JP2006111924A - High pressure hydrogen production device - Google Patents

High pressure hydrogen production device Download PDF

Info

Publication number
JP2006111924A
JP2006111924A JP2004300525A JP2004300525A JP2006111924A JP 2006111924 A JP2006111924 A JP 2006111924A JP 2004300525 A JP2004300525 A JP 2004300525A JP 2004300525 A JP2004300525 A JP 2004300525A JP 2006111924 A JP2006111924 A JP 2006111924A
Authority
JP
Japan
Prior art keywords
power supply
solid polymer
electrolyte membrane
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004300525A
Other languages
Japanese (ja)
Other versions
JP4554325B2 (en
Inventor
Masanori Okabe
昌規 岡部
Kenji Taruie
憲司 樽家
Koji Nakazawa
孝治 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004300525A priority Critical patent/JP4554325B2/en
Publication of JP2006111924A publication Critical patent/JP2006111924A/en
Application granted granted Critical
Publication of JP4554325B2 publication Critical patent/JP4554325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure hydrogen production device where, even if the thickness of a solid polymer electrolytic membrane is reduced by hydrogen pressure, a gap is not formed between the solid polymer electrolytic membrane and a cathode power feeder. <P>SOLUTION: The high pressure hydrogen production device is equipped with: power feeders 3, 4 provided on both the sides of a solid polymer electrolytic membrane 2; separators 5, 6 stacked on the respective power feeders 3, 4; and liquid passages 7, 8. Water is fed to the liquid passage 8, further, the respective power feeders 3, 4 are energized to electrolyze the water, thus high pressure hydrogen gas is obtained in the fluid passage 7. The cathode power feeder 3 made of an elastic material tightly stuck in accordance with the deformation of the solid polymer electrolytic membrane 2 caused by the hydrogen gas pressure and the anode powder feeder 4 whose shape can be retained against the hydrogen gas pressure are provided. The cathode power feeder 3 is deformed by compressive stress, and is tightly stuck to the solid polymer electrolytic membrane 2 caused by the release of the compressive stress. The cathode powder feeder 3 is composed of expand metal made of titanium, a titanium fiber sintered compact or a stacked body of them and a titanium powder sintered compact, and the anode power feeder 4 is composed of a titanium powder sintered compact. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高圧水素製造装置に関するものである。   The present invention relates to a high-pressure hydrogen production apparatus.

従来、図3(a)に示すように、固体高分子電解質膜2と、その両側に相対向して設けられたカソード給電体22、アノード給電体23と、各給電体22,23に積層されたセパレータ5,6とを備え、各給電体22,23が多孔質部材からなる高圧水素製造装置21が知られている。前記多孔質部材としては、例えばチタン粉末等の導電性粒子が焼結されてなる部材が用いられている(例えば特許文献1参照)。   Conventionally, as shown in FIG. 3 (a), the polymer electrolyte membrane 2 is laminated on a cathode power supply body 22, an anode power supply body 23, and power supply bodies 22 and 23 provided opposite to each other on both sides thereof. There is known a high-pressure hydrogen production apparatus 21 that includes the separators 5 and 6 and each of the power feeding bodies 22 and 23 is made of a porous member. As the porous member, for example, a member obtained by sintering conductive particles such as titanium powder is used (see, for example, Patent Document 1).

高圧水素製造装置21では、例えば各セパレータ5,6に各給電体22,23が露出する流体通路7,8を設けると共に、各給電体22,23は、それぞれセパレータ5,6を介して通電されるようになっている。そこで、高圧水素製造装置21では、アノード側セパレータ6の流体通路8に水を供給すると共に、セパレータ5,6を介してカソード給電体22とアノード給電体23とに通電すると、流体通路8に供給された水がアノード給電体23で電気分解され、水素イオンと酸素ガスとが生成する。   In the high-pressure hydrogen production apparatus 21, for example, the fluid passages 7 and 8 in which the power feeding bodies 22 and 23 are exposed are provided in the separators 5 and 6, and the power feeding bodies 22 and 23 are energized through the separators 5 and 6, respectively. It has become so. Therefore, in the high-pressure hydrogen production device 21, water is supplied to the fluid passage 8 of the anode-side separator 6, and when the cathode power supply 22 and the anode power supply 23 are energized via the separators 5, 6, the fluid is supplied to the fluid passage 8. The water is electrolyzed by the anode power supply 23, and hydrogen ions and oxygen gas are generated.

このとき、アノード給電体23は前記多孔質部材からなるので、流体通路8に供給された水はアノード給電体23の内部で前記のように電気分解され、生成した水素イオンはアノード給電体23内を通過して固体高分子電解質膜2に接触する。さらに、前記水素イオンは、固体高分子電解質膜2を透過してカソード給電体22側に移動し、カソード給電体22から電子を受け取って水素ガスとなる。   At this time, since the anode power supply 23 is made of the porous member, the water supplied to the fluid passage 8 is electrolyzed in the anode power supply 23 as described above, and the generated hydrogen ions are contained in the anode power supply 23. And the solid polymer electrolyte membrane 2 is contacted. Further, the hydrogen ions permeate the solid polymer electrolyte membrane 2 and move to the cathode power supply 22 side, receive electrons from the cathode power supply 22 and become hydrogen gas.

高圧水素製造装置21では、カソード給電体22もまた前記多孔質部材からなるので、前記水素ガスは、カソード給電体22内を通過して、カソード側セパレータ5の流体通路7に至る。この結果、高圧水素製造装置21では、カソード側セパレータ5の流体通路7に高圧の水素を得ることができる。一方、アノード側セパレータ6の流体通路8で生成した酸素は、前記水と共に流体通路8に設けられた排水口15から排出される。   In the high-pressure hydrogen production apparatus 21, the cathode power supply 22 is also made of the porous member, so that the hydrogen gas passes through the cathode power supply 22 and reaches the fluid passage 7 of the cathode separator 5. As a result, in the high-pressure hydrogen production device 21, high-pressure hydrogen can be obtained in the fluid passage 7 of the cathode-side separator 5. On the other hand, oxygen generated in the fluid passage 8 of the anode-side separator 6 is discharged from a drain port 15 provided in the fluid passage 8 together with the water.

しかしながら、高圧水素製造装置21では、前記のように酸素を排出すると、固体高分子電解質膜2の両側で圧力のバランスが崩れ、カソード側セパレータ5の流体通路7で生成した水素の圧力により固体高分子電解質膜2とアノード給電体23とがセパレータ6方向に圧縮されて厚さが低減するという不都合がある。固体高分子電解質膜2の厚さが低減すると、図3(b)に示すように、固体高分子電解質膜2とカソード給電体22との間に間隙24を生じて両者の接触抵抗が増大し、高圧水素製造装置21の性能が低下する。
特表2003−515237号公報
However, in the high-pressure hydrogen production apparatus 21, when oxygen is discharged as described above, the pressure balance is lost on both sides of the solid polymer electrolyte membrane 2, and the solid pressure is increased by the pressure of hydrogen generated in the fluid passage 7 of the cathode-side separator 5. There is an inconvenience that the molecular electrolyte membrane 2 and the anode feeder 23 are compressed in the direction of the separator 6 to reduce the thickness. When the thickness of the solid polymer electrolyte membrane 2 is reduced, a gap 24 is formed between the solid polymer electrolyte membrane 2 and the cathode power supply 22 as shown in FIG. The performance of the high-pressure hydrogen production apparatus 21 is degraded.
Special table 2003-515237 gazette

本発明は、かかる不都合を解消して、カソード側で生成した水素の圧力により固体高分子電解質膜の厚さが低減したときにも、固体高分子電解質膜とカソード給電体との間に間隙を生じることのない高圧水素製造装置を提供することを目的とする。   The present invention eliminates such inconvenience, and even when the thickness of the solid polymer electrolyte membrane is reduced by the pressure of hydrogen generated on the cathode side, a gap is formed between the solid polymer electrolyte membrane and the cathode power feeder. It aims at providing the high pressure hydrogen production apparatus which does not arise.

かかる目的を達成するために、本発明は、固体高分子電解質膜と、該固体高分子電解質膜の両側に相対向して設けられたカソード給電体と、アノード給電体と、各給電体に積層されたセパレータと、各セパレータに設けられ各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給すると共に各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る高圧水素製造装置において、該固体高分子電解質膜が該水素ガスの圧力により変形したときに該変形に追随して該固体高分子電解質膜に密着する弾性材料からなるカソード給電体と、該水素ガスの圧力に抗して形状を維持することができるアノード給電体とを備えることを特徴とする。   In order to achieve such an object, the present invention provides a solid polymer electrolyte membrane, a cathode power supply provided opposite to both sides of the solid polymer electrolyte membrane, an anode power supply, and a laminate on each power supply Each of the separators and a fluid passage provided in each separator and exposing each power supply body. Water is supplied to the fluid passage of the anode separator and energized to each power supply body, whereby the fluid passage of the anode separator is provided. In a high-pressure hydrogen production apparatus that electrolyzes the supplied water to obtain high-pressure hydrogen gas in the fluid passage of the cathode side separator, the solid polymer electrolyte membrane follows the deformation when deformed by the pressure of the hydrogen gas. A cathode feeder made of an elastic material that is in close contact with the solid polymer electrolyte membrane, and an anode feeder that can maintain the shape against the pressure of the hydrogen gas. The features.

本発明の高圧水素製造装置では、カソード側セパレータの流体通路に生成した水素ガスの圧力が、前記固体高分子電解質膜と前記アノード給電体とに作用したときに、該アノード給電体は該水素ガスの圧力に抗して形状を維持することができる。この結果、前記固体高分子電解質膜は前記アノード給電体側では変形されることがなく、前記カソード給電体側でのみ圧縮されて厚さが薄くなる。このとき、前記カソード給電体は前記弾性材料からなるので、前記固体高分子電解質膜が変形して厚さが薄くなったときには、該変形に追随して、それ自体変形することができ、該固体高分子電解質膜に密着した状態を維持することができる。   In the high-pressure hydrogen production apparatus of the present invention, when the pressure of the hydrogen gas generated in the fluid passage of the cathode separator acts on the solid polymer electrolyte membrane and the anode feeder, the anode feeder is the hydrogen gas. The shape can be maintained against this pressure. As a result, the solid polymer electrolyte membrane is not deformed on the anode power supply side, and is compressed only on the cathode power supply side to be thin. At this time, since the cathode power supply body is made of the elastic material, when the solid polymer electrolyte membrane is deformed and becomes thin, the cathode power supply body can follow the deformation and can be deformed itself. The state of being in close contact with the polymer electrolyte membrane can be maintained.

従って、本発明によれば、固体高分子電解質膜とカソード給電体との間に間隙を生じることがなく、固体高分子電解質膜とカソード給電体との接触抵抗の増大による性能の低下を防止することができる。   Therefore, according to the present invention, there is no gap between the solid polymer electrolyte membrane and the cathode power feeder, and the performance deterioration due to the increase in the contact resistance between the solid polymer electrolyte membrane and the cathode power feeder is prevented. be able to.

前記カソード給電体は圧縮応力により変形されており、該固体高分子電解質膜が該水素ガスの圧力により変形したときに、該圧縮応力が解放されることにより、該変形に追随して該固体高分子電解質膜に密着する弾性材料からなることが好ましい。このような弾性材料として、例えば、チタン製エキスパンドメタル、チタン繊維焼結体またはそれらとチタン粉末焼結体との積層体等を挙げることができる。   The cathode power supply body is deformed by compressive stress, and when the solid polymer electrolyte membrane is deformed by the pressure of the hydrogen gas, the compressive stress is released, so that the solid high electrolyte follows the deformation. It is preferably made of an elastic material that is in close contact with the molecular electrolyte membrane. Examples of such elastic materials include titanium expanded metal, titanium fiber sintered bodies, and laminates of these and titanium powder sintered bodies.

また、前記アノード給電体に用いられ、水素ガスの圧力に抗して形状を維持することができる材料としては、例えば、チタン粉末焼結体を挙げることができる。   Examples of the material that can be used for the anode power supply and can maintain the shape against the pressure of hydrogen gas include a titanium powder sintered body.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の高圧水素製造装置の構成を示す説明的断面図であり、図2は図1の高圧水素製造装置に用いるアノード給電体の構成を示す平面図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing the configuration of the high-pressure hydrogen production apparatus according to the present embodiment, and FIG. 2 is a plan view showing the configuration of the anode feeder used in the high-pressure hydrogen production apparatus of FIG.

図1に示すように、本実施形態の高圧水素製造装置1は、固体高分子電解質膜2と、その両側に相対向して設けられたカソード給電体3、アノード給電体4と、各給電体3,4に積層されたセパレータ5,6と、各セパレータ5,6に設けられ各給電体3,4が露出する流体通路7,8とを備えている。   As shown in FIG. 1, the high-pressure hydrogen production apparatus 1 of the present embodiment includes a solid polymer electrolyte membrane 2, a cathode power supply 3, an anode power supply 4 provided opposite to each other, and each power supply. 3 and 4, and separators 5 and 6, and fluid passages 7 and 8 that are provided in the separators 5 and 6 and that expose the power feeding bodies 3 and 4.

固体高分子電解質膜2、各給電体3,4、各セパレータ5,6は、セパレータ5,6に積層された絶縁部材9,9を介してエンドプレート10,10に挟持されており、エンドプレート10,10に取着されたボルト11とナット12とにより押圧されて相互に密着せしめられている。また、カソード側セパレータ5は流体通路7に連通する水素取出口13を備え、アノード側セパレータ6は流体通路8に連通する給水口14と排水口15とを備えている。そして、各給電体3,4は、それぞれセパレータ5,6を介して通電されるようになっている。   The solid polymer electrolyte membrane 2, the power feeders 3, 4, and the separators 5, 6 are sandwiched between end plates 10, 10 via insulating members 9, 9 stacked on the separators 5, 6. The bolts 11 and the nuts 12 attached to the pins 10 and 10 are pressed to be brought into close contact with each other. The cathode side separator 5 includes a hydrogen outlet 13 that communicates with the fluid passage 7, and the anode side separator 6 includes a water supply port 14 and a drain port 15 that communicate with the fluid passage 8. The power feeders 3 and 4 are energized through the separators 5 and 6, respectively.

高圧水素製造装置1において、固体高分子電解質膜2は陽イオン透過膜であり、例えばNafion(登録商標、デュポン社製)、Aciplex(商品名、旭化成株式会社製)等を用いることができる。固体高分子電解質膜2は、アノード側には例えば白金触媒を含む触媒層(図示せず)を備え、カソード側には例えばRuIrFeO触媒を含む触媒層(図示せず)を備えている。 In the high-pressure hydrogen production apparatus 1, the solid polymer electrolyte membrane 2 is a cation permeable membrane, and for example, Nafion (registered trademark, manufactured by DuPont), Aciplex (trade name, manufactured by Asahi Kasei Co., Ltd.) or the like can be used. The solid polymer electrolyte membrane 2 includes a catalyst layer (not shown) containing, for example, a platinum catalyst on the anode side, and a catalyst layer (not shown) containing, for example, a RuIrFeO X catalyst on the cathode side.

カソード給電体3は、複数のチタン製エキスパンドメタルを積層し、端部をスポット溶接して一体化したものからなる。前記エキスパンドメタルは、例えばチタン製薄板を引き伸ばして切開することにより金網状のメッシュとしたものであり、メッシュの交点が隆起しているため、複数積層することにより、積層された方向で伸縮する弾性部材を形成することができる。尚、前記エキスパンドメタルは、カソード給電体3を形成したときに、最上層の1枚はセパレータ5に密着し、最下層の1枚は固体高分子電解質膜2に密着するために、圧延されて前記隆起が平坦にされていることが好ましい。   The cathode power supply 3 is formed by laminating a plurality of titanium expanded metals and integrating the ends by spot welding. The expanded metal is, for example, a wire mesh mesh formed by stretching and incising a titanium thin plate, and since the intersection of the mesh is raised, it is elastic to expand and contract in the stacking direction by stacking multiple layers. A member can be formed. The expanded metal is rolled so that when the cathode power supply 3 is formed, one of the uppermost layer is in close contact with the separator 5 and one of the lowermost layer is in close contact with the solid polymer electrolyte membrane 2. Preferably, the ridge is flattened.

前記エキスパンドメタルは、メッシュの目開き形状が菱形となっているスタンダード・タイプであってもよく、該目開き形状が六角形となっているグレーチング・タイプであってもよいが、カソード給電体3として用いるために、該目開きの大きさは0.5mm×1mm〜5mm×10mmの範囲にあることが好ましい。   The expanded metal may be a standard type in which the mesh opening is a rhombus, or may be a grating type in which the opening is a hexagon. Therefore, the size of the openings is preferably in the range of 0.5 mm × 1 mm to 5 mm × 10 mm.

カソード給電体3は、通常はセパレータ5,6から受ける圧縮応力により、前述のように複数積層された前記エキスパンドメタルが圧縮されている。   In the cathode power supply 3, the expanded metal stacked in a plurality of layers as described above is compressed by the compressive stress normally received from the separators 5 and 6.

アノード給電体4は、図2に示すように、多孔質チタン焼結体16と、多孔質チタン焼結体16の周囲を取り囲むチタンプレート17とからなる。多孔質チタン焼結体16は、例えば、チタンの溶融飛沫を飛散中に凝固させるガスアトマイズ法により製造された球状ガスアトマイズチタン粉末を所定形状の焼結容器に充填して真空焼結することにより得られたものを用いることができる。チタンプレート17は、実質的に非多孔質体である。アノード給電体4は、例えば図2に示すように、円盤状に形成された多孔質チタン焼結体16を、ドーナッツ状に形成されたチタンプレート17の内周部に圧入することにより形成することができる。   As shown in FIG. 2, the anode power feeder 4 includes a porous titanium sintered body 16 and a titanium plate 17 surrounding the porous titanium sintered body 16. The porous titanium sintered body 16 can be obtained, for example, by filling a sintered container having a predetermined shape with a spherical gas atomized titanium powder produced by a gas atomizing method for solidifying molten splashes of titanium during scattering and vacuum sintering. Can be used. The titanium plate 17 is substantially non-porous. For example, as shown in FIG. 2, the anode power supply 4 is formed by press-fitting a porous titanium sintered body 16 formed in a disk shape into an inner peripheral portion of a titanium plate 17 formed in a donut shape. Can do.

カソード側セパレータ5は、例えば非多孔質のチタン材料等に、カソード給電体3に積層されたときにカソード給電体3を露出する流体通路7と、流体通路7に連通する水素取出口13とを形成したものを用いることができる。また、アノード側セパレータ6は、例えば非多孔質のチタン材料等に、アノード給電体4に積層されたときにアノード給電体4を露出する流体通路8と、流体通路8に連通する給水口14、排水口15とを形成したものを用いることができる。   The cathode-side separator 5 includes, for example, a fluid passage 7 that exposes the cathode power supply 3 when laminated on the cathode power supply 3 on a non-porous titanium material, and a hydrogen outlet 13 that communicates with the fluid passage 7. What was formed can be used. The anode separator 6 includes, for example, a non-porous titanium material or the like, a fluid passage 8 that exposes the anode feeder 4 when laminated on the anode feeder 4, and a water supply port 14 that communicates with the fluid passage 8. What formed the drain port 15 can be used.

前記構成を備える高圧水素製造装置1では、給水口14から流体通路8に水を供給すると共に、セパレータ5,6を介してカソード給電体3とアノード給電体4とに通電すると、水の電気分解により、流体通路8内に水素イオン、電子、酸素ガスが生成する。次に、前記水素イオンは、カソード給電体3とアノード給電体4との電位差により、一部の水分子を伴って陽イオン透過膜である固体高分子電解質膜2を透過し、カソード給電体3側に移動する。そして、前記水素イオンがカソード給電体3から電子を受け取って分子化することにより、流体通路7に高圧の水素ガスが得られる。   In the high-pressure hydrogen production apparatus 1 having the above-described configuration, when water is supplied from the water supply port 14 to the fluid passage 8 and the cathode power supply 3 and the anode power supply 4 are energized through the separators 5 and 6, the water is electrolyzed. As a result, hydrogen ions, electrons, and oxygen gas are generated in the fluid passage 8. Next, the hydrogen ions permeate through the solid polymer electrolyte membrane 2, which is a cation permeable membrane, with some water molecules due to the potential difference between the cathode feeder 3 and the anode feeder 4, and the cathode feeder 3. Move to the side. Then, the hydrogen ions receive electrons from the cathode power supply 3 and are molecularized, whereby high-pressure hydrogen gas is obtained in the fluid passage 7.

一方、流体通路8内に生成した酸素ガスは、大部分の水と共に排水口15から排出されるが、このようにすると、カソード側とアノード側とで圧力のバランスが崩れる。この結果、カソード側セパレータ5の流体通路7に得られた高圧の水素ガスにより、固体高分子電解質膜2とアノード給電体4の多孔質チタン焼結体16とがアノード側セパレータ6方向に押圧されることになる。   On the other hand, the oxygen gas generated in the fluid passage 8 is discharged from the drain port 15 together with most of the water. However, in this way, the balance of pressure is lost between the cathode side and the anode side. As a result, the high-pressure hydrogen gas obtained in the fluid passage 7 of the cathode separator 5 presses the solid polymer electrolyte membrane 2 and the porous titanium sintered body 16 of the anode power feeder 4 in the direction of the anode separator 6. Will be.

このとき、高圧水素製造装置1では、アノード側セパレータ6は前述のように非多孔質のチタン材料等からなり、さらに流体通路8が形成されているために十分な厚さがあり、前記水素ガスの圧力に抗して変形することなく、形状を維持することが可能な剛性を備えている。また、アノード給電体4はチタンプレート17と一体的に形成された多孔質チタン焼結体16が、チタンプレート17と共にセパレータ6により支持されるので、前記水素ガスの圧力に抗して変形することなく、形状を維持することができる。   At this time, in the high-pressure hydrogen production apparatus 1, the anode separator 6 is made of a non-porous titanium material or the like as described above, and has a sufficient thickness because the fluid passage 8 is formed. Rigidity capable of maintaining the shape without being deformed against the pressure. In addition, since the porous titanium sintered body 16 integrally formed with the titanium plate 17 is supported by the separator 6 together with the titanium plate 17, the anode power supply body 4 is deformed against the pressure of the hydrogen gas. The shape can be maintained.

これに対して、固体高分子電解質膜2は、前記水素ガスの圧力により厚さ方向で変形し、その厚さが通常よりも薄くなるため、固体高分子電解質膜2とカソード給電体3との間に間隙を生じ、固体高分子電解質膜2とカソード給電体3との接触抵抗が増大することが懸念される。しかし、カソード給電体3は、前述のように複数のチタン製エキスパンドメタルが積層された弾性部材であり、通常はセパレータ5,6から圧縮応力を受けて圧縮されている。従って、固体高分子電解質膜2の厚さが通常よりも薄くなると前記圧縮応力が解放されて、カソード給電体3は原形を回復しようとする。   On the other hand, the solid polymer electrolyte membrane 2 is deformed in the thickness direction by the pressure of the hydrogen gas, and its thickness becomes thinner than usual, so that the solid polymer electrolyte membrane 2 and the cathode power supply 3 There is a concern that a gap may be formed between them and the contact resistance between the solid polymer electrolyte membrane 2 and the cathode power supply 3 may increase. However, the cathode power supply 3 is an elastic member in which a plurality of titanium expanded metals are laminated as described above, and is usually compressed by receiving compressive stress from the separators 5 and 6. Therefore, when the thickness of the solid polymer electrolyte membrane 2 becomes thinner than usual, the compressive stress is released and the cathode power supply 3 tries to recover its original shape.

この結果、カソード給電体3は、図1(b)に示すように、固体高分子電解質膜2の変形に追随して固体高分子2方向に膨張して固体高分子電解質膜2に密着した状態を維持し、固体高分子電解質膜2との間に間隙を生じることを防止することができる。   As a result, as shown in FIG. 1B, the cathode power supply 3 expands in the direction of the solid polymer 2 following the deformation of the solid polymer electrolyte membrane 2, and is in close contact with the solid polymer electrolyte membrane 2. And a gap can be prevented from occurring between the polymer electrolyte membrane 2 and the solid polymer electrolyte membrane 2.

尚、本実施形態では、カソード給電体3として複数のチタン製エキスパンドメタルを積層したものを用いているが、これに代えて複数のチタン繊維焼結体を積層したものや、これらとチタン粉末焼結体との積層体を用いるようにしてもよい。   In the present embodiment, the cathode power supply 3 is formed by laminating a plurality of titanium expanded metals, but instead of this, a plurality of titanium fiber sintered bodies are laminated, or these are sintered with titanium powder. A laminated body with a bonded body may be used.

また、本実施形態で、アノード給電体4をカソード給電体3と同様の弾性部材とすると、前記水素ガスの圧力が作用したときに、カソード給電体3が前述のように膨張する一方で、アノード給電体4は圧縮されることになる。この結果、固体高分子電解質膜2のカソード給電体3、アノード給電体4に挟持されている部分と、セパレータ5,6に挟持されている部分との間に段差が形成され、固体高分子電解質膜2が破損する虞がある。従って、アノード給電体4は、前記水素ガスの圧力に抗して変形することなく、形状を維持することができることが必要である。   Further, in this embodiment, when the anode power supply 4 is an elastic member similar to the cathode power supply 3, when the pressure of the hydrogen gas acts, the cathode power supply 3 expands as described above, while the anode power supply 4 expands as described above. The power feeder 4 is compressed. As a result, a step is formed between the portion of the solid polymer electrolyte membrane 2 sandwiched between the cathode feeder 3 and the anode feeder 4 and the portion sandwiched between the separators 5 and 6, and the solid polymer electrolyte There is a possibility that the membrane 2 is broken. Therefore, the anode power supply 4 needs to be able to maintain its shape without being deformed against the pressure of the hydrogen gas.

本発明の高圧水素製造装置の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the high pressure hydrogen production apparatus of this invention. 図1の高圧水素製造装置に用いるアノード給電体の構成を示す平面図。The top view which shows the structure of the anode electric power feeding body used for the high pressure hydrogen production apparatus of FIG. 従来の高圧水素製造装置の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the conventional high pressure hydrogen production apparatus.

符号の説明Explanation of symbols

1…高圧水素製造装置、 2…固体高分子電解質膜、 3…カソード給電体、 4…アノード給電体、 5…カソード側セパレータ、 6…アノード側セパレータ、 7,8…流体通路。   DESCRIPTION OF SYMBOLS 1 ... High pressure hydrogen production apparatus, 2 ... Solid polymer electrolyte membrane, 3 ... Cathode feeder, 4 ... Anode feeder, 5 ... Cathode side separator, 6 ... Anode side separator, 7, 8 ... Fluid passage.

Claims (3)

固体高分子電解質膜と、該固体高分子電解質膜の両側に相対向して設けられたカソード給電体と、アノード給電体と、各給電体に積層されたセパレータと、各セパレータに設けられ各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給すると共に各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る高圧水素製造装置において、
該固体高分子電解質膜が該水素ガスの圧力により変形したときに該変形に追随して該固体高分子電解質膜に密着する弾性材料からなるカソード給電体と、該水素ガスの圧力に抗して形状を維持することができるアノード給電体とを備えることを特徴とする高圧水素製造装置。
Solid polymer electrolyte membrane, cathode power supply provided opposite to both sides of the solid polymer electrolyte membrane, anode power supply, separator laminated on each power supply, and each power supply provided on each separator A fluid passage exposing the body, and supplying water to the fluid passage of the anode side separator and energizing each power feeding body to electrolyze the water supplied to the fluid passage of the anode side separator, In the high-pressure hydrogen production apparatus for obtaining high-pressure hydrogen gas in the fluid passage of
When the solid polymer electrolyte membrane is deformed by the pressure of the hydrogen gas, a cathode feeder made of an elastic material that follows the deformation and adheres to the solid polymer electrolyte membrane, and against the pressure of the hydrogen gas A high-pressure hydrogen production apparatus comprising an anode power supply body capable of maintaining a shape.
前記カソード給電体は圧縮応力により変形されており、該固体高分子電解質膜が該水素ガスの圧力により変形したときに、該圧縮応力が解放されることにより、該変形に追随して該固体高分子電解質膜に密着する弾性材料からなることを特徴とする請求項1記載の高圧水素製造装置。   The cathode power supply body is deformed by compressive stress, and when the solid polymer electrolyte membrane is deformed by the pressure of the hydrogen gas, the compressive stress is released, so that the solid high electrolyte follows the deformation. 2. The high-pressure hydrogen production apparatus according to claim 1, wherein the high-pressure hydrogen production apparatus is made of an elastic material that is in close contact with the molecular electrolyte membrane. 前記カソード給電体はチタン製エキスパンドメタル、チタン繊維焼結体またはそれらとチタン粉末焼結体との積層体からなり、前記アノード給電体はチタン粉末焼結体からなることを特徴とする請求項2記載の高圧水素製造装置。   3. The cathode power supply body is made of a titanium expanded metal, a titanium fiber sintered body or a laminate of these and a titanium powder sintered body, and the anode power supply body is made of a titanium powder sintered body. The high-pressure hydrogen production apparatus described.
JP2004300525A 2004-10-14 2004-10-14 High pressure hydrogen production equipment Expired - Fee Related JP4554325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300525A JP4554325B2 (en) 2004-10-14 2004-10-14 High pressure hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300525A JP4554325B2 (en) 2004-10-14 2004-10-14 High pressure hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2006111924A true JP2006111924A (en) 2006-04-27
JP4554325B2 JP4554325B2 (en) 2010-09-29

Family

ID=36380689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300525A Expired - Fee Related JP4554325B2 (en) 2004-10-14 2004-10-14 High pressure hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP4554325B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117140A (en) * 2010-12-03 2012-06-21 Takasago Thermal Eng Co Ltd Hydrogen production cell and apparatus for producing hydrogen
RU2551365C2 (en) * 2011-02-28 2015-05-20 Вито Нв New separator, electrochemical cell with new separator and application of new separator at electrochemical cell
US9194048B2 (en) 2010-03-23 2015-11-24 Honda Motor Co., Ltd. Electrochemical device
EP3333953A1 (en) 2016-12-06 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Electrochemical hydrogen pump
CN115198289A (en) * 2022-05-27 2022-10-18 甘肃人合机电节能环保科技工程有限公司 Electrocatalytic reduction of CO by electrode coating method of intermittent electrolyte 2 Reaction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262387A (en) * 2000-03-22 2001-09-26 Tokuyama Corp Alkali metallic salt electrolytic bath
JP2001279479A (en) * 2000-03-30 2001-10-10 Shinko Pantec Co Ltd Power feeder and electrolytic cell
JP2004002914A (en) * 2002-05-31 2004-01-08 Hitachi Zosen Corp Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2004115860A (en) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd Water electrolyzing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262387A (en) * 2000-03-22 2001-09-26 Tokuyama Corp Alkali metallic salt electrolytic bath
JP2001279479A (en) * 2000-03-30 2001-10-10 Shinko Pantec Co Ltd Power feeder and electrolytic cell
JP2004002914A (en) * 2002-05-31 2004-01-08 Hitachi Zosen Corp Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2004115860A (en) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd Water electrolyzing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194048B2 (en) 2010-03-23 2015-11-24 Honda Motor Co., Ltd. Electrochemical device
JP2012117140A (en) * 2010-12-03 2012-06-21 Takasago Thermal Eng Co Ltd Hydrogen production cell and apparatus for producing hydrogen
RU2551365C2 (en) * 2011-02-28 2015-05-20 Вито Нв New separator, electrochemical cell with new separator and application of new separator at electrochemical cell
EP3333953A1 (en) 2016-12-06 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Electrochemical hydrogen pump
JP2018090899A (en) * 2016-12-06 2018-06-14 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
US10301179B2 (en) 2016-12-06 2019-05-28 Panasonic Intellectual Property Management Co., Ltd. Electrochemical hydrogen pump
CN115198289A (en) * 2022-05-27 2022-10-18 甘肃人合机电节能环保科技工程有限公司 Electrocatalytic reduction of CO by electrode coating method of intermittent electrolyte 2 Reaction method

Also Published As

Publication number Publication date
JP4554325B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP6081431B2 (en) Differential pressure type high pressure water electrolyzer
JP4796639B2 (en) Electrochemical equipment
JP5603928B2 (en) Electrochemical device
JP2009513820A (en) Membrane electrode assembly for water electrolysis
JP2006070322A (en) High pressure hydrogen production device
JP5054049B2 (en) Electrolyzer
CN110241436B (en) Water electrolysis device
JP4554325B2 (en) High pressure hydrogen production equipment
JP5400413B2 (en) Electrolyzer
JP5400414B2 (en) Electrolyzer
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
JP2006328527A (en) Apparatus for producing hydrogen
JP4611688B2 (en) Hydrogen production equipment
JP6382886B2 (en) Differential pressure type high pressure water electrolyzer
JP5090505B2 (en) Hydrogen production equipment
JP2019157213A (en) Water electrolysis apparatus
JP6025689B2 (en) Differential pressure type high pressure water electrolyzer
JP2014065927A (en) High-pressure water electrolysis apparatus
JP6649414B2 (en) Water electrolysis device
JP3235649B2 (en) Electrolysis cell for hydrogen oxygen generator
JP4554328B2 (en) High pressure hydrogen production equipment
JP5588402B2 (en) High pressure hydrogen production equipment
JP5415100B2 (en) Electrolyzer
JP5451575B2 (en) Water electrolysis equipment
JP6426654B2 (en) Differential pressure type high pressure water electrolyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees