JP2006114778A - Electromagnetic wave absorption composition - Google Patents

Electromagnetic wave absorption composition Download PDF

Info

Publication number
JP2006114778A
JP2006114778A JP2004302012A JP2004302012A JP2006114778A JP 2006114778 A JP2006114778 A JP 2006114778A JP 2004302012 A JP2004302012 A JP 2004302012A JP 2004302012 A JP2004302012 A JP 2004302012A JP 2006114778 A JP2006114778 A JP 2006114778A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
particles
wave absorbing
absorbing composition
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004302012A
Other languages
Japanese (ja)
Other versions
JP4346536B2 (en
Inventor
Tomoji Deguchi
智司 出口
Yasuhiro Kawaguchi
康弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2004302012A priority Critical patent/JP4346536B2/en
Publication of JP2006114778A publication Critical patent/JP2006114778A/en
Application granted granted Critical
Publication of JP4346536B2 publication Critical patent/JP4346536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorption composition which can surely form an electromagnetic wave absorption layer having enough electromagnetic wave absorption performance when it is held between two members. <P>SOLUTION: The electromagnetic wave absorption composition is formed by mixing a loss material particle which consists of a magnetic material; a spacer particle which is hard enough not to crush to a prescribed minimum thickness or less even if it is held between two members, and has a particle diameter of the minimum thickness or more; and a bonding material which becomes a paste-like or clay-like mixture together with the loss material particle or the spacer particle. Since the particle diameter of the spacer particle is the minimum thickness or more, and the particle diameter of the loss material particle is the minimum thickness or less, the electromagnetic wave absorption layer with the minimum thickness or more can be readily and surely formed by holding the electromagnetic wave absorption composition between the two members. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁波吸収組成物に関する。   The present invention relates to an electromagnetic wave absorbing composition.

従来、電子部品に塗布されるペースト状組成物としては、例えば、電子部品からの放熱を図るために利用される熱伝導性グリースが知られている(例えば、特許文献1参照)。
特開2004−91743号公報
Conventionally, as a paste-like composition applied to an electronic component, for example, a thermally conductive grease used for radiating heat from the electronic component is known (see, for example, Patent Document 1).
JP 2004-91743 A

しかしながら、上記のような熱伝導性グリースは、単に二部材間にできる微小な隙間を埋めることにより、二部材間での熱移動を促す役割を果たしているに過ぎず、電磁波を遮断するような能力は備えていなかった。   However, the thermal conductive grease as described above merely plays a role of promoting heat transfer between the two members by simply filling a minute gap formed between the two members, and has the ability to block electromagnetic waves. Did not prepare.

一方、電磁波を遮断する能力を有する部材としては、磁性粉末をマトリクス樹脂中に分散させてなる電磁波吸収材料を、シート状ないしブロック状などの形態に加工した電磁波吸収体が知られている。   On the other hand, as a member having an ability to block electromagnetic waves, there is known an electromagnetic wave absorber obtained by processing an electromagnetic wave absorbing material obtained by dispersing magnetic powder in a matrix resin into a sheet shape or a block shape.

しかし、この種の電磁波吸収体は、シート状ないしブロック状などの形態に加工されているため、グリースのように塗布することはできず、二部材間に挟み込むことはできるものの、それら各部材と電磁波吸収体との界面に微小な隙間ができた場合に、そのような微小な隙間をグリースの如く埋めることはできなかった。そのため、特に、二部材間での熱移動を促したい場合に二部材間にシート状の電磁波吸収体を挟み込むようなことをすると、二部材間での熱移動を阻害してしまうおそれがあった。   However, since this type of electromagnetic wave absorber is processed into a sheet-like or block-like form, it cannot be applied like grease and can be sandwiched between two members. When a minute gap is formed at the interface with the electromagnetic wave absorber, such a minute gap cannot be filled like grease. Therefore, in particular, when it is desired to promote heat transfer between two members, if a sheet-like electromagnetic wave absorber is sandwiched between the two members, there is a risk of hindering heat transfer between the two members. .

