JP2006111717A - Crosslinked (meth)acrylamide particle, method for producing the same and use thereof - Google Patents

Crosslinked (meth)acrylamide particle, method for producing the same and use thereof Download PDF

Info

Publication number
JP2006111717A
JP2006111717A JP2004299974A JP2004299974A JP2006111717A JP 2006111717 A JP2006111717 A JP 2006111717A JP 2004299974 A JP2004299974 A JP 2004299974A JP 2004299974 A JP2004299974 A JP 2004299974A JP 2006111717 A JP2006111717 A JP 2006111717A
Authority
JP
Japan
Prior art keywords
meth
acrylamide
particles
acid
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004299974A
Other languages
Japanese (ja)
Other versions
JP5034158B2 (en
Inventor
Kazuaki Muranaka
和昭 村中
Mahan Yamanaka
麻帆 山中
Kosuke Araki
康祐 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004299974A priority Critical patent/JP5034158B2/en
Priority to EP05022098A priority patent/EP1647559B1/en
Priority to US11/247,157 priority patent/US7659348B2/en
Publication of JP2006111717A publication Critical patent/JP2006111717A/en
Application granted granted Critical
Publication of JP5034158B2 publication Critical patent/JP5034158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that an acrylamide particle has weak mechanical strength and difficulty in use as a particle having about 10 μm particle diameter for liquid chromatography and in production of an acrylamide having an arbitrary crosslinking degree of particle diameter monodispersion. <P>SOLUTION: The crosslinked (meth) acrylamide particle has a high crosslinking degree and high mechanical strength. The method which produces the crosslinked (meth) acrylamide particle as a particle having a particle diameter monodispersion is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は架橋(メタ)アクリルアミド粒子に関する。   The present invention relates to crosslinked (meth) acrylamide particles.

(メタ)アクリルアミド単量体を重合組成物として含む重合粒子(以下、(メタ)アクリルアミド粒子という)は親水性が高く、保湿などに優れ、生体毒性も小さいことからインクバインダー、表面処理剤、化粧品などに幅広く用いられている。特に液体クロマトグラフィー用基材としては、水系溶離液を用いた場合に試料と基材との疎水的相互作用が小さいことからタンパク質や核酸等の精製用担体として優れた特性を有している。   Polymerized particles containing a (meth) acrylamide monomer as a polymerization composition (hereinafter referred to as (meth) acrylamide particles) are highly hydrophilic, have excellent moisture retention, and have low biotoxicity. Therefore, ink binders, surface treatment agents, and cosmetics are used. It is widely used for. In particular, the substrate for liquid chromatography has excellent characteristics as a carrier for purification of proteins, nucleic acids, and the like because the hydrophobic interaction between the sample and the substrate is small when an aqueous eluent is used.

従来親水性粒子としては、セルロース、デキストラン又はアガロースなどの多糖類を架橋させた粒子が広く知られている。多糖系の架橋粒子を作成する際には、多糖及び架橋剤の水溶液を有機溶媒に逆相懸濁し、多糖を架橋剤であるエポキシ化合物や、ジアルデヒド類などで架橋することにより製造されている。   Conventionally, as hydrophilic particles, particles obtained by crosslinking polysaccharides such as cellulose, dextran, or agarose are widely known. When preparing polysaccharide-based crosslinked particles, an aqueous solution of a polysaccharide and a crosslinking agent is suspended in an organic solvent in reverse phase, and the polysaccharide is crosslinked with an epoxy compound or dialdehyde as a crosslinking agent. .

また(メタ)アクリルアミド粒子は水溶性である(メタ)アクリルアミドを重合して作成され、一般的には逆相懸濁により重合する方法がとられている(特許文献1、特許文献2、特許文献3、特許文献4)。逆相懸濁重合以外の製造法としては、(メタ)アクリルアミド粒子の粒子径のそろった単分散粒子作成法として有機溶媒中での分散重合法が知られている(特許文献5)。またその他の製造法としては、臨界二酸化炭素中での重合法(特許文献6)や噴霧による方法(特許文献7)が知られている。   Further, (meth) acrylamide particles are prepared by polymerizing water-soluble (meth) acrylamide, and generally, a method of polymerizing by reverse phase suspension is employed (Patent Document 1, Patent Document 2, Patent Document). 3, Patent Document 4). As a production method other than the reverse phase suspension polymerization, a dispersion polymerization method in an organic solvent is known as a method for producing monodisperse particles having a uniform particle diameter of (meth) acrylamide particles (Patent Document 5). As other production methods, a polymerization method in critical carbon dioxide (Patent Document 6) and a spray method (Patent Document 7) are known.

またN−アルコキシメチル(メタ)アクリルアミドは自己架橋性モノマーであり、酸触媒によりアルコキシ基が脱離し、容易に自己架橋もしくは、アミド基、アミノ基等と結合しうることが知られている。このため、繊維加工に使用されたり(特許文献8、特許文献9)、コロイドの分散剤(特許文献10、特許文献11)や塗膜形成用材料(特許文献12、特許文献13)として用いられている。   Further, N-alkoxymethyl (meth) acrylamide is a self-crosslinking monomer, and it is known that an alkoxy group can be eliminated by an acid catalyst and can easily bond to a self-crosslink or an amide group, an amino group or the like. For this reason, it is used for fiber processing (Patent Literature 8, Patent Literature 9), and used as a colloidal dispersant (Patent Literature 10, Patent Literature 11) or a coating film forming material (Patent Literature 12, Patent Literature 13). ing.

米国特許第4070348号(請求項6)U.S. Pat. No. 4,070,348 (Claim 6) 米国特許第4190713号(要約)US Pat. No. 4,190,713 (abstract) 米国特許第4511694号(請求項1)U.S. Pat. No. 4,511,694 (Claim 1) 特開昭59−232101号公報(請求項10)JP 59-232101 (Claim 10) 米国特許第4988568号(要約、請求項3)U.S. Pat. No. 4,988,568 (summary, claim 3) 米国特許第4748220号(要約、請求項4)U.S. Pat. No. 4,748,220 (Abstract, Claim 4) 特開2003−211003号公報(請求項1)JP 2003-211003 A (Claim 1) 米国特許第5219969号(要約)US Pat. No. 5,219,969 (abstract) 米国特許第5314943号(発明の背景)US Pat. No. 5,149,943 (Background of the Invention) 米国特許第5385971号(発明の詳細)US Pat. No. 5,385,971 (Details of the Invention) 米国特許第6316568号(請求項3)US Pat. No. 6,316,568 (Claim 3) 特開昭51−8343号公報(第3項、実施例5)Japanese Patent Laid-Open No. 51-8343 (Section 3, Example 5) 米国特許第4107156号(実施例15)US Pat. No. 4,107,156 (Example 15)

(メタ)アクリルアミド粒子は親水性粒子としての特性から種々の分野で使用されている。しかし、機械的強度が弱いという問題点を有していた。そして機械的強度が弱いために微粒子化が困難となり、液体クロマトグラフィーに用いられる様な50μm以下、特に10μm程度の粒子を充填剤として使用することができないという課題が残っていた。   (Meth) acrylamide particles are used in various fields because of their properties as hydrophilic particles. However, there is a problem that the mechanical strength is weak. Since the mechanical strength is weak, it is difficult to make fine particles, and there remains a problem that particles of 50 μm or less, particularly about 10 μm, which are used in liquid chromatography cannot be used as a filler.

