JP2006114458A - Cooling device for fuel cell - Google Patents

Cooling device for fuel cell Download PDF

Info

Publication number
JP2006114458A
JP2006114458A JP2004303387A JP2004303387A JP2006114458A JP 2006114458 A JP2006114458 A JP 2006114458A JP 2004303387 A JP2004303387 A JP 2004303387A JP 2004303387 A JP2004303387 A JP 2004303387A JP 2006114458 A JP2006114458 A JP 2006114458A
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
temperature
supply
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303387A
Other languages
Japanese (ja)
Inventor
Atsushi Aoki
敦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004303387A priority Critical patent/JP2006114458A/en
Publication of JP2006114458A publication Critical patent/JP2006114458A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily start a fuel cell and reduce the electric power consumption of a cooling medium pump when starting the fuel cell or stopping the driving thereof. <P>SOLUTION: When stopping the driving of the fuel cell 1, the air communication hole of an air vent valve 4 is closed to discharge a cooling medium from the fuel cell 1 to a storage tank 9 using a supply and drain pump 8. The temperature of the inside of the fuel cell 1 is still relatively high so that the cooling medium is discharge into the storage tank 9 while the vapor pressure of the cooling medium is still high. If the temperature is lowered when starting, the vapor pressure of the cooling medium in the fuel cell 1 is lowered, so that the electric power consumption of the supply and drain pump 8 is reduced when the cooling medium is supplied from the storage tank 9 to the fuel cell 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用冷却装置に関する。   The present invention relates to a fuel cell cooling apparatus.

燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。すなわち、燃料電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、排出物質は水だけであるという究極のクリーン車両である。   In a fuel cell, a fuel gas such as hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted through an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, a polymer electrolyte fuel cell using a polymer electrolyte has attracted attention as a power source for electric vehicles because of its low operating temperature and easy handling. That is, a fuel cell vehicle is equipped with a hydrogen storage device such as a high-pressure hydrogen tank, a liquid hydrogen tank, or a hydrogen storage alloy tank in the vehicle, and reacts by supplying hydrogen supplied therefrom and air containing oxygen to the fuel cell. This is the ultimate clean vehicle that drives the motor connected to the drive wheels with the electric energy extracted from the fuel cell, and the only exhaust material is water.

固体高分子型燃料電池では、発電の電気化学反応により水素と酸素から水が生成されるため、運転停止後に氷点下で放置されると燃料電池内部に残留する水が凍結してガス流路を閉塞し、再始動が困難になる。   In polymer electrolyte fuel cells, water is generated from hydrogen and oxygen by the electrochemical reaction of power generation, so water left inside the fuel cell freezes and closes the gas flow path when left under freezing after shutdown. And restarting becomes difficult.

この対策としては、燃料電池の熱容量を低減し、起動の際に燃料電池の昇温を早めることで氷を融解することが考えられる。具体策としては、特許文献1や特許文献2にあるように、燃料電池の停止動作中に冷却液を燃料電池の外部へ排出し、停止中は燃料電池外部のタンクに冷媒を貯蔵しておき、燃料電池の起動後に冷媒を燃料電池内に供給する方法がある。通常は、燃料電池を構成するカーボン、金属等の部材よりも比熱の大きい液体が一般的に冷媒として使用されているため、この方法によれば起動中の燃料電池の熱容量を低減することができる。
特公平07−099698号公報(第3頁、図1) 特開2003−331894号公報(第4頁、図1)
As a countermeasure, it is conceivable to melt the ice by reducing the heat capacity of the fuel cell and by increasing the temperature of the fuel cell at the time of start-up. As specific measures, as disclosed in Patent Document 1 and Patent Document 2, the coolant is discharged to the outside of the fuel cell during the stop operation of the fuel cell, and the refrigerant is stored in a tank outside the fuel cell during the stop. There is a method of supplying the refrigerant into the fuel cell after the fuel cell is started. Normally, a liquid having a specific heat higher than that of carbon, metal, or the like constituting the fuel cell is generally used as a refrigerant. Therefore, according to this method, the heat capacity of the activated fuel cell can be reduced. .
Japanese Patent Publication No. 07-099698 (page 3, Fig. 1) JP 2003-331894 A (page 4, FIG. 1)

しかしながら、上記従来の燃料電池システムでは、燃料電池から冷媒の排出や供給の際に冷媒をポンプ等で圧送する必要があり、燃料電池から十分な電力を取り出せない燃料電池の起動や停止の過程において補機負荷が高まる。したがって、燃料電池による電力を補うために二次電池等を備えていても、低温では二次電池等による電力の供給も困難になるため、氷点下においては外気温の低下につれて、燃料電池が起動できない場合が生じるという問題点があった。   However, in the above-described conventional fuel cell system, it is necessary to pump the refrigerant with a pump or the like when the refrigerant is discharged or supplied from the fuel cell, and in the process of starting or stopping the fuel cell where sufficient power cannot be taken out from the fuel cell. Auxiliary machinery load increases. Therefore, even if a secondary battery or the like is provided to supplement the power from the fuel cell, it is difficult to supply power from the secondary battery or the like at a low temperature. There was a problem that a case occurred.

また、燃料電池内冷媒通路に凹凸があると、冷媒を燃料電池内に供給する際に冷媒通路内に空気が残留する部分ができてしまう。冷媒配管内に空気が残留すると、熱伝達量が低下して燃料電池の冷却が困難になるため、熱による燃料電池の劣化が進行してしまうという問題点があった。   Further, if the refrigerant passage in the fuel cell is uneven, a portion where air remains in the refrigerant passage when the refrigerant is supplied into the fuel cell. If air remains in the refrigerant pipe, the amount of heat transfer is reduced and it becomes difficult to cool the fuel cell, which causes a problem of deterioration of the fuel cell due to heat.