そこで、本件発明者らは、熱伝導性グリースの如く容易に電子部品に塗布することができる電磁波吸収材料について検討を始めた。
しかし、単なる熱伝導性グリースの場合は、一般に、微小な隙間を埋めるための必要最小限な量を塗布すればよいので、二部材間に挟み込んだ際に塗膜が押し潰されてきわめて薄い層になってしまっても何ら問題はないのに対し、電磁波吸収材料の場合、十分な電磁波吸収性能を確保するためには、ある程度以上厚みのある層を形成しなければならないので、単に二部材間に挟み込むだけでは、塗膜が押し潰されて過剰に薄くなってしまい、所期の電磁波吸収性能を確保できなくなるおそれがあった。
Accordingly, the present inventors have started studying an electromagnetic wave absorbing material that can be easily applied to an electronic component such as a heat conductive grease.
However, in the case of a simple thermal conductive grease, it is generally sufficient to apply the minimum amount necessary to fill a minute gap, so that the coating film is crushed when sandwiched between two members, resulting in a very thin layer. However, in the case of an electromagnetic wave absorbing material, in order to ensure sufficient electromagnetic wave absorbing performance, it is necessary to form a layer that is thicker than a certain amount. If it is simply sandwiched between the two, the coating film may be crushed and become excessively thin, and the desired electromagnetic wave absorption performance may not be ensured.

本発明は、上記問題を解決するためになされたものであり、その目的は、二部材間に挟み込んだ際に、十分な電磁波吸収性能を有する電磁波吸収層を確実に形成可能な電磁波吸収組成物を提供することにある。   The present invention has been made in order to solve the above problems, and an object of the present invention is to provide an electromagnetic wave absorbing composition capable of reliably forming an electromagnetic wave absorbing layer having sufficient electromagnetic wave absorbing performance when sandwiched between two members. Is to provide.

以下、本発明の特徴的構成について説明する。
本発明の電磁波吸収組成物は、二部材間に挟み込まれた際に、あらかじめ規定された最小厚以上の厚さを有する電磁波吸収層を形成可能な電磁波吸収組成物であって、磁性材料からなる粒子であり、その粒子径が前記最小厚以下の損失材粒子と、前記二部材間に挟み込まれた際に前記最小厚以下まで潰れない硬さを有する粒子であり、その粒子径が前記最小厚以上のスペーサ粒子と、前記損失材粒子および前記スペーサ粒子が混合されて、前記損失材粒子および前記スペーサ粒子とともにペースト状ないし粘土状の混合物となる結合材とを含有することを特徴とする。
The characteristic configuration of the present invention will be described below.
The electromagnetic wave absorbing composition of the present invention is an electromagnetic wave absorbing composition capable of forming an electromagnetic wave absorbing layer having a thickness equal to or larger than a predetermined minimum thickness when sandwiched between two members, and is made of a magnetic material. A particle having a particle diameter that is less than the minimum thickness and having a hardness that does not crush to the minimum thickness or less when sandwiched between the two members, and the particle diameter is the minimum thickness The above-mentioned spacer particles, and the loss material particles and the spacer particles are mixed, and the loss material particles and the binder particles together with the loss material particles and the spacer particles are contained.

この電磁波吸収組成物において、損失材粒子は、磁性材料からなる粒子である。磁性材料としては、Ni系フェライト磁性体、Mg系フェライト磁性体、Mn系フェライト磁性体、Ba系フェライト磁性体、Sr系フェライト磁性体、Fe−Si合金、Fe−Ni合金、Fe−Co合金、Fe−Si−Al合金、Fe−Si−Cr合金、鉄などを挙げることができる。   In this electromagnetic wave absorbing composition, the loss material particles are particles made of a magnetic material. Examples of magnetic materials include Ni-based ferrite magnetic materials, Mg-based ferrite magnetic materials, Mn-based ferrite magnetic materials, Ba-based ferrite magnetic materials, Sr-based ferrite magnetic materials, Fe-Si alloys, Fe-Ni alloys, Fe-Co alloys, Fe-Si-Al alloy, Fe-Si-Cr alloy, iron, etc. can be mentioned.

また、損失材粒子は、粒子径が0.5〜50μmで、電磁波吸収組成物全体に対する重量比で1〜90重量%含まれていると好ましい。粒子径が0.5μmを下回ると、フィラー間の接触熱抵抗が高まり、熱抵抗が悪化するという問題を招くおそれがあり、粒子径が50μmを上回ると、スペーサ粒子の大きさを上回り、二部材間に挟み込んだ際に安定した厚みが得られなく原因となる。また、損失材粒子の含有量が1重量%を下回ると、十分な電磁波吸収効果が得られなくなるおそれがあり、含有量が90重量%を上回ると、ペースト状ないし粘土状の形態を維持することが困難になり、塗工しづらくなるといった問題を招くおそれがある。   The lossy material particles preferably have a particle size of 0.5 to 50 μm and are contained in an amount of 1 to 90% by weight with respect to the entire electromagnetic wave absorbing composition. If the particle diameter is less than 0.5 μm, the contact thermal resistance between the fillers may be increased and the thermal resistance may be deteriorated. If the particle diameter exceeds 50 μm, the spacer particle size exceeds the size of the two members. A stable thickness cannot be obtained when sandwiched between them. Further, if the content of the lossy material particles is less than 1% by weight, a sufficient electromagnetic wave absorbing effect may not be obtained, and if the content exceeds 90% by weight, the paste-like or clay-like form is maintained. May become difficult and may cause problems such as difficulty in coating.

また、この電磁波吸収組成物において、スペーサ粒子は、二部材間に挟み込まれた際に前記最小厚以下まで潰れない硬さを有する粒子である。このスペーサ粒子は、二部材間に挟み込まれた際に各部材と直接接触することで、二部材間の間隔を維持するためのスペーサとして機能する。   In this electromagnetic wave absorbing composition, the spacer particles are particles having a hardness that does not crush to the minimum thickness or less when sandwiched between two members. This spacer particle | grains function as a spacer for maintaining the space | interval between two members by contacting each member directly, when it is pinched | interposed between two members.

このようなスペーサ粒子は、二部材それぞれに直接接触する状態にあるので、さらに二部材間での熱伝導をも促すためには、損失材粒子および結合材よりも高い熱伝導性を有する熱伝導性粒子であると好ましく、それには、例えば、Al23、AlN、BN、SiC、MgO、B4C、Si34、Al(OH)3、Mg(OH)2などの粒子を用いると好ましい。なお、熱伝導性粒子としては、例えば、熱伝導率20W/m・K以上の粒子を用いると好ましい。こうした熱伝導性の高いスペーサ粒子を利用すれば、電磁波吸収組成物の熱伝導率も向上するので、熱伝導性能と電磁波吸収性能を兼ね備えた熱伝導性電磁波吸収組成物となる。 Since such spacer particles are in direct contact with each of the two members, in order to further promote heat conduction between the two members, heat conduction having higher thermal conductivity than the lossy material particles and the binding material. For example, particles such as Al 2 O 3 , AlN, BN, SiC, MgO, B 4 C, Si 3 N 4 , Al (OH) 3 , Mg (OH) 2 are used. And preferred. For example, particles having a thermal conductivity of 20 W / m · K or more are preferably used as the thermally conductive particles. If such highly heat-conductive spacer particles are used, the heat conductivity of the electromagnetic wave absorbing composition is also improved, so that a heat conductive electromagnetic wave absorbing composition having both heat conducting performance and electromagnetic wave absorbing performance is obtained.

また、スペーサ粒子は、粒子径が50〜125μmで、電磁波吸収組成物全体に対する重量比で1〜10重量%含まれていると好ましい。粒子径が50μmを下回ると、二部材間に挟み込まれたときに確実に確保できる膜厚が50μmを下回ることになるので、十分な電磁波吸収効果が得られなくなるおそれがあり、粒子径が125μmを上回ると、過剰に粗大な粒子が混在することになり、塗工しづらくなる傾向が現れる。また、スペーサ粒子の含有量が1重量%を下回ると、スペーサ粒子の存在する密度が低下することから、確実なスペース(層厚)確保が困難になる傾向があり、含有量が10重量%を上回ると、これも塗工しづらくなる原因となる。   The spacer particles preferably have a particle diameter of 50 to 125 μm and are contained in an amount of 1 to 10% by weight with respect to the entire electromagnetic wave absorbing composition. If the particle diameter is less than 50 μm, the film thickness that can be surely secured when sandwiched between two members will be less than 50 μm, so there is a possibility that a sufficient electromagnetic wave absorption effect may not be obtained, and the particle diameter is 125 μm. If it exceeds the above range, excessively coarse particles will be mixed, and the tendency to be difficult to apply will appear. Further, if the content of the spacer particles is less than 1% by weight, the density at which the spacer particles are present decreases, so that it is difficult to ensure a reliable space (layer thickness), and the content is 10% by weight. If it exceeds, this will also be difficult to apply.

さらに、結合材は、電磁波吸収組成物全体をペースト状ないし粘土状の混合物とするための組成物である。ここで、ペースト状とは、例えばグリスのような性状を想定する用語であり、粘土状とは、例えば、パテ類のような性状を想定する用語であるが、要するに、液体ほど流動性はないものの、容易に塑性変形する不定形組成物を意図する用語である。結合材の具体的な組成については任意であるが、例えば、シリコーンオイル、ポリアルファオレフィン、ポリオールエステルなどの各種流動性有機材料を用いることができる。   Further, the binder is a composition for making the whole electromagnetic wave absorbing composition into a paste-like or clay-like mixture. Here, the paste form is a term assuming properties such as grease, and the clay shape is a term assuming properties such as putty, but in short, it is not as fluid as a liquid. However, it is a term intended for an amorphous composition that is easily plastically deformed. The specific composition of the binder is arbitrary, but various fluid organic materials such as silicone oil, polyalphaolefin, and polyol ester can be used.

混合物の粘度が低い場合は、公知の増粘剤を用いて粘度を最適化すればよく、また、損失材粒子として偏平状粒子を用いると、増粘剤を利用することなく粘度を高くすることもできる。この場合の偏平状の損失材粒子としては、長径が0.5〜50μmで、長径/短径の比が2〜30となる偏平状粒子を用いると好ましい。   When the viscosity of the mixture is low, the viscosity can be optimized using a known thickener. When flat particles are used as loss material particles, the viscosity can be increased without using a thickener. You can also. As the flat loss material particles in this case, it is preferable to use flat particles having a major axis of 0.5 to 50 μm and a major axis / minor axis ratio of 2 to 30.

このような偏平状粒子を用いれば、添加量を増減調整することにより、電磁波吸収組成物の粘性を所望の粘度に調整できるという特性があるので、電磁波吸収組成物の塗工を行うに当たって作業性のよい粘度に調整することができる。   By using such flat particles, there is a characteristic that the viscosity of the electromagnetic wave absorbing composition can be adjusted to a desired viscosity by adjusting the amount of addition, so workability in applying the electromagnetic wave absorbing composition It can be adjusted to a good viscosity.

さらに、電磁波吸収層の絶縁性を確保したい場合は、前記損失材粒子、前記スペーサ粒子、および前記結合材が、絶縁性材料であるとよい。このようにすれば、絶縁性能と電磁波吸収性能を兼ね備えた絶縁性電磁波吸収組成物となる。   Furthermore, when it is desired to ensure the insulation of the electromagnetic wave absorbing layer, the loss material particles, the spacer particles, and the binding material are preferably insulating materials. If it does in this way, it will become an insulating electromagnetic wave absorption composition which has insulation performance and electromagnetic wave absorption performance.

以上のように構成された電磁波吸収組成物によれば、二部材間に挟み込んだ際に、スペーサ粒子が二部材間に挟み込まれた時点で、それ以上は電磁波吸収層が薄くならず、少なくともスペーサ粒子の粒子径相当の厚さを確実に確保することができる。したがって、例えば、損失材粒子がフェライトのような脆性の高い材料からなる場合でも、損失材粒子の崩壊を伴って電磁波吸収層が過剰に薄くなってしまうようなことはなく、電磁波吸収層の厚さを容易にあらかじめ規定された最小厚以上の厚さとすることができる。   According to the electromagnetic wave absorbing composition configured as described above, when the spacer particles are sandwiched between the two members when sandwiched between the two members, the electromagnetic wave absorbing layer is not further thinned, and at least the spacer A thickness corresponding to the particle diameter of the particles can be reliably ensured. Therefore, for example, even when the lossy material particles are made of a highly brittle material such as ferrite, the electromagnetic wave absorption layer does not become excessively thin with the collapse of the lossy material particles, and the thickness of the electromagnetic wave absorption layer The thickness can be easily set to a thickness equal to or greater than a predetermined minimum thickness.

したがって、あらかじめ損失材粒子の配合量を電磁波吸収層の厚さを考慮して最適化しておけば、後は、簡単に電磁波吸収層の厚さを最適化できるので、所期の電磁波吸収性能を発揮する電磁波吸収層を簡単に得ることができる。   Therefore, if the amount of the lossy material particles is optimized in consideration of the thickness of the electromagnetic wave absorbing layer in advance, the thickness of the electromagnetic wave absorbing layer can be easily optimized thereafter, so that the desired electromagnetic wave absorbing performance can be achieved. An electromagnetic wave absorbing layer to be exhibited can be obtained easily.

すなわち、この電磁波吸収組成物によって形成される電磁波吸収層の電磁波吸収性能は、主に損失材粒子の配合量と電磁波吸収層の厚さに応じて決まるので、損失材粒子をある配合比で混合してある場合、所期の電磁波吸収性能を得るために必要な電磁波吸収層の最小厚を特定することができる。そして、電磁波吸収層の最小厚を特定できれば、二部材間に挟み込まれた際に前記最小厚以下まで潰れない硬さを有する粒子であって、その粒子径が前記最小厚以上の粒子を、スペーサ粒子として混合すれば、所期の電磁波吸収組成物を得ることができ、この電磁波吸収組成物であれば、単に二部材間に挟み込むだけで前記最小厚以上の厚さを有する電磁波吸収層を、容易かつ確実に形成できるのである。   That is, the electromagnetic wave absorption performance of the electromagnetic wave absorption layer formed by this electromagnetic wave absorption composition is determined mainly by the blending amount of the loss material particles and the thickness of the electromagnetic wave absorption layer, so the loss material particles are mixed at a certain blending ratio. In this case, the minimum thickness of the electromagnetic wave absorption layer necessary for obtaining the desired electromagnetic wave absorption performance can be specified. If the minimum thickness of the electromagnetic wave absorption layer can be specified, particles having hardness that does not collapse to the minimum thickness or less when sandwiched between two members, and particles having a particle diameter of the minimum thickness or more are used as spacers. If mixed as particles, the desired electromagnetic wave absorbing composition can be obtained.If this electromagnetic wave absorbing composition, an electromagnetic wave absorbing layer having a thickness of the minimum thickness or more simply by sandwiching between two members, It can be formed easily and reliably.

次に、本発明の実施形態について一例を挙げて説明する。
(1)製造例
損失材粒子であるフェライト粉末(平均粒子径:5μm、ビッカース硬度:5〜7GPa)85重量部と、スペーサ粒子である球状アルミナ粒子(平均粒子径:80μm、ビッカース硬度:14〜22GPa)5重量部と、結合材であるシリコーンオイル10重量部とを混合して、所期の電磁波吸収グリス(ペースト状組成物)を得た(実施例)。なお、得られた電磁波吸収グリスは、絶縁性のものである。
(2)膜厚変化試験
実施例の電磁波吸収グリスを、金属板に塗布して、別の金属板との間に挟み込んだところ、金属板間には、層の厚さが少なくとも80μmはある電磁波吸収層を形成することができた。また、さらに金属板に過大な荷重を加えても、電磁波吸収層の厚さにほとんど変化はなかった。
Next, an exemplary embodiment of the present invention will be described.
(1) Production Example 85 parts by weight of ferrite powder (average particle size: 5 μm, Vickers hardness: 5 to 7 GPa) as loss material particles and spherical alumina particles (average particle size: 80 μm, Vickers hardness: 14 to 14) as spacer particles 22 GPa) 5 parts by weight and 10 parts by weight of silicone oil as a binder were mixed to obtain an intended electromagnetic wave absorbing grease (paste-like composition) (Example). The obtained electromagnetic wave absorbing grease is insulative.
(2) Film thickness change test When the electromagnetic wave absorbing grease of the example was applied to a metal plate and sandwiched between another metal plate, an electromagnetic wave having a layer thickness of at least 80 μm between the metal plates. An absorption layer could be formed. Further, even when an excessive load was applied to the metal plate, the thickness of the electromagnetic wave absorbing layer was hardly changed.

比較のため、上記電磁波吸収グリスからスペーサ粒子のみを除いた試料(比較例)を用いて、同様に金属板間に挟み込んだところ、上記実施例の電磁波吸収グリスよりも層の厚さが薄くなった。また、さらに金属板に過大な荷重を加えたところ、層が押し潰されて、さらに薄くなった。
(3)透磁率測定
実施例の電磁波吸収グリスの透磁率を、インピーダンスアナライザー(アジレントテクノロジー株式会社製、4991A)で測定したところ、透磁率6.26(100MHz)であった。
(4)熱抵抗測定
実施例の電磁波吸収グリスの熱抵抗を測定した。熱抵抗の測定方法は、ASTM D5470に準拠した方法で実施した。その結果、熱抵抗は0.1℃/Wであった。
For comparison, when a sample (comparative example) obtained by removing only the spacer particles from the electromagnetic wave absorbing grease was used and sandwiched between metal plates in the same manner, the layer thickness became thinner than the electromagnetic wave absorbing grease of the above example. It was. Further, when an excessive load was applied to the metal plate, the layer was crushed and further thinned.
(3) Magnetic permeability measurement When the magnetic permeability of the electromagnetic wave absorption grease of the example was measured with an impedance analyzer (4991A, manufactured by Agilent Technologies, Inc.), the magnetic permeability was 6.26 (100 MHz).
(4) Thermal resistance measurement The thermal resistance of the electromagnetic wave absorption grease of an Example was measured. The measurement method of thermal resistance was implemented by the method based on ASTM D5470. As a result, the thermal resistance was 0.1 ° C./W.

以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
例えば、上記実施形態では、損失材粒子としてフェライト粉末を用いる旨を説明したが、このフェライト粉末の原料としては、Ni系フェライト磁性体、Mg系フェライト磁性体、Mn系フェライト磁性体、Ba系フェライト磁性体、Sr系フェライト磁性体などを任意に用いることができる。また、フェライト以外の磁性材料からなる損失材粒子を用いてもよく、例えば、Fe−Si合金、Fe−Ni合金、Fe−Co合金、Fe−Si−Al合金、Fe−Si−Cr合金、鉄などの粉末を用いてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
For example, in the above embodiment, it has been explained that ferrite powder is used as the lossy material particle, but as the raw material of this ferrite powder, Ni-based ferrite magnetic material, Mg-based ferrite magnetic material, Mn-based ferrite magnetic material, Ba-based ferrite are used. A magnetic material, a Sr ferrite magnetic material, etc. can be used arbitrarily. Further, loss material particles made of a magnetic material other than ferrite may be used. For example, Fe-Si alloy, Fe-Ni alloy, Fe-Co alloy, Fe-Si-Al alloy, Fe-Si-Cr alloy, iron A powder such as may be used.

また、上記実施形態では、特定の粒子径の損失材粒子を特定の量だけ配合する例を示したが、損失材粒子の粒子径は0.5〜50μm程度のものであれば好適に用いることができ、配合量は、電磁波吸収組成物全体に対する重量比で1〜90重量%程度にすると好適である。   Moreover, in the said embodiment, although the example which mix | blends the loss material particle of a specific particle diameter only a specific amount was shown, if the particle diameter of a loss material particle is about 0.5-50 micrometers, it will use suitably. The blending amount is preferably about 1 to 90% by weight with respect to the whole electromagnetic wave absorbing composition.

また、上記実施形態では、スペーサ粒子として球状アルミナ粒子を例示したが、この他、AlN、BN、SiC、MgO、B4C、Si34、Al(OH)3、Mg(OH)2などの粒子、熱伝導率20W/m・K以上の材料からなる粒子を用いることもできる。これら熱伝導性の高いスペーサ粒子を利用すれば、電磁波吸収組成物の熱伝導率が向上するので、熱伝導性能と電磁波吸収性能を兼ね備えた熱伝導性電磁波吸収組成物となる。 In the above embodiment, spherical alumina particles are exemplified as the spacer particles. In addition, AlN, BN, SiC, MgO, B 4 C, Si 3 N 4 , Al (OH) 3 , Mg (OH) 2, etc. And particles made of a material having a thermal conductivity of 20 W / m · K or higher can also be used. If these spacer particles having high thermal conductivity are used, the thermal conductivity of the electromagnetic wave absorbing composition is improved, so that a thermally conductive electromagnetic wave absorbing composition having both thermal conductive performance and electromagnetic wave absorbing performance is obtained.

また、上記実施形態では、特定の粒子径のスペーサ粒子を特定の量だけ配合する例を示したが、スペーサ粒子の粒子径は50〜125μm程度のものであれば好適であり、配合量は、電磁波吸収組成物全体に対する重量比で1〜10重量%程度にすると好適である。   Moreover, in the said embodiment, although the example which mix | blends spacer particle | grains of a specific particle diameter only a specific quantity was shown, if the particle diameter of a spacer particle | grain is about 50-125 micrometers, it is suitable, and the compounding quantity is A weight ratio of about 1 to 10% by weight with respect to the entire electromagnetic wave absorbing composition is preferred.

さらに、上記実施形態では、結合材としてシリコーンオイルを例示したが、シリコーンオイルの代わりに、ポリアルファオレフィン、ポリオールエステルなどの各種流動性有機材料を用いることができる。   Furthermore, in the said embodiment, although silicone oil was illustrated as a binder, various fluid organic materials, such as a poly alpha olefin and a polyol ester, can be used instead of silicone oil.

加えて、損失材粒子として、長径が0.5〜50μmで、長径/短径の比が2〜30となる偏平状粒子を用いれば、添加量を増減調整することにより、電磁波吸収組成物の粘性を所望の粘度に調整できるという特性があるので、電磁波吸収組成物の塗工を行うに当たって作業性のよい粘度に調整することができる。
In addition, as the lossy material particles, if the flat particles having a major axis of 0.5 to 50 μm and a major axis / minor axis ratio of 2 to 30 are used, the addition amount is adjusted to increase or decrease the amount of the electromagnetic wave absorbing composition. Since there is a characteristic that the viscosity can be adjusted to a desired viscosity, the viscosity can be adjusted to a good workability when coating the electromagnetic wave absorbing composition.

Claims (7)

二部材間に挟み込まれた際に、あらかじめ規定された最小厚以上の厚さを有する電磁波吸収層を形成可能な電磁波吸収組成物であって、
磁性材料からなる粒子であり、その粒子径が前記最小厚以下の損失材粒子と、
前記二部材間に挟み込まれた際に前記最小厚以下まで潰れない硬さを有する粒子であり、その粒子径が前記最小厚以上のスペーサ粒子と、
前記損失材粒子および前記スペーサ粒子が混合されて、前記損失材粒子および前記スペーサ粒子とともにペースト状ないし粘土状の混合物となる結合材と
を含有することを特徴とする電磁波吸収組成物。
When sandwiched between two members, an electromagnetic wave absorbing composition capable of forming an electromagnetic wave absorbing layer having a thickness equal to or greater than a predetermined minimum thickness,
A particle made of a magnetic material, the particle diameter of the loss material particles less than the minimum thickness,
Particles having hardness that does not crush to the minimum thickness or less when sandwiched between the two members, the spacer particles having a particle diameter of the minimum thickness or more,
An electromagnetic wave absorbing composition comprising: the lossy material particles and the spacer particles mixed together to form a paste or clay-like mixture together with the lossy material particles and the spacer particles.
前記スペーサ粒子は、前記損失材粒子および前記結合材よりも高い熱伝導性を有する熱伝導性粒子である
ことを特徴とする請求項1記載の電磁波吸収組成物。
The electromagnetic wave absorbing composition according to claim 1, wherein the spacer particles are heat conductive particles having higher heat conductivity than the loss material particles and the binder.
前記スペーサ粒子は、粒子径が50〜125μmで、電磁波吸収組成物全体に対する重量比で1〜10重量%含まれている
ことを特徴とする請求項1または請求項2に記載の電磁波吸収組成物。
The electromagnetic wave absorbing composition according to claim 1, wherein the spacer particles have a particle diameter of 50 to 125 μm and are contained in an amount of 1 to 10% by weight with respect to the entire electromagnetic wave absorbing composition. .
前記損失材粒子は、粒子径が0.5〜50μmで、電磁波吸収組成物全体に対する重量比で1〜90重量%含まれている
ことを特徴とする請求項1〜請求項3のいずれかに記載の電磁波吸収組成物。
The loss material particles have a particle diameter of 0.5 to 50 µm and are contained in an amount of 1 to 90% by weight with respect to the entire electromagnetic wave absorbing composition. The electromagnetic wave absorbing composition as described.
二部材間に挟み込まれた際に、厚さ50μm以上の電磁波吸収層を形成可能な電磁波吸収組成物であって、
磁性材料からなる粒子であり、その粒子径が0.5〜50μmで、電磁波吸収組成物全体に対する重量比で1〜90重量%含まれている損失材粒子と、
前記二部材間に挟み込まれた際に前記最小厚以下まで潰れない硬さを有する粒子であり、その粒子径が50〜125μmで、電磁波吸収組成物全体に対する重量比で1〜10重量%含まれているスペーサ粒子と、
前記損失材粒子および前記スペーサ粒子が混合されて、前記損失材粒子および前記スペーサ粒子とともにペースト状ないし粘土状の混合物となる結合材と
を含有することを特徴とする電磁波吸収組成物。
An electromagnetic wave absorbing composition capable of forming an electromagnetic wave absorbing layer having a thickness of 50 μm or more when sandwiched between two members,
Loss material particles that are particles made of a magnetic material and have a particle diameter of 0.5 to 50 μm and are contained in an amount of 1 to 90% by weight with respect to the entire electromagnetic wave absorbing composition
Particles having hardness that does not crush to the minimum thickness or less when sandwiched between the two members, the particle diameter is 50 to 125 μm, and 1 to 10% by weight is included in the weight ratio with respect to the entire electromagnetic wave absorbing composition. Spacer particles,
An electromagnetic wave absorbing composition comprising: the lossy material particles and the spacer particles mixed together to form a paste or clay-like mixture together with the lossy material particles and the spacer particles.
前記損失材粒子は、長径が0.5〜50μmで、長径/短径の比が2〜30となる偏平状粒子である
ことを特徴とする請求項4または請求項5に記載の電磁波吸収組成物。
The electromagnetic wave absorbing composition according to claim 4 or 5, wherein the lossy material particles are flat particles having a major axis of 0.5 to 50 µm and a major axis / minor axis ratio of 2 to 30. object.
前記損失材粒子、前記スペーサ粒子、および前記結合材が、絶縁性材料である
ことを特徴とする請求項1〜請求項6のいずれかに記載の電磁波吸収組成物。
The electromagnetic wave absorbing composition according to claim 1, wherein the loss material particles, the spacer particles, and the binding material are insulating materials.
JP2004302012A 2004-10-15 2004-10-15 Electromagnetic wave absorbing structure Active JP4346536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302012A JP4346536B2 (en) 2004-10-15 2004-10-15 Electromagnetic wave absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302012A JP4346536B2 (en) 2004-10-15 2004-10-15 Electromagnetic wave absorbing structure

Publications (2)

Publication Number Publication Date
JP2006114778A true JP2006114778A (en) 2006-04-27
JP4346536B2 JP4346536B2 (en) 2009-10-21

Family

ID=36383027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302012A Active JP4346536B2 (en) 2004-10-15 2004-10-15 Electromagnetic wave absorbing structure

Country Status (1)

Country Link
JP (1) JP4346536B2 (en)

Also Published As

Publication number Publication date
JP4346536B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
EP3172734B1 (en) Thermal interface material with mixed aspect ratio particle dispersions
JP5133338B2 (en) Composite filler for resin mixing
JP2001503471A (en) Conductive resin composition
JP2007153969A (en) Highly heat-conductive resin composition and substrate for wiring
Zhou et al. Mechanical and microwave‐absorption properties of Si3N4 ceramic with SiCNFs fillers
CN103254647A (en) Heat-conductive gap interface material and preparation method thereof
CN101800104A (en) Electromagnetic wave suppresses and heat transmission synthetic and manufacture method thereof
Liu et al. Improved magnetic and electromagnetic absorption properties of xSrFe12O19/(1− x) NiFe2O4 composites
WO2019031458A1 (en) Low-dielectric-constant thermally-conductive heat dissipation member
EP3595004B1 (en) Thermally conductive composition
JP2005054099A (en) Thermally conductive grease
JP4746803B2 (en) Thermally conductive electromagnetic shielding sheet
JP4014454B2 (en) Resin composition, method for producing the same, and heat radiating member
JP7456572B2 (en) Silicone composition and hardening grease
JP4346536B2 (en) Electromagnetic wave absorbing structure
WO2021039477A1 (en) Electromagnetic wave absorbing material
Chen et al. Bonding microwave absorbing ferrites to thermal conducting copper
JP2005347449A (en) Soft magnetic powder and application thereof
JP7036984B2 (en) Resin material and laminate
JP2022081566A (en) Resin material and laminate
JP2005170971A (en) Grease
WO2010004996A1 (en) Heat-conductive noise suppression sheet
KR101864505B1 (en) Silicone composition having excellent heat-radiating function
WO2011101989A1 (en) Thermally conductive sheet
EP4303270A1 (en) Soft heat-conducting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Ref document number: 4346536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250