また、(メタ)アクリルアミド粒子の製造法において粒子径制御が困難であるという問題点が挙げられる。これは、(メタ)アクリルアミド粒子の製造法として一般的な手法である逆相懸濁重合法は粒子径制御が難しく、また順相懸濁重合法における粒子径単分散粒子の製造法であるシード重合法は行うことができないことに起因する。分散重合による方法では粒子径のそろった(メタ)アクリルアミド粒子を作成可能であるが、作成可能な粒子径範囲が10μm以下と狭いという点、及び架橋性単量体と(メタ)アクリルアミドとの比を変更すると粒子径も変化してしまい架橋度を大きくすると粒子径が小さくなることから架橋度を任意に変更できない点、で問題点を有していた。   Another problem is that it is difficult to control the particle diameter in the method for producing (meth) acrylamide particles. This is because it is difficult to control the particle size in the reverse phase suspension polymerization method, which is a general method for producing (meth) acrylamide particles, and the seed is a method for producing monodisperse particles in the normal phase suspension polymerization method. This is because the polymerization method cannot be performed. The dispersion polymerization method can produce (meth) acrylamide particles having a uniform particle diameter, but the range of particle diameters that can be produced is as narrow as 10 μm or less, and the ratio between the crosslinkable monomer and (meth) acrylamide. However, since the particle size also changes when the particle size is changed and the particle size decreases when the degree of crosslinking is increased, the degree of crosslinking cannot be arbitrarily changed.

本発明の目的は、高い親水性と機械的強度を兼ね備えた架橋(メタ)アクリルアミド粒子を提供することであり、特に液体クロマトグラフィー用充填剤として優れた性質を有する架橋(メタ)アクリルアミド粒子を提供することにある。また本発明の順相懸濁重合により作製された重合体粒子を自己架橋させる製造法により、高度の架橋度を有した架橋(メタ)アクリルアミド粒子を容易に作製できる製造法を提供することにある。またシード重合法を用いることにより、他粒子径単分散の架橋(メタ)アクリルアミド粒子製造法を提供することにある。   An object of the present invention is to provide crosslinked (meth) acrylamide particles having both high hydrophilicity and mechanical strength, and particularly to provide crosslinked (meth) acrylamide particles having excellent properties as a filler for liquid chromatography. There is to do. Another object of the present invention is to provide a production method capable of easily producing crosslinked (meth) acrylamide particles having a high degree of crosslinking by the production method of self-crosslinking polymer particles produced by normal phase suspension polymerization of the present invention. . Another object of the present invention is to provide a method for producing monodispersed crosslinked (meth) acrylamide particles by using a seed polymerization method.

本発明によれば(メタ)アクリルアミドと(メタ)アクリルアミドと共重合しうる多官能不飽和単量体との重合物からなる実質的に球形の微粒子において、(メタ)アクリルアミド単量体に由来する構造単位が、化学式1(化学式1中のXは水素又はメチル基であり、R1及びR2は他の(メタ)アクリルアミド単量体に由来する構造単位の窒素原子にメチレン基を介して結合していることを表す)で表される架橋構造により架橋されてなる、粒子径が1〜1000μmである架橋(メタ)アクリルアミド粒子は、(メタ)アクリルアミドの高い親水性と従来にない高い機械的強度を示すため、液体クロマトグラフィー用充填剤として使用する際に、粒子径を10μm程度まで小さくすることが可能となるため特に有用である。   According to the present invention, substantially spherical fine particles comprising a polymer of (meth) acrylamide and a polyfunctional unsaturated monomer copolymerizable with (meth) acrylamide are derived from the (meth) acrylamide monomer. The structural unit is represented by Chemical Formula 1 (X in Chemical Formula 1 is hydrogen or methyl group, and R1 and R2 are bonded to the nitrogen atom of the structural unit derived from other (meth) acrylamide monomer via a methylene group. Cross-linked (meth) acrylamide particles having a particle diameter of 1 to 1000 μm, which are cross-linked by a cross-linked structure represented by the formula (1) indicate that (meth) acrylamide has high hydrophilicity and unprecedented high mechanical strength. In order to show, when using as a filler for liquid chromatography, since it becomes possible to reduce a particle diameter to about 10 micrometers, it is especially useful.

また該架橋(メタ)アクリルアミド粒子は製造法として、N−アルコキシメチル(メタ)アクリルアミド単量体及びN−アルコキシメチル(メタ)アクリルアミド単量体と共重合しうる多官能不飽和単量体とを懸濁重合法により作製した重合体粒子(以下、本重合体粒子という)を有機溶媒中に分散したのち、化学式2(化学式2中のAは重合体粒子を表す)で表される酸触媒により自己架橋反応により容易に製造することが可能である。懸濁重合法として油溶性のN−アルコキシメチル(メタ)アクリルアミド単量体を用いることにより順相懸濁重合が可能であり、シード重合法を用いることにより粒子径単分散粒子である架橋アクリルアミド粒子を製造することが可能となった。   In addition, the crosslinked (meth) acrylamide particles are produced by using an N-alkoxymethyl (meth) acrylamide monomer and a polyfunctional unsaturated monomer copolymerizable with the N-alkoxymethyl (meth) acrylamide monomer. After polymer particles produced by suspension polymerization (hereinafter referred to as the present polymer particles) are dispersed in an organic solvent, an acid catalyst represented by chemical formula 2 (A in chemical formula 2 represents polymer particles) is used. It can be easily produced by a self-crosslinking reaction. Normal phase suspension polymerization is possible by using an oil-soluble N-alkoxymethyl (meth) acrylamide monomer as a suspension polymerization method, and cross-linked acrylamide particles that are monodisperse particles by using a seed polymerization method It became possible to manufacture.

以下に本発明について詳細に説明する。   The present invention is described in detail below.

本発明の粒子径が1〜1000μmである架橋(メタ)アクリルアミド粒子は(メタ)アクリルアミド単量体に由来する構造単位と多官能不飽和単量体に由来する構造単位からなり、化学式1で表される様に(メタ)アクリルアミド単量体に由来する構造単位のアミド基窒素原子がメチレン基を介して、他のアミド基窒素原子と架橋されており、この架橋構造を単位構造あたり2カ所有することができる。   The crosslinked (meth) acrylamide particles having a particle diameter of 1 to 1000 μm according to the present invention are composed of a structural unit derived from a (meth) acrylamide monomer and a structural unit derived from a polyfunctional unsaturated monomer. As described above, the amide group nitrogen atom of the structural unit derived from the (meth) acrylamide monomer is cross-linked with another amide group nitrogen atom via the methylene group, and two cross-linked structures are owned per unit structure. be able to.

本発明の架橋(メタ)アクリルアミド粒子の製造法としては、逆相懸濁重合法により製造された(メタ)アクリルアミド粒子をホルマリンなどを用いて架橋構造とすることも可能であるが、シード重合により粒子径単分散である粒子を作製できることから、油溶性のN−アルコキシメチル(メタ)アクリルアミド単量体と多官能不飽和単量体から順相懸濁重合法により本重合体粒子を製造し、これを有機溶媒中酸触媒により自己架橋させる製造方法が、シード重合法により粒子径単分散粒子を作製できるだけではなく、加水分解などの副反応も発生しにくいことから好適である。   As a method for producing the crosslinked (meth) acrylamide particles of the present invention, the (meth) acrylamide particles produced by the reverse phase suspension polymerization method can be formed into a crosslinked structure using formalin or the like, but by seed polymerization. Since it is possible to produce particles that are monodisperse in particle size, the polymer particles are produced by a normal phase suspension polymerization method from an oil-soluble N-alkoxymethyl (meth) acrylamide monomer and a polyfunctional unsaturated monomer, A production method in which this is self-crosslinked with an acid catalyst in an organic solvent is preferable because not only monodisperse particles with a particle size can be produced by a seed polymerization method, but also side reactions such as hydrolysis hardly occur.