上記問題点を解決するため、本発明は、冷媒の燃料電池内からの排出と燃料電池内への供給を行う手段と、冷媒と大気とを連通させるための開閉機構とを備えた燃料電池用冷却装置であって、前記開閉機構を閉じた状態で冷媒の燃料電池内からの排出と冷媒の燃料電池内への供給を行うこと、および冷媒の燃料電池内への供給を燃料電池の温度が冷媒排出の際の燃料電池の温度よりも低い状態で行うことを要旨とする燃料電池用冷却装置である。   In order to solve the above-mentioned problems, the present invention provides a fuel cell device comprising means for discharging refrigerant from the fuel cell and supplying the refrigerant into the fuel cell, and an opening / closing mechanism for communicating the refrigerant with the atmosphere. A cooling device that discharges the refrigerant from the fuel cell and supplies the refrigerant into the fuel cell with the opening and closing mechanism closed; and supplies the refrigerant into the fuel cell at a temperature of the fuel cell. The fuel cell cooling apparatus is characterized in that the cooling is performed in a state lower than the temperature of the fuel cell when the refrigerant is discharged.

本発明によれば、燃料電池の冷媒配管に冷媒を供給する際に、冷媒配管内は負圧となるため、冷媒供給手段の負荷を軽減しつつ、冷媒配管中への空気の残留を抑制することができるという効果がある。   According to the present invention, when the refrigerant is supplied to the refrigerant pipe of the fuel cell, the refrigerant pipe has a negative pressure, so that the load on the refrigerant supply means is reduced and the residual air in the refrigerant pipe is suppressed. There is an effect that can be.

次に、図面を参照して本発明の実施の形態を詳細に説明する。尚、以下に説明する各実施例は、特に限定されないが燃料電池車両に好適な実施例である。   Next, embodiments of the present invention will be described in detail with reference to the drawings. In addition, although each Example described below is not specifically limited, it is an Example suitable for a fuel cell vehicle.

図1は、本発明に係る燃料電池用冷却装置の実施例1の構成を説明する概略構成図である。図1において、燃料電池1は冷却対象の燃料電池であり、例えば、固体高分子電解質型燃料電池である。燃料電池1の内部には、図示しない冷媒流路が設けられ、発電に伴う反応熱や燃料電池1の内部抵抗によるジュール熱を冷媒流路に流れる冷媒により冷却可能となっている。   FIG. 1 is a schematic configuration diagram illustrating a configuration of a first embodiment of a cooling device for a fuel cell according to the present invention. In FIG. 1, a fuel cell 1 is a fuel cell to be cooled, for example, a solid polymer electrolyte fuel cell. A refrigerant flow path (not shown) is provided inside the fuel cell 1 so that reaction heat accompanying power generation and Joule heat due to internal resistance of the fuel cell 1 can be cooled by the refrigerant flowing through the refrigerant flow path.

この冷媒は、氷点下でも凍結しない冷媒であり、たとえば、精製水にエチレングリコール等の凍結温度低下剤を添加したものである。冷媒のエチレングリコール濃度を調整することにより、冷媒として使用可能な下限温度を制御することができる。   This refrigerant is a refrigerant that does not freeze even below freezing point. For example, it is obtained by adding a freezing temperature reducing agent such as ethylene glycol to purified water. By adjusting the ethylene glycol concentration of the refrigerant, the lower limit temperature that can be used as the refrigerant can be controlled.

尚、燃料電池1に燃料ガス及び酸化剤ガスを供給するガス供給系は、本発明の主旨と直接関係がないので、図示を省略してある。   A gas supply system that supplies fuel gas and oxidant gas to the fuel cell 1 is not directly related to the gist of the present invention, and is not shown.

ラジエータ2は、冷媒の熱を系外へ放熱する熱交換器であり、図示しないラジエータファンを設けてもよい。冷媒循環用ポンプ3は、燃料電池1とラジエータ2との間で冷媒を循環させるポンプである。空気抜きバルブ4は、冷媒循環路から空気抜きを行うためのバルブであるとともに、燃料電池1から冷媒を抜き取るときに、冷媒循環路を密閉するバルブである。循環路バルブ5は、冷媒循環路を開閉するバルブである。温度センサ6は燃料電池の温度を測定するためのセンサである。給排路バルブ7は、燃料電池1から冷媒を排出したり燃料電池1へ冷媒を供給するバルブである。給排ポンプ8は、冷媒の供給排出用のポンプである。貯蔵タンク9は、燃料電池1から排出した冷媒を貯蔵するためのタンクである。冷媒量センサ10は貯蔵タンク9中の冷媒の量を測定するセンサである。   The radiator 2 is a heat exchanger that dissipates heat of the refrigerant outside the system, and a radiator fan (not shown) may be provided. The refrigerant circulation pump 3 is a pump that circulates the refrigerant between the fuel cell 1 and the radiator 2. The air vent valve 4 is a valve for venting air from the refrigerant circulation path, and is a valve for sealing the refrigerant circulation path when the refrigerant is withdrawn from the fuel cell 1. The circulation path valve 5 is a valve that opens and closes the refrigerant circulation path. The temperature sensor 6 is a sensor for measuring the temperature of the fuel cell. The supply / discharge passage valve 7 is a valve that discharges the refrigerant from the fuel cell 1 or supplies the refrigerant to the fuel cell 1. The supply / discharge pump 8 is a pump for supplying and discharging refrigerant. The storage tank 9 is a tank for storing the refrigerant discharged from the fuel cell 1. The refrigerant amount sensor 10 is a sensor that measures the amount of refrigerant in the storage tank 9.

コントローラ20は、温度センサ6の検出値、及び冷媒量センサ10の検出値に基づいて、循環ポンプ3,給排ポンプ8,空気抜きバルブ4,循環路バルブ5,及び給排路バルブ7を制御することにより、燃料電池1からの冷媒の排出、燃料電池1への冷媒の供給、及び冷媒の循環の制御を行う制御装置である。   The controller 20 controls the circulation pump 3, the supply / discharge pump 8, the air vent valve 4, the circulation path valve 5, and the supply / discharge path valve 7 based on the detection value of the temperature sensor 6 and the detection value of the refrigerant amount sensor 10. Thus, the control device controls the discharge of the refrigerant from the fuel cell 1, the supply of the refrigerant to the fuel cell 1, and the circulation of the refrigerant.

尚、特に限定されないが、本実施例では、コントローラ20は、CPU、プログラムROM、作業用RAM、及び入出力インタフェースを備えたマイクロプロセッサで構成されている。   Although not particularly limited, in this embodiment, the controller 20 is composed of a CPU, a program ROM, a working RAM, and a microprocessor having an input / output interface.

図2(a)は燃料電池運転停止プロセス中の冷媒処理を示すフローチャートである。このフローチャートが始まるときの初期状態は、燃料電池1への燃料ガス及び酸化剤ガスの供給を停止し、発電停止している状態であり、循環ポンプ3が運転中、給排ポンプ8は停止、空気抜き弁4は、外気と冷媒流路を遮断しているとともに、図中左右方向へ冷媒循環路を開いているものとする。また、循環路バルブ5は開状態、給排路バルブ7は閉状態である。   FIG. 2A is a flowchart showing the refrigerant process during the fuel cell operation stop process. The initial state when this flowchart starts is a state in which the supply of fuel gas and oxidant gas to the fuel cell 1 is stopped and power generation is stopped. The circulation pump 3 is in operation and the supply / discharge pump 8 is stopped. It is assumed that the air vent valve 4 blocks the outside air and the refrigerant flow path and opens the refrigerant circulation path in the left-right direction in the drawing. Further, the circulation path valve 5 is in an open state, and the supply / discharge path valve 7 is in a closed state.

図2(a)の停止プロセス中の冷媒処理において、まず、ステップ(以下、ステップをSと略す)10で、温度センサ6が検出した燃料電池温度が所定の冷却終了温度(例えば、70〔℃〕)を下回ったか否かが判定される。燃料電池温度が冷却終了温度以上であれば、S10へ戻って、冷却待ちを行う。   In the refrigerant processing in the stop process of FIG. 2A, first, in step (hereinafter, step is abbreviated as S) 10, the fuel cell temperature detected by the temperature sensor 6 is a predetermined cooling end temperature (for example, 70 [° C. ]) Or less is determined. If the fuel cell temperature is equal to or higher than the cooling end temperature, the process returns to S10 and waits for cooling.

S10の判定で、燃料電池温度が所定の冷却終了温度未満まで低下していれば、S12へ進み、循環ポンプ3を停止させる。この冷却停止温度は、冷媒の循環を停止しても燃料電池1の内部の残留熱による高分子電解質膜の温度が耐熱温度を超えない温度とし、実機により実験的に決定して、コントローラ20に記憶させておくものとする。次いで、S14で、冷媒循環路上の空気抜きバルブ4を3方向に対して閉じるとともに、循環路バルブ5を閉じる。   If it is determined in S10 that the fuel cell temperature has fallen below the predetermined cooling end temperature, the process proceeds to S12 and the circulation pump 3 is stopped. The cooling stop temperature is a temperature at which the temperature of the polymer electrolyte membrane due to the residual heat inside the fuel cell 1 does not exceed the heat resistance temperature even if the circulation of the refrigerant is stopped. It shall be remembered. Next, in S14, the air vent valve 4 on the refrigerant circuit is closed in three directions, and the circuit valve 5 is closed.

その後、S16で給排路バルブ7を開き、S18で冷媒給排用の給排ポンプ8の運転を開始する。この際、給排ポンプ8は、冷媒を燃料電池1から貯蔵タンク9へ送る方向に作動させる。給排ポンプ8の運転中は、貯蔵タンク9中の冷媒量センサ10により貯蔵タンク9中の冷媒の量を監視する。   Thereafter, the supply / discharge passage valve 7 is opened in S16, and the operation of the supply / discharge pump 8 for supplying and discharging the refrigerant is started in S18. At this time, the supply / discharge pump 8 is operated in a direction to send the refrigerant from the fuel cell 1 to the storage tank 9. During operation of the supply / discharge pump 8, the amount of refrigerant in the storage tank 9 is monitored by the refrigerant amount sensor 10 in the storage tank 9.

次いで、S20で、貯蔵タンク9内の冷媒量が燃料電池1内の冷媒のほぼ全量が排出されたと判断される所定の量に達したら、S22へ進み、給排路バルブ7を閉じ、S24で給排ポンプ8を停止し、停止プロセス中の冷媒処理を終了する。   Next, when the amount of refrigerant in the storage tank 9 reaches a predetermined amount at which it is determined in S20 that almost all of the refrigerant in the fuel cell 1 has been discharged, the process proceeds to S22, the supply / discharge passage valve 7 is closed, and in S24 The supply / discharge pump 8 is stopped, and the refrigerant process in the stop process is ended.

図2(b)は、燃料電池の起動プロセス中の冷媒処理を示すフローチャートである。このフローチャートが始まるときの初期状態は、循環ポンプ3及び給排ポンプ8は停止、空気抜き弁4は、3方向へ閉じているとともに、循環路バルブ5及び給排路バルブ7は閉状態である。また、燃料電池1は、燃料ガスと酸化剤ガスとが供給され、発電を開始し、反応熱で燃料電池1の温度が上昇し始めている状態である。   FIG. 2B is a flowchart showing the refrigerant processing during the fuel cell startup process. The initial state when this flowchart starts is that the circulation pump 3 and the supply / discharge pump 8 are stopped, the air vent valve 4 is closed in three directions, and the circulation path valve 5 and the supply / discharge path valve 7 are closed. The fuel cell 1 is in a state where fuel gas and oxidant gas are supplied, power generation is started, and the temperature of the fuel cell 1 is starting to rise due to reaction heat.

図2(b)の起動プロセス中の冷媒処理では、まず、S30において、温度センサ6が検出した燃料電池温度が所定の冷却開始温度(例えば、20〔℃〕)以上か否かを判定する。この冷却開始温度は、図2(a)のS10における冷却終了温度(例えば、70〔℃〕)より低い温度であり、且つ、燃料電池1が継続して発電可能と判断される温度で、実機により実験的に決定して、コントローラ20に記憶させておくものとする。   In the refrigerant process during the startup process in FIG. 2B, first, in S30, it is determined whether or not the fuel cell temperature detected by the temperature sensor 6 is equal to or higher than a predetermined cooling start temperature (for example, 20 [° C.]). This cooling start temperature is lower than the cooling end temperature (for example, 70 [° C.]) in S10 of FIG. 2A, and is a temperature at which it is determined that the fuel cell 1 can continuously generate power. Is experimentally determined and stored in the controller 20.

S30の判定で、燃料電池温度が冷却開始温度未満であれば、S30へ戻る。S30の判定で、燃料電池温度が冷却開始温度以上であれば、S32へ進み、給排路バルブ7を開く。次いでS34で、給排ポンプ8を運転して、貯蔵タンク9から燃料電池1へ冷媒を供給する。この際の給排ポンプ8の運転方向は、冷媒を貯蔵タンク9から燃料電池1へ送る方向である。給排ポンプ8の運転中は、貯蔵タンク9中の冷媒量を冷媒量センサ10により監視する。   If it is determined in S30 that the fuel cell temperature is lower than the cooling start temperature, the process returns to S30. If it is determined in S30 that the fuel cell temperature is equal to or higher than the cooling start temperature, the process proceeds to S32 and the supply / discharge path valve 7 is opened. Next, in S <b> 34, the supply / discharge pump 8 is operated to supply the refrigerant from the storage tank 9 to the fuel cell 1. The operation direction of the supply / discharge pump 8 at this time is a direction in which the refrigerant is sent from the storage tank 9 to the fuel cell 1. During the operation of the supply / discharge pump 8, the refrigerant amount in the storage tank 9 is monitored by the refrigerant amount sensor 10.

次いで、S36で、冷媒量センサ10が検出した貯蔵タンク9内の冷媒量が燃料電池1内が冷媒でほぼ満たされたと判断される所定量(最小量)に達したら、S38で給排路バルブ7を閉じ、S40で給排ポンプ8を停止する。その後、S42で循環路バルブ4および空気抜きバルブ5を開き、S44で循環ポンプ3の運転を開始する。   Next, when the refrigerant amount in the storage tank 9 detected by the refrigerant amount sensor 10 reaches a predetermined amount (minimum amount) that is determined that the fuel cell 1 is almost filled with the refrigerant in S36, the supply / exhaust passage valve in S38. 7 is closed and the supply / discharge pump 8 is stopped in S40. Thereafter, the circulation path valve 4 and the air vent valve 5 are opened in S42, and the operation of the circulation pump 3 is started in S44.

上記の燃料電池1から冷媒を排出する動作の開始から、燃料電池停止期間中、及び冷媒を貯蔵タンク9から燃料電池1へ供給完了するまでは、冷媒循環路上の空気抜きバルブ4は、大気に対して冷媒を密閉する状態にしておく。ただし、密閉の程度については、本実施例の効果に低下があるものの、完全でなくともよい。   From the start of the operation of discharging the refrigerant from the fuel cell 1 until the fuel cell is stopped and until the supply of the refrigerant from the storage tank 9 to the fuel cell 1 is completed, the air vent valve 4 on the refrigerant circuit is connected to the atmosphere. Keep the refrigerant sealed. However, the degree of sealing need not be complete although the effect of the present embodiment is reduced.

以上説明したように、本実施例によれば、燃料電池内部の冷媒流路に冷媒を供給する際に、燃料電池内の冷媒流路の温度が冷媒排出時より低く、すなわち冷媒の蒸気圧が低いために、冷媒流路内が負圧となり、貯蔵タンクから燃料電池へ冷媒を供給する給排ポンプの負荷を軽減してその消費電力を低減しつつ、冷媒流路中への空気の残留を抑制することができるという効果がある。   As described above, according to the present embodiment, when the refrigerant is supplied to the refrigerant flow path inside the fuel cell, the temperature of the refrigerant flow path in the fuel cell is lower than when the refrigerant is discharged, that is, the vapor pressure of the refrigerant is reduced. Therefore, the pressure inside the refrigerant flow path becomes negative, reducing the load on the supply / discharge pump that supplies the refrigerant from the storage tank to the fuel cell, reducing its power consumption, and reducing the air remaining in the refrigerant flow path. There is an effect that it can be suppressed.

次に、本発明に係る燃料電池用冷却装置の実施例2を説明する。実施例2の構成は、図1に示した実施例1の構成と同様である。また、実施例2における燃料電池の起動プロセス中の冷媒処理制御については、図2(b)に示した実施例1と同様である。   Next, Embodiment 2 of the fuel cell cooling apparatus according to the present invention will be described. The configuration of the second embodiment is the same as that of the first embodiment shown in FIG. Further, the refrigerant processing control during the start-up process of the fuel cell in the second embodiment is the same as that in the first embodiment shown in FIG.

実施例1の図2(a)の停止プロセス中の冷媒処理制御では、事前に燃料電池の発電を停止していたが、本実施例では、燃料電池の停止プロセスにおいて、燃料電池1の発電は継続させるが発電量を減少させる動作をまず行う。その後は、実施例1と同様の動作を行う。最後に、燃料電池1から冷媒を排出する給排ポンプ8が停止してから、燃料電池1の発電を停止する。   In the refrigerant processing control during the stop process in FIG. 2A of the first embodiment, the power generation of the fuel cell is stopped in advance, but in this embodiment, the power generation of the fuel cell 1 is performed in the stop process of the fuel cell. First, the operation to reduce the power generation amount is performed. Thereafter, the same operation as in the first embodiment is performed. Finally, after the supply / discharge pump 8 that discharges the refrigerant from the fuel cell 1 is stopped, the power generation of the fuel cell 1 is stopped.

図3は、実施例2における燃料電池停止プロセス中の冷媒処理制御フローチャートである。このフローチャートが始まるときの初期状態は、循環ポンプ3が運転中、給排ポンプ8は停止、空気抜き弁4は、外気と冷媒流路を遮断しているとともに、図中左右方向へ冷媒循環路を開いているものとする。また、循環路バルブ5は開状態、給排路バルブ7は閉状態である。   FIG. 3 is a refrigerant process control flowchart in the fuel cell stop process according to the second embodiment. The initial state when this flow chart is started is that the circulation pump 3 is in operation, the supply / discharge pump 8 is stopped, the air vent valve 4 shuts off the outside air and the refrigerant flow path, and the refrigerant circulation path in the left-right direction in the figure. It shall be open. Further, the circulation path valve 5 is in an open state, and the supply / discharge path valve 7 is in a closed state.

まず、図3のS50において、燃料電池の発電量を低減する。これには、燃料電池1に供給する燃料ガス及び酸化剤ガスの圧力及び流量を低減する。この低減の程度は、例えば、循環ポンプ3または給排ポンプ8の駆動に必要な電力を燃料電池1の発電電力によって賄える程度とする。   First, in S50 of FIG. 3, the power generation amount of the fuel cell is reduced. For this purpose, the pressure and flow rate of the fuel gas and oxidant gas supplied to the fuel cell 1 are reduced. The degree of this reduction is, for example, such that the power necessary for driving the circulation pump 3 or the supply / discharge pump 8 can be covered by the generated power of the fuel cell 1.

次いで、S52で、温度センサ6が検出した燃料電池温度が所定の冷却終了温度を下回ったか否かが判定される。燃料電池温度が冷却終了温度以上であれば、S52へ戻って、冷却待ちを行う。   Next, in S52, it is determined whether or not the fuel cell temperature detected by the temperature sensor 6 has fallen below a predetermined cooling end temperature. If the fuel cell temperature is equal to or higher than the cooling end temperature, the process returns to S52 to wait for cooling.

S52の判定で、燃料電池温度が所定の冷却終了温度未満まで低下していれば、S54へ進み、循環ポンプ3を停止させる。この冷却停止温度は、冷媒の循環を停止しても燃料電池1の内部の残留熱による高分子電解質膜の温度が耐熱温度を超えない温度とし、実機により実験的に決定して、コントローラ20に記憶させておくものとする。次いで、S56で、冷媒循環路上の空気抜きバルブ4を3方向に対して閉じるとともに、循環路バルブ5を閉じる。   If it is determined in S52 that the fuel cell temperature has fallen below the predetermined cooling end temperature, the process proceeds to S54 and the circulation pump 3 is stopped. The cooling stop temperature is a temperature at which the temperature of the polymer electrolyte membrane due to the residual heat inside the fuel cell 1 does not exceed the heat resistance temperature even if the circulation of the refrigerant is stopped. It shall be remembered. Next, in S56, the air vent valve 4 on the refrigerant circuit is closed in three directions, and the circuit valve 5 is closed.

その後、S58で給排路バルブ7を開き、S60で冷媒給排用の給排ポンプ8の運転を開始する。この際、給排ポンプ8は、冷媒を燃料電池1から貯蔵タンク9へ送る方向に作動させる。給排ポンプ8の運転中は、貯蔵タンク9中の冷媒量センサ10により貯蔵タンク9中の冷媒の量を監視する。   Thereafter, the supply / discharge passage valve 7 is opened in S58, and the operation of the supply / discharge pump 8 for supplying / discharging the refrigerant is started in S60. At this time, the supply / discharge pump 8 is operated in a direction to send the refrigerant from the fuel cell 1 to the storage tank 9. During operation of the supply / discharge pump 8, the amount of refrigerant in the storage tank 9 is monitored by the refrigerant amount sensor 10 in the storage tank 9.

次いで、S62で、貯蔵タンク9内の冷媒量が燃料電池1内の冷媒のほぼ全量が排出されたと判断される所定の量に達したら、S64へ進み、給排路バルブ7を閉じ、S66で給排ポンプ8を停止する。最後に、S68で燃料電池1への燃料ガス及び酸化剤ガスの供給、及び発電を停止して、停止プロセスを終了する。   Next, in S62, when the amount of refrigerant in the storage tank 9 reaches a predetermined amount determined that almost all of the refrigerant in the fuel cell 1 has been discharged, the process proceeds to S64, the supply / discharge path valve 7 is closed, and in S66. The supply / discharge pump 8 is stopped. Finally, supply of fuel gas and oxidant gas to the fuel cell 1 and power generation are stopped in S68, and the stop process is terminated.

以上説明したように、本実施例によれば、実施例1の効果に加えて、燃料電池の温度がある程度高いうちに、燃料電池の冷媒流路から冷媒を排出することで、冷媒流路内の蒸気圧が高い状態で冷媒を排出することが可能になるため、燃料電池の冷媒流路から冷媒を排出する際の冷媒排出手段の負荷を軽減することができるという効果がある。   As described above, according to the present embodiment, in addition to the effects of the first embodiment, the refrigerant is discharged from the refrigerant flow path of the fuel cell while the temperature of the fuel cell is high to some extent. Since the refrigerant can be discharged in a state where the vapor pressure is high, there is an effect that it is possible to reduce the load on the refrigerant discharge means when discharging the refrigerant from the refrigerant flow path of the fuel cell.

次に、本発明に係る燃料電池用冷却装置の実施例3を説明する。図4は、実施例3の燃料電池用冷却装置の構成を説明する概略構成図であり、図5は実施例3における燃料電池起動プロセス中の冷媒処理の制御フローチャートである。燃料電池の停止プロセス中の冷媒処理については、図2(a)に示した実施例1と同一である。   Next, a third embodiment of the fuel cell cooling device according to the present invention will be described. FIG. 4 is a schematic configuration diagram illustrating the configuration of the fuel cell cooling device according to the third embodiment, and FIG. 5 is a control flowchart of the refrigerant processing during the fuel cell activation process according to the third embodiment. The refrigerant processing during the fuel cell stop process is the same as that of the first embodiment shown in FIG.

実施例3では、実施例1の構成に加えて、冷媒循環路上に冷却手段として、マニホールド冷却装置11およびマニホールド冷却装置12を備える構成となっている。マニホールド冷却装置11は、燃料電池1と空気抜きバルブ4との間の冷媒排出マニホールドを冷却するもので、マニホールド冷却装置12は、燃料電池1と循環路バルブ5との間の冷媒導入マニホールドを冷却するものである。マニホールド冷却装置11,12は、それぞれペルチエ効果を応用した電子冷却装置や放熱フィンと冷却ファンとの組み合わせ等が利用可能である。   In the third embodiment, in addition to the configuration of the first embodiment, a manifold cooling device 11 and a manifold cooling device 12 are provided as cooling means on the refrigerant circulation path. The manifold cooling device 11 cools the refrigerant discharge manifold between the fuel cell 1 and the air vent valve 4, and the manifold cooling device 12 cools the refrigerant introduction manifold between the fuel cell 1 and the circulation path valve 5. Is. As the manifold cooling devices 11 and 12, an electronic cooling device applying a Peltier effect, a combination of heat radiation fins and a cooling fan, or the like can be used.

本実施例では、燃料電池の起動プロセスにおいて、燃料電池1への冷媒の供給を開始する前に、マニホールド冷却装置11およびマニホールド冷却装置12を作動させ、冷媒マニホールドを冷却する。その後は、実施例1と同じ動作を行い、最終的に循環ポンプ3の運転を開始させてから、マニホールド冷却装置11およびマニホールド冷却装置12の動作を停止する。   In this embodiment, before starting the supply of the refrigerant to the fuel cell 1 in the fuel cell startup process, the manifold cooling device 11 and the manifold cooling device 12 are operated to cool the refrigerant manifold. Thereafter, the same operation as in the first embodiment is performed, and finally the operation of the circulation pump 3 is started, and then the operations of the manifold cooling device 11 and the manifold cooling device 12 are stopped.

図5の本実施例における燃料電池の起動プロセス中の冷媒処理が始まるときの初期状態は、循環ポンプ3及び給排ポンプ8は停止、空気抜き弁4は、3方向へ閉じているとともに、循環路バルブ5及び給排路バルブ7は閉状態である。また、燃料電池1は、燃料ガスと酸化剤ガスとが供給され、発電を開始し、反応熱で燃料電池1の温度が上昇し始めている状態である。   The initial state when the refrigerant processing in the fuel cell start-up process in the embodiment of FIG. 5 starts is that the circulation pump 3 and the supply / discharge pump 8 are stopped, the air vent valve 4 is closed in three directions, and the circulation path The valve 5 and the supply / discharge path valve 7 are closed. The fuel cell 1 is in a state where fuel gas and oxidant gas are supplied, power generation is started, and the temperature of the fuel cell 1 is starting to rise due to reaction heat.

図5の起動プロセス中の冷媒処理では、まず、S70において、温度センサ6が検出した燃料電池温度が所定の冷却開始温度以上か否かを判定する。この冷却開始温度は、燃料電池1が継続して発電可能と判断される温度であり、実機により実験的に決定して、コントローラ20に記憶させておくものとする。   In the refrigerant processing during the startup process of FIG. 5, first, in S70, it is determined whether or not the fuel cell temperature detected by the temperature sensor 6 is equal to or higher than a predetermined cooling start temperature. This cooling start temperature is a temperature at which it is determined that the fuel cell 1 can continuously generate power, and is experimentally determined by an actual device and stored in the controller 20.

S70の判定で、燃料電池温度が冷却開始温度未満であれば、S70へ戻る。S70の判定で、燃料電池温度が冷却開始温度以上であれば、S72へ進み、マニホールド冷却装置11,12を運転して、冷媒マニホールドを冷却する。   If it is determined in S70 that the fuel cell temperature is lower than the cooling start temperature, the process returns to S70. If it is determined in S70 that the fuel cell temperature is equal to or higher than the cooling start temperature, the process proceeds to S72 to operate the manifold cooling devices 11 and 12 to cool the refrigerant manifold.

次いで、S74で、給排路バルブ7を開く。次いで、S76で給排ポンプ8を運転して、貯蔵タンク9から燃料電池1へ冷媒を供給する。この際の給排ポンプ8の運転方向は、冷媒を貯蔵タンク9から燃料電池1へ送る方向である。給排ポンプ8の運転中は、貯蔵タンク9中の冷媒量を冷媒量センサ10により監視する。   Next, in S74, the supply / discharge passage valve 7 is opened. Next, the supply / discharge pump 8 is operated in S <b> 76 to supply the refrigerant from the storage tank 9 to the fuel cell 1. The operation direction of the supply / discharge pump 8 at this time is a direction in which the refrigerant is sent from the storage tank 9 to the fuel cell 1. During the operation of the supply / discharge pump 8, the refrigerant amount in the storage tank 9 is monitored by the refrigerant amount sensor 10.

次いで、S78で、冷媒量センサ10が検出した貯蔵タンク9内の冷媒量が燃料電池1内が冷媒でほぼ満たされたと判断される所定量(最小量)に達したら、S80で給排路バルブ7を閉じ、S82で給排ポンプ8を停止する。その後、S84で循環路バルブ4および空気抜きバルブ5を開き、S86で循環ポンプ3の運転を開始する。最後に、S88でマニホールド冷却装置11,12を停止して、起動プロセス中の冷媒処理を終了する。   Next, in S78, when the refrigerant amount in the storage tank 9 detected by the refrigerant amount sensor 10 reaches a predetermined amount (minimum amount) in which it is determined that the fuel cell 1 is almost filled with the refrigerant, the supply / exhaust passage valve in S80. 7 is closed and the supply / discharge pump 8 is stopped in S82. Thereafter, the circulation path valve 4 and the air vent valve 5 are opened in S84, and the operation of the circulation pump 3 is started in S86. Finally, the manifold cooling devices 11 and 12 are stopped in S88, and the refrigerant process in the starting process is ended.

以上説明したように本実施例によれば、実施例1の効果に加えて、燃料電池内部を通過することで反応熱により昇温された冷媒による燃料電池外部の冷媒配管部の昇温が防止されるので、冷媒配管に冷媒を供給する際に、特に燃料電池外部の冷媒配管中への空気の残留を抑制することができるという効果がある。   As described above, according to the present embodiment, in addition to the effects of the first embodiment, the temperature of the refrigerant piping outside the fuel cell is prevented from being raised by the refrigerant that has been heated by the reaction heat by passing through the inside of the fuel cell. Therefore, when supplying the refrigerant to the refrigerant pipe, there is an effect that it is possible to particularly suppress the residual air in the refrigerant pipe outside the fuel cell.

次に、本発明に係る燃料電池用冷却装置の実施例4を説明する。実施例4の構成は、図1の実施例1の構成に加えて、燃料電池の発電停止中の外気温度の最低値を予測する外気温度予測手段を備えている。   Next, a fourth embodiment of the fuel cell cooling apparatus according to the present invention will be described. The configuration of the fourth embodiment includes an outside air temperature predicting unit that predicts the minimum value of the outside air temperature during power generation stop of the fuel cell, in addition to the configuration of the first embodiment of FIG.

外気温度予測手段は、例えば、車両に備えた移動電話機や移動通信機から気象予報サイトに接続して停車地域の予想最低低気温を取得する方法や、停車時刻とそのときの外気温度から最低気温を予想する方法がある。   The outside air temperature predicting means is, for example, a method of obtaining a predicted minimum low temperature in a stop area by connecting to a weather forecast site from a mobile phone or mobile communication device provided in the vehicle, or a minimum temperature from a stop time and the outside air temperature at that time. There is a way to predict.

本実施例では、燃料電池の運転停止プロセスにおいて、まず外気温予測手段を動作させて、燃料電池停止後の外気温度の最低値を予測する。次に予測された外気温の最低値と燃料電池に凍結が発生すると判断される凍結温度との比較を行う。そして、予測外気温最低値が凍結温度よりも低い場合に、燃料電池1からの冷媒の排出動作を行う。ここで、凍結温度は、0〔℃〕若しくは、外気温予測手段の誤差や放射冷却のために外気温度よりも燃料電池車両温度が低下することを考慮して、0〔℃〕よりある程度(1〜2〔℃〕)高い値とする。燃料電池の起動プロセスについては、図2(b)に示した実施例1と同一である。   In this embodiment, in the process of stopping the operation of the fuel cell, first, the outside air temperature predicting means is operated to predict the minimum value of the outside air temperature after the fuel cell is stopped. Next, the predicted minimum value of the outside air temperature is compared with the freezing temperature at which it is determined that freezing occurs in the fuel cell. Then, when the lowest predicted outside air temperature is lower than the freezing temperature, the refrigerant is discharged from the fuel cell 1. Here, the freezing temperature is 0 [° C.] or a certain amount of temperature (1) from 0 [° C.] in consideration of the error in the outside air temperature predicting means and the fact that the fuel cell vehicle temperature is lower than the outside air temperature due to radiation cooling. ˜2 [° C.]) High value. The starting process of the fuel cell is the same as that of the first embodiment shown in FIG.

次に、図6を参照して、本実施例における燃料電池停止プロセス中の冷媒処理について説明する。まず、S90で、外気温度予測手段により、停車中の外気温度(Ta)を予測する。次いで、S92で外気温度予測値の最低値(Ta最低値)が凍結温度以下であるか否かを判定する。S92の判定で、Ta最低値が凍結温度以下であれば、S94の冷媒排出プロセスを実行する。S92の判定で、Ta最低値が凍結温度を超えていれば、何もせずにプロセスを終了する。S94の冷媒排出プロセスは、図2(a)のS10からS24までの処理と同様である。   Next, with reference to FIG. 6, the refrigerant process during the fuel cell stop process in the present embodiment will be described. First, in S90, the outside air temperature (Ta) while the vehicle is stopped is predicted by the outside air temperature predicting means. Next, in S92, it is determined whether or not the lowest outside temperature predicted value (Ta lowest value) is equal to or lower than the freezing temperature. If it is determined in S92 that the Ta minimum value is equal to or lower than the freezing temperature, the refrigerant discharge process in S94 is executed. If it is determined in S92 that the Ta minimum value exceeds the freezing temperature, the process is terminated without doing anything. The refrigerant discharge process in S94 is the same as the processes from S10 to S24 in FIG.

以上説明したように、本実施例によれば、実施例1の効果に加えて、燃料電池停止時に外気温の最低値を予測し、予測外気温の最低値が燃料電池の凍結可能性を示す場合のみに冷媒の排出と供給を行うことになり、冷媒の排出と供給を実施する回数が減るため、燃料電池の起動停止時間の短縮と起動停止動作中の燃料電池の効率改善を図ることができるという効果がある。   As described above, according to the present embodiment, in addition to the effects of the first embodiment, the minimum value of the outside temperature is predicted when the fuel cell is stopped, and the minimum value of the predicted outside temperature indicates the possibility of freezing of the fuel cell. The refrigerant is discharged and supplied only in the case, and the number of times the refrigerant is discharged and supplied is reduced. Therefore, it is possible to shorten the start-stop time of the fuel cell and improve the efficiency of the fuel cell during the start-stop operation. There is an effect that can be done.

本発明に係る燃料電池用冷却装置の実施例1の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of Example 1 of the cooling device for fuel cells which concerns on this invention. 実施例1におけるコントローラの制御フローチャートである。3 is a control flowchart of a controller according to the first embodiment. 実施例2におけるコントローラの制御フローチャートである。6 is a control flowchart of a controller in Embodiment 2. 本発明に係る燃料電池用冷却装置の実施例3の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of Example 3 of the cooling device for fuel cells which concerns on this invention. 実施例3におけるコントローラの制御フローチャートである。10 is a control flowchart of a controller in Embodiment 3. 実施例4におけるコントローラの制御フローチャートである。10 is a control flowchart of a controller in Embodiment 4.

符号の説明Explanation of symbols

1:燃料電池
2:ラジエータ
3:循環ポンプ
4:空気抜きバルブ
5:循環路バルブ
6:温度センサ
7:給排路バルブ
8:給排ポンプ
9:貯蔵タンク
10:冷媒量センサ
20:コントローラ
1: Fuel cell 2: Radiator 3: Circulation pump 4: Air vent valve 5: Circulation valve 6: Temperature sensor 7: Supply / exhaust passage valve 8: Supply / exhaust pump 9: Storage tank 10: Refrigerant amount sensor 20: Controller

Claims (4)

冷媒の燃料電池内からの排出と燃料電池内への供給を行う手段と、冷媒と大気とを連通させるための開閉機構とを備えた燃料電池用冷却装置であって、
前記開閉機構を閉じた状態で冷媒の燃料電池内からの排出と冷媒の燃料電池内への供給を行うこと、および冷媒の燃料電池内への供給を燃料電池の温度が冷媒排出の際の燃料電池の温度よりも低い状態で行うことを特徴とする燃料電池用冷却装置。
A cooling device for a fuel cell comprising means for discharging the refrigerant from the fuel cell and supplying the refrigerant into the fuel cell, and an opening / closing mechanism for communicating the refrigerant with the atmosphere,
The refrigerant is discharged from the fuel cell and the refrigerant is supplied into the fuel cell with the opening / closing mechanism closed, and the refrigerant is supplied to the fuel cell when the temperature of the fuel cell discharges the refrigerant. A cooling apparatus for a fuel cell, which is performed in a state lower than a temperature of the battery.
前記燃料電池内からの冷媒の排出動作を、燃料電池が発電中に行うことを特徴とする請求項1に記載の燃料電池用冷却装置。 2. The cooling device for a fuel cell according to claim 1, wherein the operation of discharging the refrigerant from the inside of the fuel cell is performed while the fuel cell is generating electric power. 燃料電池外部の冷媒配管を冷却する手段を備え、
燃料電池内への冷媒の供給動作中に、燃料電池外部の冷媒配管の冷却を行うことを特徴とする請求項1に記載の燃料電池用冷却装置。
Means for cooling the refrigerant piping outside the fuel cell;
2. The fuel cell cooling device according to claim 1, wherein the refrigerant pipe outside the fuel cell is cooled during the operation of supplying the refrigerant into the fuel cell. 3.
外気温を予測する外気温度予測手段を備え、
燃料電池停止動作時に、前記外気温度予測手段が予測する最低気温が所定の温度よりも低い場合に、燃料電池内から冷媒の排出動作を行うことを特徴とする請求項1に記載の燃料電池用冷却装置。
An outside temperature predicting means for predicting the outside temperature is provided,
2. The fuel cell according to claim 1, wherein during the fuel cell stop operation, the refrigerant is discharged from the fuel cell when the minimum temperature predicted by the outside air temperature predicting means is lower than a predetermined temperature. Cooling system.
JP2004303387A 2004-10-18 2004-10-18 Cooling device for fuel cell Pending JP2006114458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303387A JP2006114458A (en) 2004-10-18 2004-10-18 Cooling device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303387A JP2006114458A (en) 2004-10-18 2004-10-18 Cooling device for fuel cell

Publications (1)

Publication Number Publication Date
JP2006114458A true JP2006114458A (en) 2006-04-27

Family

ID=36382786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303387A Pending JP2006114458A (en) 2004-10-18 2004-10-18 Cooling device for fuel cell

Country Status (1)

Country Link
JP (1) JP2006114458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059660A (en) * 2007-09-03 2009-03-19 Toyota Motor Corp Fuel cell system, and control method of cooling medium flow device
CN111129646A (en) * 2018-11-01 2020-05-08 伊利诺斯工具制品有限公司 Cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059660A (en) * 2007-09-03 2009-03-19 Toyota Motor Corp Fuel cell system, and control method of cooling medium flow device
CN111129646A (en) * 2018-11-01 2020-05-08 伊利诺斯工具制品有限公司 Cooling system
CN111129646B (en) * 2018-11-01 2024-04-12 伊利诺斯工具制品有限公司 Cooling system

Similar Documents

Publication Publication Date Title
JP3999498B2 (en) Fuel cell system and method for stopping the same
JP4735642B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
US20060147772A1 (en) Fuel cell system
JP2013033649A (en) Method of starting vehicular fuel cell system
JP2006294458A (en) Fuel cell system
JP2007122911A (en) Fuel cell system
JP2007305334A (en) Fuel cell system
US8263283B2 (en) Fuel cell system and control method thereof
JP2007042566A (en) Fuel cell system and its starting method
JP4940545B2 (en) Fuel cell system
JP2007012565A (en) Fuel cell system
JP2006114458A (en) Cooling device for fuel cell
JP2007134241A (en) Fuel cell cooling system
JP2005317224A (en) Fuel cell system, and scavenging method of the same
JP2006147452A (en) Fuel cell system
JP2008004418A (en) Heat exchanging system
JP2012003889A (en) Fuel cell system
JP4984546B2 (en) Fuel cell system
JP2010153067A (en) Fuel cell system
JP2007128811A (en) Fuel cell system and its control method
JP2006209994A (en) Fuel cell system
JP2012003890A (en) Fuel cell system
JP5162091B2 (en) Fuel cell system
JP2005327501A (en) Fuel cell system
JP5141038B2 (en) Fuel cell system and fuel cell control method