object: Example 16) was prepared and 50 g was injected into a glass container (φ40 mm × H50 mm). This was irradiated with UV in the same manner as in Example 2 (D). The above sample clearly had lower curing ability when compared to Example 16.

上記した実施例1〜21及び比較例1〜7の結果から、上記樹脂組成物によれば、優れたエネルギー線硬化樹脂成形体が容易に得られることがわかる。   From the results of the above Examples 1 to 21 and Comparative Examples 1 to 7, it can be seen that according to the resin composition, an excellent energy beam curable resin molded article can be easily obtained.

図1は、本発明に係る樹脂組成物を製造する際の製造フローの一例(製造フロー1)を示す図である。FIG. 1 is a diagram showing an example (manufacturing flow 1) of a manufacturing flow when manufacturing a resin composition according to the present invention. 図2は、本発明に係る樹脂組成物を製造する際の他の製造フローの例、(a)製造フロー2、(b)製造フロー3、(c)製造フロー4を示す図である。FIG. 2 is a diagram showing another example of the production flow when producing the resin composition according to the present invention, (a) production flow 2, (b) production flow 3, and (c) production flow 4.

Claims (12)

光重合性樹脂成分として分子構造に環状エーテル構造を有するエポキシ樹脂を含み、さらにエネルギー線を照射した際に該光重合性樹脂成分の硬化を可能にする光重合開始剤成分と、前記光重合性樹脂成分を常温硬化又は加熱硬化させるのに用いる硬化剤成分とを含み、
前記光重合開始剤成分として、下記の一般式(IV),(IV’)又は(V)
Figure 2006117950
で示されるスルホニウム塩を含み、
前記硬化剤成分が酸無水物であり、該硬化剤成分と反応可能な光重合性樹脂成分1molに対し、該硬化剤成分が0.1〜1.4molの比率であり、
樹脂組成物中の前記光重合開始剤成分以外の他成分の総重量100重量部に対し、該光重合開始剤成分が0.1〜6.0重量部の比率である
ことを特徴とするエネルギー線硬化樹脂組成物。
A photopolymerization initiator component that includes an epoxy resin having a cyclic ether structure in the molecular structure as a photopolymerizable resin component, and further allows the photopolymerizable resin component to be cured when irradiated with energy rays; A curing agent component used for curing the resin component at room temperature or heat curing,
As the photopolymerization initiator component, the following general formula (IV), (IV ′) or (V)
Figure 2006117950
Including a sulfonium salt represented by
The curing agent component is an acid anhydride, and the curing agent component is in a ratio of 0.1 to 1.4 mol with respect to 1 mol of the photopolymerizable resin component capable of reacting with the curing agent component,
Energy characterized in that the photopolymerization initiator component is in a ratio of 0.1 to 6.0 parts by weight with respect to 100 parts by weight of the total weight of other components other than the photopolymerization initiator component in the resin composition. A wire curable resin composition.
前記光重合性樹脂成分の少なくとも1種と前記硬化剤成分とを常温硬化又は加熱硬化させる際に、該硬化を促進させる硬化促進剤成分を含むことを特徴とする請求項1記載のエネルギー線硬化樹脂組成物。   2. The energy ray curing according to claim 1, further comprising a curing accelerator component that accelerates the curing when at least one of the photopolymerizable resin component and the curing agent component are cured at room temperature or heat. Resin composition. 前記硬化促進剤成分として、1価又は多価のアルコール類を含むことを特徴とする請求項2に記載のエネルギー線硬化樹脂組成物。   The energy ray curable resin composition according to claim 2, comprising a monovalent or polyhydric alcohol as the curing accelerator component. 前記硬化剤成分もしくは前記硬化促進剤成分が、前記エポキシ樹脂成分と反応可能であり、且つ、分子構造内に窒素原子を有しない化合物からなることを特徴とする請求項3のいずれかに記載のエネルギー線硬化樹脂組成物。   The said hardening | curing agent component or the said hardening accelerator component consists of a compound which can react with the said epoxy resin component, and does not have a nitrogen atom in molecular structure. Energy ray curable resin composition. 前記光重合性樹脂成分として、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートを含むことを特徴とする請求項1〜4のいずれかに記載のエネルギー線硬化樹脂組成物。   The energy ray curable resin composition according to any one of claims 1 to 4, comprising 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as the photopolymerizable resin component. 前記酸無水物として、マレイン酸無水物又はその誘導体を含むことを特徴とする請求項1〜5のいずれかに記載のエネルギー線硬化樹脂組成物。   6. The energy ray curable resin composition according to claim 1, comprising maleic anhydride or a derivative thereof as the acid anhydride. 前記アルコール類として、ポリエチレングリコールを含むことを特徴とする請求項1〜6のいずれかに記載のエネルギー線硬化樹脂組成物。   The energy ray curable resin composition according to any one of claims 1 to 6, wherein the alcohols include polyethylene glycol. 請求項1〜7のいずれかに記載のエネルギー線硬化樹脂組成物を硬化させたことを特徴とするエネルギー線硬化樹脂成形体。   An energy beam curable resin molded article obtained by curing the energy beam curable resin composition according to claim 1. 請求項1〜8のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とするペースト材料。   A paste material comprising the energy ray curable resin composition according to claim 1. 請求項1〜9のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とする複合成形材料。   A composite molding material comprising the energy beam curable resin composition according to claim 1. 請求項1〜10のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とする接着剤。   An adhesive comprising the energy ray curable resin composition according to claim 1. 請求項1〜7のいずれかに記載のエネルギー線硬化樹脂組成物を含有することを特徴とするコーティング材。   A coating material comprising the energy beam curable resin composition according to claim 1.
JP2005350738A 2005-12-05 2005-12-05 Energy ray curable resin composition Expired - Lifetime JP4241721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350738A JP4241721B2 (en) 2005-12-05 2005-12-05 Energy ray curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350738A JP4241721B2 (en) 2005-12-05 2005-12-05 Energy ray curable resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26964899A Division JP2001089639A (en) 1999-09-24 1999-09-24 Energy ray-curing resin composition

Publications (2)

Publication Number Publication Date
JP2006117950A true JP2006117950A (en) 2006-05-11
JP4241721B2 JP4241721B2 (en) 2009-03-18

Family

ID=36536105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350738A Expired - Lifetime JP4241721B2 (en) 2005-12-05 2005-12-05 Energy ray curable resin composition

Country Status (1)

Country Link
JP (1) JP4241721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127054A (en) * 2009-12-21 2011-06-30 Dnp Fine Chemicals Co Ltd Adhesive composition and method of manufacturing curable adhesive sheet
JP2022516602A (en) * 2018-12-10 2022-03-01 デロ・インドゥストリー・クレープシュトッフェ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Methods for Bonding, Casting and Coating of Cationic Curable Compositions and Substrate Using the Compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022835A (en) 2011-07-21 2013-02-04 Mitsubishi Heavy Ind Ltd Method and apparatus for producing at least two products including fiber-reinforced resin
JP6271130B2 (en) 2013-01-18 2018-01-31 三菱重工業株式会社 Manufacturing method of composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127054A (en) * 2009-12-21 2011-06-30 Dnp Fine Chemicals Co Ltd Adhesive composition and method of manufacturing curable adhesive sheet
JP2022516602A (en) * 2018-12-10 2022-03-01 デロ・インドゥストリー・クレープシュトッフェ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Methods for Bonding, Casting and Coating of Cationic Curable Compositions and Substrate Using the Compositions
JP7402234B2 (en) 2018-12-10 2023-12-20 デロ・インドゥストリー・クレープシュトッフェ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Cationically curable compositions and methods for bonding, casting and coating substrates using said compositions

Also Published As

Publication number Publication date
JP4241721B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR100394404B1 (en) Energy-ray curing resin composition
EP0843685B1 (en) Ionizing radiation curing of epoxy resin systems incorporating cationic photoinitiators
KR100478519B1 (en) Polymerizable composition, cured material thereof and method for manufacturing the same
US7592376B2 (en) Photopolymerizable epoxide and oxetane compositions
JP4108094B2 (en) Energy ray curable resin composition
JP2009019077A (en) Curable composition, adhesive for display element, and bonding method
JP2008303308A (en) Curable composition and optical filter
JPS61261365A (en) Photo-curable coating composition
JPH03184008A (en) Optical fiber having ultraviolet setting cover
JP2004210932A (en) Curable resin composition and cured material
JP4241721B2 (en) Energy ray curable resin composition
JPS58198532A (en) Curable composition
TW201217421A (en) Production method for curing articles and curing articles
JP5059634B2 (en) Liquid curable composition and cured product thereof
JP2014156522A (en) Thermosetting composition
JP4426324B2 (en) Non-ester type epoxy resin and resin composition
JP4743736B2 (en) Optical three-dimensional modeling resin composition and optical three-dimensional modeling method using the same
JP3014251B2 (en) Active energy ray-curable composition
WO2022163795A1 (en) Curable composition, and cured product thereof
KR100729898B1 (en) Cationically polymerizable composition containing metal oxide particles
JP2001236886A (en) Component of division board for thin display panel
JP2004115729A (en) One-pack type epoxy resin composition
JP2016176030A (en) Curable composition and cured product thereof
JPS6051717A (en) Ultraviolet ray-curable resin composition
JPS6160720A (en) Resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4241721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

EXPY Cancellation because of completion of term