本発明の架橋(メタ)アクリルアミド粒子の製造に用いる(メタ)アクリルアミド単量体としては、順相懸濁重合で製造するために、単量体における構造としてN−アルコキシメチル(メタ)アクリルアミドを前駆体として用いることが好ましい。N−アルコキシ(メタ)アクリルアミド単量体は油溶性であることが好ましいことから、N−アルコキシ基としては疎水性で有ることが必要であり、C4以上の直鎖アルキル基であることが好ましく、特に重合体粒子をシード重合法により製造する場合には膨潤性についても考慮すると、アルコキシ基炭素鎖はC4〜C8の範囲である直鎖アルキル基であることが好ましい。   As the (meth) acrylamide monomer used for the production of the crosslinked (meth) acrylamide particles of the present invention, N-alkoxymethyl (meth) acrylamide is a precursor as the structure in the monomer in order to produce by normal phase suspension polymerization. It is preferable to use it as a body. Since the N-alkoxy (meth) acrylamide monomer is preferably oil-soluble, the N-alkoxy group needs to be hydrophobic, and is preferably a C4 or higher linear alkyl group, In particular, when the polymer particles are produced by a seed polymerization method, the alkoxy group carbon chain is preferably a linear alkyl group in the range of C4 to C8 in consideration of swelling properties.

本発明の架橋(メタ)アクリルアミド粒子の製造に用いる多官能不飽和単量体としては、油溶性単量体に由来する単位であり、N−アルコキシメチル(メタ)アクリルアミド単量体と共重合可能である必要がある。これらを例示するとエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の(メタ)アクリル酸エステル類、メチレンビスマレイミド、N,N’−(4−メチル−1,3−フェニレン)ビスマレイミド、N,N’−(フェニレン)ビスマレイミド、N,N’−(スルホニルジ−m−フェニレン)ビスマレイミドなどのビスマレイミド類、ジビニルベンゼン、トリアリルイソシアヌレート、メチレンビスアクリルアミドなどを挙げることができる。その使用量は、N−アルコキシメチル(メタ)アクリルアミドに対して0.01重量%から50重量%までの範囲内で使用可能であるが、多官能ビニル単量体の有する疎水性の効果を低減する観点及び、得られた粒子の強度の観点から考慮し、0.05重量%から2重量%の範囲が好ましい。   The polyfunctional unsaturated monomer used in the production of the crosslinked (meth) acrylamide particles of the present invention is a unit derived from an oil-soluble monomer and can be copolymerized with an N-alkoxymethyl (meth) acrylamide monomer. Need to be. Examples of these are (meth) acrylic acid esters such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, Methylene bismaleimide, N, N ′-(4-methyl-1,3-phenylene) bismaleimide, N, N ′-(phenylene) bismaleimide, N, N ′-(sulfonyldi-m-phenylene) bismaleimide, etc. And bismaleimides, divinylbenzene, triallyl isocyanurate, and methylene bisacrylamide. The amount used can be within a range of 0.01% to 50% by weight with respect to N-alkoxymethyl (meth) acrylamide, but the hydrophobic effect of the polyfunctional vinyl monomer is reduced. Considering from the viewpoint of improving the strength of the obtained particles and the range of 0.05% by weight to 2% by weight, it is preferable.

N−アルコキシメチル(メタ)アクリルアミド単量体と多官能不飽和単量体に対して、その他の単量体を共重合することも可能である。しかしその他の単量体は油溶性の疎水性モノマーである必要があることから、架橋(メタ)アクリルアミド粒子の疎水性を増すことになるため本重合体粒子を出発原料として重合組成物である(メタ)アクリルアミドの親水性を生かした粒子を作成する場合にはその他の単量体を加えることは好ましくない。   Other monomers can be copolymerized with the N-alkoxymethyl (meth) acrylamide monomer and the polyfunctional unsaturated monomer. However, since the other monomers need to be oil-soluble hydrophobic monomers, the hydrophobicity of the crosslinked (meth) acrylamide particles is increased. It is not preferable to add other monomers when preparing particles utilizing the hydrophilicity of (meth) acrylamide.

本発明の架橋(メタ)アクリルアミド粒子の製造法においては、順相懸濁重合に用いる重合開始剤として、一般にビニルモノマーのラジカル重合を行う際に用いられる油溶性重合開始剤を使用することが可能であるが、懸濁重合で行うため、10時間半減期が100度未満の重合開始剤を用いることが好適である。重合開始剤の使用量としては単量体に対して0.01モル%から1.0モル%の範囲内で使用し、特に0.05モル%から0.5モル%の範囲内が好ましい。また重合開始剤を使用せず、紫外線や放射線により重合させることも可能である。   In the method for producing crosslinked (meth) acrylamide particles of the present invention, an oil-soluble polymerization initiator generally used for radical polymerization of vinyl monomers can be used as a polymerization initiator used for normal phase suspension polymerization. However, since it is carried out by suspension polymerization, it is preferable to use a polymerization initiator having a 10-hour half-life of less than 100 degrees. The amount of the polymerization initiator used is in the range of 0.01 mol% to 1.0 mol%, particularly preferably in the range of 0.05 mol% to 0.5 mol%, based on the monomer. It is also possible to polymerize by ultraviolet rays or radiation without using a polymerization initiator.

本発明中の順相懸濁重合では、懸濁油滴を安定化するために用いられている一般的な高分子分散安定剤を使用することが可能であり、例としてポリビニルアルコール、ヒドロキシプロピルセルロース、ポリビニルピロリドン、ポリエチレングリコール、ポリアクリル酸ナトリュウムなどを挙げることができるが、有機酸系ポリマーを用いる場合には、水相が酸性とならないようにpHを4以上に調製する必要があるため、一般的なポリビニルアルコールやヒドロキシプロピルセルロースなどの非イオン性高分子を用いることが好適である。これらの使用量としては、水相中濃度として0.1重量%から20重量%使用することが可能であり、0.5重量%から10重量%とすることが重合後の洗浄の観点から好適である。   In the normal phase suspension polymerization in the present invention, it is possible to use a general polymer dispersion stabilizer used for stabilizing suspended oil droplets, such as polyvinyl alcohol and hydroxypropyl cellulose. , Polyvinyl pyrrolidone, polyethylene glycol, sodium polyacrylate, etc., but when using an organic acid polymer, it is necessary to adjust the pH to 4 or higher so that the aqueous phase does not become acidic. It is preferable to use nonionic polymers such as typical polyvinyl alcohol and hydroxypropyl cellulose. The amount used thereof can be 0.1 to 20% by weight as the concentration in the aqueous phase, and is preferably 0.5 to 10% by weight from the viewpoint of washing after polymerization. It is.

重合は熱分解性重合開始剤を用いる場合には加熱により、開始剤を用いずに放射線重合等による場合には常温で放射線を照射することにより重合可能であり特に制限はない。   Polymerization can be carried out by heating when using a thermally decomposable polymerization initiator, and by irradiation with radiation at room temperature when using radiation polymerization without using an initiator, and there is no particular limitation.

シード重合により順相懸濁重合する場合、粒子径単分散化を目的として使用されているソープフリー乳化重合法や分散重合法により得られたポリスチレンやポリ(スチレン・アクリル酸エステル)共重合粒子、メタアクリル酸エステル粒子等を用いることができる。特に膨潤性やシード粒子ポリマーがN−アルコキシメチル(メタ)アクリルアミド重合物と相分離を起こしにくい観点から特開2001−2716号に示されているシード粒子ポリマーを用いることが好適である。シード重合を行う際のシード粒子ポリマーと単量体の比で表される膨潤率は特に制限はなく、シード粒子体積に対して約10,000倍程度の膨潤が可能であり、目的粒子径に合わせて設定可能である。   In the case of normal phase suspension polymerization by seed polymerization, polystyrene and poly (styrene / acrylate ester) copolymer particles obtained by soap-free emulsion polymerization and dispersion polymerization methods used for the purpose of monodisperse particle size, For example, methacrylic acid ester particles can be used. In particular, it is preferable to use a seed particle polymer disclosed in JP-A-2001-2716 from the viewpoint of swelling property and the seed particle polymer hardly causing phase separation from the N-alkoxymethyl (meth) acrylamide polymer. There is no particular limitation on the swelling ratio expressed by the ratio of the seed particle polymer to the monomer when performing seed polymerization, and the swelling can be about 10,000 times the seed particle volume, and the target particle size can be achieved. Can be set together.

シード重合により順相懸濁重合を行う際に用いる乳化剤は一般的なスルホン酸塩やノニオン系乳化剤を用いることができる。そのような例としてはラウリルスルホン酸ナトリュウム、ドデシルベンゼンスルホン酸ナトリュウム等のアルキルスルホン酸塩、ポリオキシエチレンソルビタンステアリン酸エステル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノラウリン酸エステルなどのノニオン系乳化剤を例示できる。特に油滴安定性の観点からアルキルスルホン酸塩とHLB8〜20のノニオン系乳化剤を併用することもできる。併用するノニオン系乳化剤の割合はアルキルスルホン酸塩に対して10重量%〜90重量%、好ましくは20重量%〜80重量%の割合で使用する。   As the emulsifier used when carrying out normal phase suspension polymerization by seed polymerization, a general sulfonate or nonionic emulsifier can be used. Examples include nonionic emulsifiers such as alkyl sulfonates such as sodium lauryl sulfonate and sodium dodecylbenzene sulfonate, polyoxyethylene sorbitan stearate, polyoxyethylene stearyl ether, and polyoxyethylene sorbitan monolaurate. It can be illustrated. In particular, from the viewpoint of oil droplet stability, an alkyl sulfonate and a nonionic emulsifier of HLB 8 to 20 can be used in combination. The ratio of the nonionic emulsifier used in combination is 10% to 90% by weight, preferably 20% to 80% by weight, based on the alkyl sulfonate.

シード重合により順相懸濁重合を行う際に用いる乳化剤としてアルキルスルホン酸塩のみを使用する場合、油滴安定性を向上させるためにN−アルコキシメチル(メタ)アクリルアミドよりも疎水性の大きい化合物を使用することも可能である。そのような疎水性の大きい化合物の例としてはブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、オクタノールなどのC4以上の高級アルコール、酢酸ブチルエステル、酢酸ペンチルエステル、酢酸ヘキシルエステル、酢酸フェニルエステル、酢酸ベンジルエステル、プロピオン酸エチルエステル、プロピオン酸ブチルエステル、安息香酸メチルエステル、安息香酸エチルエステルなどの有機酸エステル、ベンゼン、トルエン、キシレン等のC6からC9の芳香族化合物等を例示できる。膨潤性の観点からC5以上C6までの高級アルコール類又はC4以上C7までの有機酸エステル、ベンゼン、トルエンを用いることが好ましい。使用量は単量体全体に対して1重量%以上添加するが、必要以上に添加する必要はなく単量体全体に対して1重量%から50重量%使用することが好ましい。   When only alkyl sulfonate is used as an emulsifier used in normal phase suspension polymerization by seed polymerization, a compound having a higher hydrophobicity than N-alkoxymethyl (meth) acrylamide is used to improve oil droplet stability. It is also possible to use it. Examples of such highly hydrophobic compounds are C4 or higher alcohols such as butanol, pentanol, hexanol, cyclohexanol, octanol, acetic acid butyl ester, acetic acid pentyl ester, acetic acid hexyl ester, acetic acid phenyl ester, acetic acid benzyl ester. And organic acid esters such as propionic acid ethyl ester, propionic acid butyl ester, benzoic acid methyl ester and benzoic acid ethyl ester, and C6 to C9 aromatic compounds such as benzene, toluene and xylene. From the viewpoint of swelling, it is preferable to use higher alcohols having 5 to 6 carbon atoms or organic acid esters having -4 to 7 carbon atoms, benzene, and toluene. The amount used is 1% by weight or more based on the whole monomer, but it is not necessary to add more than necessary, and it is preferable to use 1% to 50% by weight based on the whole monomer.

重合して得られた本重合体粒子は、高分子分散安定剤を取り除くために、適切な溶媒、一般的には温水を用いて洗浄する。   The polymer particles obtained by polymerization are washed with an appropriate solvent, generally warm water, in order to remove the polymer dispersion stabilizer.

本発明の製造法では、得られた本重合体粒子を有機溶媒中に分散し、酸触媒によりアルコキシ基を脱離させ粒子内の他のアミド基と架橋結合させることにより、親水性ポリマー粒子とし、この工程を以下第二工程という。   In the production method of the present invention, the obtained polymer particles are dispersed in an organic solvent, alkoxy groups are eliminated by an acid catalyst, and crosslinked with other amide groups in the particles to form hydrophilic polymer particles. Hereinafter, this process is referred to as a second process.

本発明中の製造法における第二工程において用いる有機溶媒としては、酸触媒に安定であり、N−アルコキシメチル基と反応性が無いものが好ましく、ジオキサン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルスルホキシド、ジメチルホルムアミド、ブタノール、ペンタノール、ヘキサノールなどの高級アルコール類、酢酸ブチルエステル、酢酸ペンチルエステル、酢酸ヘキシルエステル、酢酸フェニルエステル、酢酸ベンジルエステル、プロピオン酸エチルエステル、プロピオン酸ブチルエステル、安息香酸メチルエステル、安息香酸エチルエステルなどの有機酸エステルを例示することができる。また第二工程において用いる有機溶媒は用途に応じて、水との混合溶媒とすることも可能である。特に本重合粒子を多孔質とするために、本重合粒子が膨潤する溶媒で行うことが好適である。その使用量は、本重合粒子に対して2重量部、好ましくは4重量部以上とすることが好ましい。   The organic solvent used in the second step in the production method of the present invention is preferably one that is stable to an acid catalyst and has no reactivity with an N-alkoxymethyl group, such as dioxane, tetrahydrofuran, benzene, toluene, xylene, dimethyl sulfoxide. , Higher alcohols such as dimethylformamide, butanol, pentanol, hexanol, acetic acid butyl ester, acetic acid pentyl ester, acetic acid hexyl ester, acetic acid phenyl ester, acetic acid benzyl ester, propionic acid ethyl ester, propionic acid butyl ester, benzoic acid methyl ester And organic acid esters such as ethyl benzoate. In addition, the organic solvent used in the second step can be a mixed solvent with water depending on the application. In particular, in order to make the polymer particles porous, it is preferable to carry out with a solvent in which the polymer particles swell. The amount used is 2 parts by weight, preferably 4 parts by weight or more, based on the polymer particles.

本発明中の製造法における第二工程で使用する酸触媒としては、特に制限はないが強酸類が好ましく、塩酸、硫酸、トルエンスルホン酸などの鉱酸類、三フッ化ホウ素などのルイス酸を例示できる。その使用量は特に制限はないが、本重合粒子に対して0.01重量%以上が好ましく、特に0.1重量%以上が好適である。   The acid catalyst used in the second step in the production method of the present invention is not particularly limited, but strong acids are preferable, mineral acids such as hydrochloric acid, sulfuric acid and toluenesulfonic acid, and Lewis acids such as boron trifluoride are exemplified. it can. The amount used is not particularly limited, but is preferably 0.01% by weight or more, particularly preferably 0.1% by weight or more, based on the polymerized particles.

本発明中の製造法における第二工程は、使用する酸の種類及びその使用量により反応温度、反応時間を適切に調整し、アルコキシ基離脱により生成するアルコール生成量を計測することにより進行度を決定可能である。   In the second step in the production method of the present invention, the reaction temperature and reaction time are appropriately adjusted according to the type of acid used and the amount used, and the degree of progress is measured by measuring the amount of alcohol produced by the elimination of the alkoxy group. Can be determined.

得られた架橋(メタ)アクリルアミド粒子は温水又はで洗浄することにより、酸触媒、有機溶媒などを容易に取り除くことが可能である。   By washing the obtained crosslinked (meth) acrylamide particles with warm water or the like, it is possible to easily remove the acid catalyst, the organic solvent, and the like.

本発明によれば、架橋(メタ)アクリルアミド粒子を順相懸濁重合により製造可能となり、粒子径制御が容易なものとなった。特にシード重合法を用いることが可能となり粒子径単分散で多孔質な粒子を簡便に製造することが可能となった。また本発明により得られた粒子は、高架橋構造となり、従来の逆相懸濁重合により製造された多糖系粒子やアクリルアミド粒子と比較し遙かに機械的強度の大きい粒子を製造可能となった。機械的強度が改善されたことにより粒子径を小さく設定することが可能となり、液体クロマトグラフィー用充填剤として優れた性能を示す。   According to the present invention, crosslinked (meth) acrylamide particles can be produced by normal phase suspension polymerization, and the particle diameter can be easily controlled. In particular, a seed polymerization method can be used, and it becomes possible to easily produce porous particles having a monodispersed particle size. Further, the particles obtained according to the present invention have a highly crosslinked structure, and it has become possible to produce particles having much higher mechanical strength than polysaccharide-based particles and acrylamide particles produced by conventional reverse phase suspension polymerization. By improving the mechanical strength, it is possible to set the particle size small, and it exhibits excellent performance as a packing material for liquid chromatography.

以下本発明を実施例にて詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

実施例1
<シード粒子の製造>
500mLの三つ口フラスコにベンジルメタクリレート(東京化成工業製)30g、2−エチルヘキシルチオグリコール酸エステル (東京化成工業製)1.5g、過硫酸カリュウム(キシダ化学製)0.6g及びMill−Q水250gを入れ、撹拌しながら窒素パージを室温下で3時間行った。70℃に設定したオイルバスにフラスコをセットし重合を6時間行った。凝集分を濾別しシード粒子を得た。
シード粒子の粒子径はSEM観察により1.1μm CV6.8%であった。また分子量は下記測定装置によりサイズ排除クロマトグラフィー法(以下SECという)にて測定を行った結果ポリスチレン換算7800であった。またシード粒子溶液中の固形分濃度は8.8%であった。
Example 1
<Manufacture of seed particles>
In a 500 mL three-necked flask, 30 g of benzyl methacrylate (manufactured by Tokyo Chemical Industry), 1.5 g of 2-ethylhexyl thioglycolic acid ester (manufactured by Tokyo Chemical Industry), 0.6 g of potassium persulfate (manufactured by Kishida Chemical) and Mill-Q water 250 g was added and a nitrogen purge was performed for 3 hours at room temperature with stirring. The flask was set in an oil bath set at 70 ° C., and polymerization was carried out for 6 hours. Aggregates were separated by filtration to obtain seed particles.
The particle size of the seed particles was 1.1 μm CV 6.8% by SEM observation. Further, the molecular weight was measured by the size exclusion chromatography method (hereinafter referred to as SEC) with the following measuring apparatus, and as a result, it was 7800 in terms of polystyrene. The solid content concentration in the seed particle solution was 8.8%.

SEC測定条件
カラム:TSKgel GMHXL 7.8mmIDx30cm(東ソー製)
溶離液:テトラヒドロフラン
送液ポンプ:DP−8020(東ソー製)
検出器:UV−8020 波長254nmに設定(東ソー製)
標準試料:標準ポリスチレン(東ソー製)
測定流速:1.0mL/min
試料濃度:1mg/mL(THF溶液)

<N−アルコキシメチルアクリルアミド粒子の重合>
N−ブトキシメチルクリルアミド(和光純薬製)298.5g、エチレングリコールジメタクリレート(東京化成工業製)1.5g、1−ペンタノール(キシダ化学製)60g、V−65(重合開始剤 和光純薬製)0.46g、及びラウリルスルホン酸ナトリュウム(東京化成工業製)1.8gを1Lビーカにはかり取り、撹拌しながら良く混合した。これにイオン交換水600mLを加え、超音波ホモジナイザーを用いて乳化した。これに作成したシード粒子0.182g(固形分量)、4%ポリビニルアルコール水溶液(クラレ工業製 商品名ポバール224)600mLを加え3分間良く撹拌した。
溶液を3Lセパラブルフラスコに移し替え撹拌翼を取り付け室温下、100rpmの回転数でゆっくりと12時間撹拌した。顕微鏡観察によりシード粒子がモノマー混合液で膨潤し約13μmに膨潤していることが確認された。
セパラブルフラスコを65℃に設定したオイルバスに設置し、撹拌しながら3時間重合を行った。OV−17(ガスクロ工業製)カラムを用いたガスクロ分析によりモノマーが消失していることを確認した。重合終了後温水を用い洗浄し重合粒子を得た。回収重量477g、含水率41%であった。

<第二工程>
得られた重合粒子を40℃にて1晩真空乾燥した。乾燥重合粒子50g、1,4−ジオキサン(和光純薬製)340gを500mLセパラブルフラスコに投入し、40℃に設定したオイルバス中で撹拌した。三フッ化ホウ素エチルエーテル錯体(キシダ化学製)0.5mLをフラスコ中に投入し、1時間撹拌後オイルバス温度を70℃に昇温しさらに1時間撹拌した。
SEC measurement condition column: TSKgel GMHXL 7.8 mm ID × 30 cm (manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran feed pump: DP-8020 (manufactured by Tosoh Corporation)
Detector: UV-8020 wavelength set to 254 nm (manufactured by Tosoh)
Standard sample: Standard polystyrene (manufactured by Tosoh)
Measurement flow rate: 1.0 mL / min
Sample concentration: 1 mg / mL (THF solution)

<Polymerization of N-alkoxymethylacrylamide particles>
N-butoxymethyl chloramide (manufactured by Wako Pure Chemical Industries) 298.5 g, ethylene glycol dimethacrylate (manufactured by Tokyo Chemical Industry) 1.5 g, 1-pentanol (manufactured by Kishida Chemical) 60 g, V-65 (polymerization initiator Wako Pure) 0.46 g (manufactured by Yakuhin) and 1.8 g of sodium lauryl sulfonate (manufactured by Tokyo Chemical Industry) were weighed into a 1 L beaker and mixed well with stirring. To this, 600 mL of ion-exchanged water was added and emulsified using an ultrasonic homogenizer. To this, 0.182 g (solid content) of prepared seed particles, 600 mL of 4% polyvinyl alcohol aqueous solution (trade name POVAL 224, manufactured by Kuraray Industrial Co., Ltd.) was added and stirred well for 3 minutes.
The solution was transferred to a 3 L separable flask, a stirring blade was attached, and the mixture was slowly stirred at room temperature for 12 hours at a rotation speed of 100 rpm. Microscopic observation confirmed that the seed particles were swollen with the monomer mixture and swollen to about 13 μm.
The separable flask was placed in an oil bath set at 65 ° C., and polymerization was carried out for 3 hours while stirring. It was confirmed that the monomer had disappeared by gas chromatography analysis using an OV-17 (Gascro Industry) column. After completion of the polymerization, washing with warm water was performed to obtain polymer particles. The recovered weight was 477 g, and the water content was 41%.

<Second step>
The obtained polymer particles were vacuum-dried at 40 ° C. overnight. 50 g of dried polymer particles and 340 g of 1,4-dioxane (manufactured by Wako Pure Chemical Industries, Ltd.) were put into a 500 mL separable flask and stirred in an oil bath set at 40 ° C. Boron trifluoride ethyl ether complex (manufactured by Kishida Chemical Co., Ltd.) (0.5 mL) was added to the flask, and the mixture was stirred for 1 hour.

得られた親水化粒子を温水洗浄し親水性多孔質粒子を得た。
得られた親水性多孔質粒子を6.0mmIDx15cmカラムに充填し、細孔特性をポリエチレングリコール(以下PEGという)を標準試料としてサイズ排除クロマトグラフィー法にて測定した。また親水性をベンジルアルコール保持力を指標として従来の親水性粒子と比較した。また機械的強度をカラムに充填した状態で、純水を通液し、その通液速度を直線的に変化させたときの送液圧力を計測する方法で測定した。
The obtained hydrophilized particles were washed with warm water to obtain hydrophilic porous particles.
The obtained hydrophilic porous particles were packed in a 6.0 mm ID × 15 cm column, and the pore characteristics were measured by size exclusion chromatography using polyethylene glycol (hereinafter referred to as PEG) as a standard sample. The hydrophilicity was compared with conventional hydrophilic particles using benzyl alcohol retention as an index. The mechanical strength was measured by a method in which pure water was passed in a state where the column was packed and the liquid feeding pressure was measured when the flow rate was changed linearly.

細孔特性測定条件
カラム:6.0mmIDx15cm
溶離液:イオン交換水
測定流速:0.5mL/min
送液ポンプ:DP−8020(東ソー製)
検出器:RI−8022(東ソー製)
試料:エチレングリコール、ポリエチレングリコール(分子量200,300,600,1000,3000,6000 和光純薬製)
排除限界分子量算出法:PEG 分子量 200、300及び600の溶出容量を通る直線の分子量6000の溶出位置におけるPEG換算分子量
空孔率算出法:(エチレングリコール溶出容量−PEG6000溶出容量)/(カラム容量−PEG6000溶出容量)x100
疎水性測定条件
測定試料以外細孔特性測定条件に同じ
試料:エチレングリコール、ベンジルアルコール
疎水性値:ベンジルアルコール溶出容量/エチレングリコール溶出容量
機械的強度(送液抵抗)測定条件
カラム:4.6mmIDx10cm
送液溶媒:イオン交換水
流速グラジエント:0.2mL/minから10.2mL/minまで10分リニヤーグラジエント
送液ポンプ:CCPM−II
検出:送液ポンプ圧力計出力より換算
強度:送液圧力が送液速度と直線関係からはずれる(変曲点)より概算
表1に排除限界分子量、細孔容積及び疎水性試験の結果を図1に機械的強度測定結果を示す。疎水性は若干大きいが、機械的強度は6MPa程度から粒子変形の効果が見られる程度と非常に高い強度を有していた。
Pore property measurement condition column: 6.0 mm ID × 15 cm
Eluent: ion-exchanged water measurement flow rate: 0.5 mL / min
Liquid feed pump: DP-8020 (manufactured by Tosoh)
Detector: RI-8022 (manufactured by Tosoh)
Sample: ethylene glycol, polyethylene glycol (molecular weight 200, 300, 600, 1000, 3000, 6000, manufactured by Wako Pure Chemical Industries, Ltd.)
Exclusion limit molecular weight calculation method: PEG molecular weight PEG conversion molecular weight porosity calculation method at a linear molecular weight 6000 elution position passing through elution volumes of 200, 300 and 600: (ethylene glycol elution volume-PEG 6000 elution volume) / (column volume- PEG6000 elution volume) x100
Hydrophobicity measurement conditions Samples other than measurement samples Same as pore characteristic measurement conditions: ethylene glycol, benzyl alcohol Hydrophobicity value: benzyl alcohol elution capacity / ethylene glycol elution capacity Mechanical strength (liquid feeding resistance) measurement condition column: 4.6 mm ID × 10 cm
Liquid solvent: Ion-exchanged water flow rate gradient: 0.2 mL / min to 10.2 mL / min for 10 minutes Linear gradient liquid pump: CCPM-II
Detection: Converted intensity from liquid pump pressure gauge output: Liquid transfer pressure deviates from linear relationship with liquid feed speed (inflection point). Table 1 shows the results of exclusion limit molecular weight, pore volume, and hydrophobicity test in Table 1. Shows the mechanical strength measurement results. Although the hydrophobicity was slightly large, the mechanical strength was as high as about 6 MPa from which the effect of particle deformation was observed.

Figure 2006111717
Figure 2006111717

実施例2
N−ブトキシメチルクリルアミド(和光純薬製)285.0g、エチレングリコールジメタクリレート(東京化成工業製)15gに変更した以外は実施例1と同様に親水化粒子を製造した。
Example 2
Hydrophilic particles were produced in the same manner as in Example 1 except that 285.0 g of N-butoxymethyl chloramide (Wako Pure Chemical Industries, Ltd.) and 15 g of ethylene glycol dimethacrylate (Tokyo Chemical Industry) were used.

得られた親水性多孔質粒子を実施例1と同様に細孔特性、疎水性、機械的強度を測定した。疎水性は大きく、細孔径は小さくなった。機械的強度は測定範囲内(10MPa以下)において粒子変形などの効果は見られない非常に高い強度を有していた。   The obtained hydrophilic porous particles were measured for pore characteristics, hydrophobicity and mechanical strength in the same manner as in Example 1. The hydrophobicity was large and the pore size was small. The mechanical strength was very high within the measurement range (10 MPa or less) and no effects such as particle deformation were observed.

比較例1
PIERCE製ポリアクリルアミド 商品名D−Salt Polyacrylamide1800をカラムより抜きだし実施例1と同様な測定を行った。細孔容積は大きく疎水性も小さいが、粒子径が大きいため送液抵抗は小さいものの機械的強度は弱く1.7MPa程度で圧潰した。
Comparative Example 1
PIERCE polyacrylamide product name D-Salt Polyacrylamide 1800 was extracted from the column, and the same measurement as in Example 1 was performed. Although the pore volume is large and the hydrophobicity is small, the particle strength is large, so that the liquid feeding resistance is small, but the mechanical strength is weak and the material is crushed at about 1.7 MPa.

比較例2
アマシャム製 商品名 SephadexG25 Superfine 架橋デキストラン粒子を用いて実施例1と同様な測定を行った。細孔容積は大きく疎水性も小さいが、粒子径が大きいため送液抵抗は小さいものの機械的強度は弱く0.95MPa程度で圧潰した。
Comparative Example 2
Product name manufactured by Amersham Sephadex G25 Superfine The same measurement as in Example 1 was performed using crosslinked dextran particles. Although the pore volume is large and the hydrophobicity is small, the particle diameter is large, so that the liquid feeding resistance is small, but the mechanical strength is weak and it is crushed at about 0.95 MPa.

本発明の本架橋(メタ)アクリルアミド粒子は従来にない機械的強度を有していることから、各種バインダーやコーティング材料、化粧品、免疫診断用担体、液体クロマトグラフィー用充填剤としての使用法が考えられる。特に低い疎水性と高い機械的強度を併せ持つ特性を有する重合粒子は液体クロマトグラフィー用充填剤として特に優れた性能を有している。   Since the crosslinked (meth) acrylamide particles of the present invention have unprecedented mechanical strength, they can be used as various binders, coating materials, cosmetics, immunodiagnostic carriers, and liquid chromatography fillers. It is done. In particular, polymer particles having characteristics of having both low hydrophobicity and high mechanical strength have particularly excellent performance as a packing material for liquid chromatography.

カラムに送液する流速を変化させたときの送液圧変化を表すIndicates the change in the liquid supply pressure when the flow rate of liquid sent to the column is changed.

Claims (10)

(メタ)アクリルアミドと、(メタ)アクリルアミドと共重合しうる多官能不飽和単量体との、重合物からなる実質的に球形の微粒子において、(メタ)アクリルアミド単量体に由来する構造単位が、化学式1(化学式1中のXは水素又はメチル基であり、R1及びR2は他の(メタ)アクリルアミド単量体に由来する構造単位の窒素原子にメチレン基を介して結合していることを表す)で表される架橋構造により架橋されてなる、粒子径が1〜1000μmである架橋(メタ)アクリルアミド粒子。
Figure 2006111717
In a substantially spherical fine particle composed of a polymer of (meth) acrylamide and a polyfunctional unsaturated monomer copolymerizable with (meth) acrylamide, the structural unit derived from the (meth) acrylamide monomer is Chemical formula 1 (X in chemical formula 1 is hydrogen or a methyl group, and R1 and R2 are bonded to a nitrogen atom of a structural unit derived from another (meth) acrylamide monomer via a methylene group. Cross-linked (meth) acrylamide particles having a particle diameter of 1 to 1000 μm, which are cross-linked by a cross-linked structure represented by
Figure 2006111717
(メタ)アクリルアミド単量体に由来する単位と、多官能不飽和単量体に由来する単位の、モル比が99.99:0.01〜50:50の範囲内である請求項1記載の架橋(メタ)アクリルアミド粒子。 The molar ratio of the unit derived from the (meth) acrylamide monomer and the unit derived from the polyfunctional unsaturated monomer is in the range of 99.99: 0.01 to 50:50. Cross-linked (meth) acrylamide particles. 重合体粒子の細孔径がポリエチレングリコールを試料とした排除限界分子量5000以下である請求項1又は請求項2記載の架橋(メタ)アクリルアミド粒子。 The crosslinked (meth) acrylamide particles according to claim 1 or 2, wherein the polymer particles have a pore diameter of 5000 or less with polyethylene glycol as a sample. 請求項1ないし請求項3記載の架橋(メタ)アクリルアミド粒子の製造法であって、
(1)油溶性のN−アルコキシメチル(メタ)アクリルアミド、N−アルコキシメチル(メタ)アクリルアミドと共重合しうる多官能不飽和単量体、及び懸濁安定剤を水相に懸濁し、重合することにより重合体粒子を得る工程、
(2)工程(1)の重合体粒子が分散した有機溶媒中に、酸触媒を作用させることにより、化学式2に示される粒子内架橋を進行させる工程、
からなる架橋(メタ)アクリルアミド粒子の製造法。
Figure 2006111717
A method for producing crosslinked (meth) acrylamide particles according to claims 1 to 3,
(1) An oil-soluble N-alkoxymethyl (meth) acrylamide, a polyfunctional unsaturated monomer copolymerizable with N-alkoxymethyl (meth) acrylamide, and a suspension stabilizer are suspended in an aqueous phase and polymerized. A step of obtaining polymer particles by
(2) a step of causing intra-particle cross-linking represented by Chemical Formula 2 by allowing an acid catalyst to act in the organic solvent in which the polymer particles in step (1) are dispersed;
A method for producing crosslinked (meth) acrylamide particles comprising:
Figure 2006111717
請求項4記載の架橋(メタ)アクリルアミド粒子の製造法において、(1)の工程において、油溶性のN−アルコキシメチル(メタ)アクリルアミド、及びN−アルコキシメチル(メタ)アクリルアミドと共重合しうる多官能不飽和単量体を含む混合物を乳化剤を用いて水中に乳化し、これにシードポリマー粒子を作用させてシードポリマー粒子に単量体を吸収させ粒子径単分散単量体油滴を作成し、重合することを特徴とする架橋(メタ)アクリルアミド粒子の製造法。 5. The method for producing crosslinked (meth) acrylamide particles according to claim 4, wherein in the step (1), an oil-soluble N-alkoxymethyl (meth) acrylamide and a multi-polymerizable with N-alkoxymethyl (meth) acrylamide are copolymerized. A mixture containing a functional unsaturated monomer is emulsified in water using an emulsifier, and seed polymer particles are allowed to act on the mixture to absorb the monomer into the seed polymer particles, thereby creating monodisperse monomer oil droplets with a particle size. A method for producing crosslinked (meth) acrylamide particles characterized by polymerizing. 架橋(メタ)アクリルアミド粒子の製造法において、該粒子径単分散単量体油滴の安定化剤としてC4以上の高級アルコール又は有機酸エステル、C6からC9の芳香族化合物から選ばれた少なくとも一種以上の有機溶媒を単量体に対して1重量%以上作用させる請求項5記載の架橋(メタ)アクリルアミド粒子の製造法。 In the method for producing crosslinked (meth) acrylamide particles, at least one or more selected from C4 or higher alcohols or organic acid esters and C6 to C9 aromatic compounds as stabilizers for the monodisperse monomer droplets having a particle size of The method for producing crosslinked (meth) acrylamide particles according to claim 5, wherein the organic solvent is allowed to act on the monomer in an amount of 1% by weight or more. 乳化剤がアルキルスルホン酸塩又はアルキルベンゼンスルホン酸塩又はアルキルエーテル硫酸エステル塩であり、単量体に対して0.1〜5重量%用いる、請求項5又は請求項6記載の架橋(メタ)アクリルアミド粒子製造法。 The crosslinked (meth) acrylamide particles according to claim 5 or 6, wherein the emulsifier is an alkyl sulfonate, an alkyl benzene sulfonate, or an alkyl ether sulfate, and is used in an amount of 0.1 to 5% by weight based on the monomer. Manufacturing method. 乳化剤に対して1〜50重量%のHLB8〜20であるノニオン系乳化剤を併用する請求項7記載の架橋(メタ)アクリルアミド粒子製造法。 The method for producing crosslinked (meth) acrylamide particles according to claim 7, wherein a nonionic emulsifier which is 1 to 50% by weight of HLB 8 to 20% is used in combination with the emulsifier. 酸触媒が、塩酸、リン酸、硫酸などの鉱酸類、アルキルスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、シュウ酸、酢酸、マレイン酸などの有機酸類、トリフルオロホウ酸などのルイス酸などから選ばれた一種以上の酸である請求項4ないし請求項8記載の製造法。 The acid catalyst is selected from mineral acids such as hydrochloric acid, phosphoric acid and sulfuric acid, alkylsulfonic acid, benzenesulfonic acid, toluenesulfonic acid, organic acids such as oxalic acid, acetic acid and maleic acid, Lewis acid such as trifluoroboric acid, etc. 9. The method according to claim 4, wherein the acid is one or more acids. 請求項1ないし請求項3記載の架橋(メタ)アクリルアミド粒子を液体クロマトグラフィー用カラムに詰めた充填カラム。

A packed column in which the crosslinked (meth) acrylamide particles according to claim 1 are packed in a liquid chromatography column.

JP2004299974A 2004-10-14 2004-10-14 Cross-linked (meth) acrylamide particles, process for producing the same, and use thereof Expired - Fee Related JP5034158B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004299974A JP5034158B2 (en) 2004-10-14 2004-10-14 Cross-linked (meth) acrylamide particles, process for producing the same, and use thereof
EP05022098A EP1647559B1 (en) 2004-10-14 2005-10-11 Crosslinked (meth) acrylamide particles, process for their production and their use
US11/247,157 US7659348B2 (en) 2004-10-14 2005-10-12 Crosslinked (meth)acrylamide particles, process for their production and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299974A JP5034158B2 (en) 2004-10-14 2004-10-14 Cross-linked (meth) acrylamide particles, process for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2006111717A true JP2006111717A (en) 2006-04-27
JP5034158B2 JP5034158B2 (en) 2012-09-26

Family

ID=36380508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299974A Expired - Fee Related JP5034158B2 (en) 2004-10-14 2004-10-14 Cross-linked (meth) acrylamide particles, process for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP5034158B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237740A (en) * 2012-05-14 2013-11-28 Jsr Corp Method for producing polymer particles, polymer particles, filler for chromatography column, and chromatography column
US9334353B2 (en) 2012-05-14 2016-05-10 Jsr Corporation Method for producing polymer particles, polymer particles, filler for chromatography column, and chromatography column
WO2019039545A1 (en) 2017-08-23 2019-02-28 Jsr株式会社 Chromatography carrier, ligand-immobilizing carrier, chromatography column, target substance purification method, and chromatography carrier production method
CN109671893A (en) * 2017-10-17 2019-04-23 Sk新技术株式会社 For the diaphragm of secondary cell, its manufacturing method and including its lithium secondary battery
WO2020095963A1 (en) 2018-11-06 2020-05-14 Jsr株式会社 Method for producing organic sulfur compound, carrier, method for producing said carrier, ligand-immobilizing carrier, chromatography column, and method for detecting or isolating target substance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137398A (en) * 1978-04-18 1979-10-25 Sekisui Chemical Co Ltd Filled material for liquid chromatography
JPH06262071A (en) * 1993-03-12 1994-09-20 Mitsubishi Kasei Corp New resin for separation and its preparation
JPH0912629A (en) * 1995-06-28 1997-01-14 Mitsubishi Chem Corp Resin for separating lipoprotein
JPH11302304A (en) * 1998-04-17 1999-11-02 Sekisui Chem Co Ltd Production of polymer file particle and production of filler for liquid chromatography
JP2000191818A (en) * 1998-12-25 2000-07-11 Sekisui Chem Co Ltd Preparation of porous particulate
JP2006137944A (en) * 2004-10-14 2006-06-01 Tosoh Corp Crosslinked (meth)acrylamide particles, process for their production and their use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137398A (en) * 1978-04-18 1979-10-25 Sekisui Chemical Co Ltd Filled material for liquid chromatography
JPH06262071A (en) * 1993-03-12 1994-09-20 Mitsubishi Kasei Corp New resin for separation and its preparation
JPH0912629A (en) * 1995-06-28 1997-01-14 Mitsubishi Chem Corp Resin for separating lipoprotein
JPH11302304A (en) * 1998-04-17 1999-11-02 Sekisui Chem Co Ltd Production of polymer file particle and production of filler for liquid chromatography
JP2000191818A (en) * 1998-12-25 2000-07-11 Sekisui Chem Co Ltd Preparation of porous particulate
JP2006137944A (en) * 2004-10-14 2006-06-01 Tosoh Corp Crosslinked (meth)acrylamide particles, process for their production and their use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237740A (en) * 2012-05-14 2013-11-28 Jsr Corp Method for producing polymer particles, polymer particles, filler for chromatography column, and chromatography column
US9334353B2 (en) 2012-05-14 2016-05-10 Jsr Corporation Method for producing polymer particles, polymer particles, filler for chromatography column, and chromatography column
WO2019039545A1 (en) 2017-08-23 2019-02-28 Jsr株式会社 Chromatography carrier, ligand-immobilizing carrier, chromatography column, target substance purification method, and chromatography carrier production method
CN110997133A (en) * 2017-08-23 2020-04-10 Jsr株式会社 Chromatography carrier, ligand-immobilized carrier, chromatography column, method for purifying target substance, and method for producing chromatography carrier
KR20200043990A (en) 2017-08-23 2020-04-28 제이에스알 가부시끼가이샤 Chromatographic carrier, ligand-fixed carrier, chromatography column, method for purifying target substance, and method for preparing carrier for chromatography
JPWO2019039545A1 (en) * 2017-08-23 2020-10-01 Jsr株式会社 Chromatographic carrier, ligand-fixed carrier, chromatography column, method for purifying target substance, and method for producing chromatographic carrier
US20200360894A1 (en) * 2017-08-23 2020-11-19 Jsr Corporation Chromatography carrier, ligand-immobilizing carrier, chromatography column, target substance purification method, and chromatography carrier production method
JP7026116B2 (en) 2017-08-23 2022-02-25 Jsr株式会社 Chromatographic carrier, ligand-fixed carrier, chromatographic column, method for purifying target substance, and method for producing chromatographic carrier
KR102549800B1 (en) 2017-08-23 2023-06-30 제이에스알 가부시끼가이샤 Carrier for chromatography, ligand immobilized carrier, chromatography column, method for purifying a target substance, and method for preparing a carrier for chromatography
CN109671893A (en) * 2017-10-17 2019-04-23 Sk新技术株式会社 For the diaphragm of secondary cell, its manufacturing method and including its lithium secondary battery
CN109671893B (en) * 2017-10-17 2023-03-21 Sk新技术株式会社 Separator for secondary battery, method of manufacturing the same, and lithium secondary battery including the same
WO2020095963A1 (en) 2018-11-06 2020-05-14 Jsr株式会社 Method for producing organic sulfur compound, carrier, method for producing said carrier, ligand-immobilizing carrier, chromatography column, and method for detecting or isolating target substance

Also Published As

Publication number Publication date
JP5034158B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
CN106349421A (en) Polymer microsphere and preparation method thereof
JP2001002716A (en) Singly particle diameter-dispersed particle, method for producing the same and use by using the same
JP5292571B2 (en) Method for producing organic porous body, organic porous column and organic porous body
JP5034158B2 (en) Cross-linked (meth) acrylamide particles, process for producing the same, and use thereof
CN111662412A (en) Preparation method of uniform-particle-size polymer microspheres
Zheng et al. Narrow or monodisperse, physically cross-linked, and “living” spherical polymer particles by one-stage RAFT precipitation polymerization
Sand et al. Effects of reaction parameters on water absorption of poly (itaconic acid) superabsorbent particles synthesized by inverse suspension polymerization
JP2010529210A (en) New polymeric materials containing cross-linked spherical particles, methods of making the materials, and uses thereof
Yu et al. Diazoresin modified monodisperse porous poly (glycidylmethacrylate-co-divinylbenzene) microspheres as the stationary phase for high performance liquid chromatography
EP1647559B1 (en) Crosslinked (meth) acrylamide particles, process for their production and their use
KR101977195B1 (en) Method for Preparing Porous Polymer Composite Particles
JP4844076B2 (en) Cross-linked (meth) acrylamide particles, process for producing the same, and use thereof
JP2009018215A (en) Method of immobilizing core-shell polymer gel particle, and separation agent
JP2008264732A (en) Porous ion exchanger and manufacturing method thereof
JPH02280833A (en) Compounding and separating agent and its preparation
Zhang et al. Preparation of molecularly imprinted polymer for vanillin via seed swelling and suspension polymerization
KR102014742B1 (en) Mixed salt suspension polymerization process and resins and catalysts produced thereof
US6362245B1 (en) Porous co-polymer particles, process for preparing the same and use of the same
Karnka et al. Synthesis of Uniform and Stable Molecularly Imprinted Polymer Particles by Precipitation Polymerization
Dvorakova et al. Nonaqueous emulsion polymerization: A practical synthetic route for the production of molecularly imprinted nanospheres
Jun et al. Spherical Polarization Body: Synthesis of Monodisperse Micron‐Sized Polyaniline Composite Particles
CN109422988B (en) Polymethyl methacrylate-vinyl benzyl dimethyl dodecyl ammonium chloride-titanium dioxide composite material and preparation method thereof
JP2021195521A (en) Molded body and method for manufacturing the same
CN111770942A (en) Core-shell type polymer microparticle, particle dispersion, and method for producing microparticle
JP2890481B2 (en) Method for producing hydrophilic crosslinked copolymer particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5034158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees