JP2006111503A - Composite material containing dispersed ultrafine metal particles and manufacturing method thereof - Google Patents
Composite material containing dispersed ultrafine metal particles and manufacturing method thereof Download PDFInfo
- Publication number
- JP2006111503A JP2006111503A JP2004302270A JP2004302270A JP2006111503A JP 2006111503 A JP2006111503 A JP 2006111503A JP 2004302270 A JP2004302270 A JP 2004302270A JP 2004302270 A JP2004302270 A JP 2004302270A JP 2006111503 A JP2006111503 A JP 2006111503A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- composite
- matrix
- metal nanoparticles
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cosmetics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、金属ナノ粒子分散複合体に関するものであり、更に詳しくは、誘電部材等の電子部材セラミックスとして用いられるペロフスカイト型酸化物粉体/金属ナノ粒子複合体、又は化粧品、塗料に用いるための金属ナノ粒子分散複合体及びその製造方法に関するものである。 The present invention relates to a metal nanoparticle-dispersed composite, and more specifically, a perovskite-type oxide powder / metal nanoparticle composite used as an electronic member ceramic such as a dielectric member, or a cosmetic or paint. The present invention relates to a metal nanoparticle dispersed composite and a method for producing the same.
粒径が数μm以下の超微粒子は、表面エネルギーが大きい(全エネルギーに対する割合が高い)ために、従来の微粉とは異なった特性、例えば、量子サイズ効果による光学特性の変化、融点の低下、高触媒特性、高磁気特性等を発現することから、例えば、電子材料、触媒材料、蛍光体材料、発光体材料、医薬品等、様々な分野で広く用いられている。超微粒子の中でも、100nm以下の極小粒子は、ナノ粒子と称されており、これまでにない物性を有する材料として注目されている。 Ultrafine particles having a particle size of several μm or less have a large surface energy (a high ratio to the total energy), and therefore have characteristics different from those of conventional fine powders, such as changes in optical properties due to the quantum size effect, a decrease in melting point, Since it exhibits high catalytic properties, high magnetic properties, etc., it is widely used in various fields such as electronic materials, catalytic materials, phosphor materials, phosphor materials, pharmaceuticals, and the like. Among ultrafine particles, ultrafine particles of 100 nm or less are called nanoparticles, and are attracting attention as materials having unprecedented physical properties.
超微粒子の製造方法としては、出発物質の状態により、気相合成法、液相合成法、固相合成法のいずれかが好適に用いられる。気相合成法としては、蒸発法、熱分解法、化学気相堆積法、活性水素法等がある。また、液相合成法としては、共沈法、化合物沈殿法、還元析出法、ゾル−ゲル法、アルコキシド法、逆ミセル法等がある。また、固相合成法としては、シュウ酸塩熱分解法、クエン酸塩熱分解法等がある(非特許文献1)。また、BaTiO3とナノサイズのSiC粉体と分散してナノコンポジット化することによって機械的特性の向上を図る試みがある(非特許文献2)。 As a method for producing ultrafine particles, any one of a gas phase synthesis method, a liquid phase synthesis method, and a solid phase synthesis method is suitably used depending on the state of the starting material. Examples of the vapor phase synthesis method include an evaporation method, a thermal decomposition method, a chemical vapor deposition method, and an active hydrogen method. Examples of the liquid phase synthesis method include a coprecipitation method, a compound precipitation method, a reduction precipitation method, a sol-gel method, an alkoxide method, and a reverse micelle method. Examples of the solid phase synthesis method include an oxalate pyrolysis method and a citrate pyrolysis method (Non-patent Document 1). In addition, there is an attempt to improve mechanical properties by dispersing BaTiO 3 and nano-sized SiC powder to form a nanocomposite (Non-patent Document 2).
従来の超微粒子の製造方法では、粒子径が小さくなるにつれて該超微粒子の合成は技術的に非常に難しくなる。また、超微粒子を合成できたとしても、粒子自体の表面エネルギーが高い等により不安定な状態となるために、通常、凝集や粒子同士の反応等が起こり易く、粒子を安定化させることは非常に困難である。 In the conventional method for producing ultrafine particles, the synthesis of the ultrafine particles becomes technically very difficult as the particle diameter decreases. Even if ultrafine particles can be synthesized, the particles themselves become unstable due to high surface energy, etc., and therefore, aggregation and reaction between particles are usually likely to occur, and it is very difficult to stabilize the particles. It is difficult to.
金属ナノ粒子本来の特性を利用するためには、再分散化という煩雑かつ困難な工程が必要であるが、これまでにおいては、シングルナノオーダーで完全に分散し、しかも長期安定化を実現することが可能な技術は、ごく限られた種類の粒子でしか実現されていない。例えば、上述した気相合成法では、現段階ではナノオーダーの粒子を得ることはできるが、1回の操作でわずかな量しか得られず、生産性が劣るため、非常にコスト高となる。また、分散処理が困難であった。 In order to utilize the original properties of metal nanoparticles, a complicated and difficult process called redispersion is necessary. However, until now, it is possible to achieve complete long-term stabilization by completely dispersing in a single nano-order. However, the technology that can achieve this is realized only with a very limited number of particles. For example, in the above-described gas phase synthesis method, nano-order particles can be obtained at the present stage, but only a small amount can be obtained in one operation and the productivity is inferior, resulting in a very high cost. Also, distributed processing was difficult.
液相合成法の場合、通常の還元析出法や共沈法では、粒径分布が広くなり、分散安定性の低下が見られる。また、化合物沈殿法では、沈殿物を生成する条件が厳しく、限られた種類の粒子にしか適用できない。逆ミセル法では、界面活性剤のコストが高い等、様々な問題点があり、狭い粒度分布を有する金属ナノ粒子と金属酸化物との複合粉体を、生産性良く生成する製造方法は無いのが現状である。 In the case of the liquid phase synthesis method, in the normal reduction precipitation method or coprecipitation method, the particle size distribution becomes wide and the dispersion stability is reduced. In addition, the compound precipitation method has strict conditions for generating a precipitate, and can be applied only to limited types of particles. In the reverse micelle method, there are various problems such as high cost of the surfactant, and there is no production method for producing a composite powder of metal nanoparticles and metal oxides having a narrow particle size distribution with high productivity. Is the current situation.
また、粒径が10〜300nm程度の比較的小さい粒子の粉末は、保存環境などによって凝集が進む場合があり、この凝集した比較的小さい粒子の粉末をマトリックス粉末中に均一に分散させるのは困難である。すなわち、凝集した比較的小さい粒子の粉末をマトリックス粉末中に均一に分散させる場合、ハードミキサー等を使用して激しく攪拌を行う。これにより、粉末の凝集を破壊してマトリックス中に均一分散させるのであるが、攪拌時間が長くなり、生産性が悪く、生産コストが嵩むという問題があるし、特に、細かい粒子ほど解砕するためのエネルギーを多く必要とする。上記理由により、極小粒径及び狭い粒度分布が実現可能で、しかも、大量生産に適している金属ナノ粒子と金属酸化物との複合粉体の製造方法は、未だに実用化されていない。 In addition, aggregation of a relatively small particle powder having a particle size of about 10 to 300 nm may proceed depending on the storage environment, and it is difficult to uniformly disperse the aggregated relatively small particle powder in the matrix powder. It is. That is, when the agglomerated powder of relatively small particles is uniformly dispersed in the matrix powder, it is vigorously stirred using a hard mixer or the like. This breaks up the agglomeration of the powder and uniformly disperses it in the matrix, but there is a problem that the stirring time becomes long, the productivity is poor, and the production cost increases, and in particular, finer particles are crushed. Need a lot of energy. For the above reasons, a method for producing a composite powder of metal nanoparticles and metal oxides that can realize a very small particle size and a narrow particle size distribution and is suitable for mass production has not yet been put into practical use.
本発明は、上記の課題を解決するためになされたものであって、水系の液相合成法を用いて、粒径が小さく、粒度分布が狭いマトリックス粉体に、第二相である金属ナノ粒子が均一に分散した粉体を簡便な方法で生成し、提供することのできる金属ナノ粒子分散複合体の製造方法及び該複合粉体を提供することを目的とするものである。 The present invention has been made in order to solve the above-described problems, and uses a water-based liquid phase synthesis method to form a metal nanoparticle that is a second phase into a matrix powder having a small particle size and a narrow particle size distribution. An object of the present invention is to provide a method for producing a metal nanoparticle-dispersed composite capable of producing and providing a powder in which particles are uniformly dispersed by a simple method, and the composite powder.
上記課題を解決するための本発明は、マトリックスの金属酸化物微粒子の表面に金属ナノ粒子が凝集することなく析出又は高分散した構造を有し、該金属ナノ粒子の機能を保持している複合材料からなることを特徴とする金属ナノ粒子分散複合体、である。本複合体は、マトリックスの金属酸化物微粒子が、ペロブスカイト型酸化物粉体であること、金属ナノ粒子が、白金、銀、又は金のナノ粒子であること、マトリックス、Mg、Ca、Sr、Ba及びPbよりなるA群元素から選ばれる少なくとも1種の塩と、Ti、Zr、HfよりなるB群元素から選ばれる少なくとも1種の塩からなる化合物であること、上記の複合材料の焼結体からなること、を好ましい態様としている。また、本発明は、上記の複合体からなり、金属ナノ粒子の機能を有することを特徴とする機能性部材、である。本部材は、電子部材、化粧品又は塗料であること、を好ましい態様としている。 In order to solve the above problems, the present invention provides a composite having a structure in which metal nanoparticles are precipitated or highly dispersed without agglomerating on the surface of the metal oxide fine particles of the matrix and retaining the function of the metal nanoparticles. A metal nanoparticle-dispersed composite comprising a material. In this composite, the matrix metal oxide fine particles are perovskite oxide powder, the metal nanoparticles are platinum, silver, or gold nanoparticles, matrix, Mg, Ca, Sr, Ba And a compound comprising at least one salt selected from Group A elements consisting of Pb and Pb and at least one salt selected from Group B elements consisting of Ti, Zr, and Hf, and a sintered body of the above composite material It is a preferable aspect that it consists of. Moreover, this invention consists of said composite body, and is a functional member characterized by having the function of a metal nanoparticle. The present member is preferably an electronic member, cosmetic or paint.
本発明は、マトリックス粒子溶液に、第二相となる金属の化合物を溶媒に溶解して混合し、水熱反応を行うことによりマトリックス粒子の表面に第二相の金属ナノ粒子が析出又は高分散した複合材料を得ることを特徴とする金属ナノ粒子分散複合体の製造方法、である。本製造方法は、第二相となる金属の化合物が、白金、銀若しくは金の塩化物、又は銀の硝酸塩若しくは硫酸塩であること、マトリックスが、ペロブスカイト型酸化物粉体であること、マトリックスが、Mg、Ca、Sr、Ba及びPbよりなるA群元素から選ばれる少なくとも1種の塩と、Ti、Zr、HfよりなるB群元素から選ばれる少なくとも1種の塩からなる化合物であること、を好ましい態様としている。 In the present invention, the second phase metal nanoparticles are precipitated or highly dispersed on the surface of the matrix particles by mixing and mixing the metal compound as the second phase in the solvent in the matrix particle solution and performing a hydrothermal reaction. A method for producing a metal nanoparticle-dispersed composite, wherein the composite material is obtained. In this production method, the metal compound as the second phase is platinum, silver or gold chloride, or silver nitrate or sulfate, the matrix is a perovskite oxide powder, and the matrix is A compound comprising at least one salt selected from group A elements consisting of Mg, Ca, Sr, Ba and Pb, and at least one salt selected from group B elements consisting of Ti, Zr and Hf, Is a preferred embodiment.
次に、本発明について更に詳細に説明する。
本発明の金属ナノ粒子分散ペロブスカイト粉体の製造方法は、第二相となる金属の化合物を溶媒に溶解し、これをマトリックスペロブスカイト粉体溶液に混合した後、水熱反応を行うことにより、第二相金属及び金属前駆体が分散したペロブスカイト粉体を得ることができる。金属前駆体は、所定の熱処理を行うことにより、金属化することができ、金属ナノ粒子が分散したペロブスカイト粉体とすることが可能となる。ここで、金属前駆体とは、マトリックスへの固溶部分及び水酸化物などを意味する。熱処理の条件は、800℃から1400℃の範囲である。
Next, the present invention will be described in more detail.
The method for producing a metal nanoparticle-dispersed perovskite powder according to the present invention comprises dissolving a metal compound as a second phase in a solvent, mixing this in a matrix perovskite powder solution, and then performing a hydrothermal reaction, thereby A perovskite powder in which a two-phase metal and a metal precursor are dispersed can be obtained. The metal precursor can be metallized by performing a predetermined heat treatment, and a perovskite powder in which metal nanoparticles are dispersed can be obtained. Here, the metal precursor means a solid solution portion and a hydroxide in the matrix. The conditions for the heat treatment are in the range of 800 ° C to 1400 ° C.
本発明では、ペロブスカイト型酸化物粉体として、Mg、Ca、Sr、Ba及びPbよりなるA群元素から選ばれる少なくとも1種の塩と、Ti、Zr、HfよりなるB群元素から選ばれる少なくとも1種の塩からなる化合物があげられる。チタン酸バリウムを例として、その製造方法を説明すると、本発明に用いるチタン源には、チタン金属、塩化チタン、硫酸チタン、チタンアルコキシドなどの適当なチタン化合物を用意する。水溶性であることが適するが、適当なTi化合物を加水分解させて得られる固体生成物チタン水酸化物(TiO2・xH2O)を含むスラリーでも可能である。バリウム源には、硝酸バリウム、塩化バリウム、水酸化バリウムなどの適当なバリウム塩を用意する。水溶性であることが好適である。上記のチタンイオン、バリウムイオンの個々の溶液又は混合溶液に、アルカリを加えて中性よりも高いpHの溶液をすることが必要である。ここで、アルカリとしては、例えば、LiOH, NaOH, KOH, NH4OHが好適であるが、原料であるBa(OH)2を用いることが好適である。第二相金属には、白金、銀、金等の塩化物、銀の硝酸塩、硫酸塩、ヨウ化物、ヨウ素酸塩などが用いられる。 In the present invention, as the perovskite oxide powder, at least one salt selected from an A group element consisting of Mg, Ca, Sr, Ba and Pb and at least a B group element consisting of Ti, Zr and Hf are used. A compound composed of one kind of salt is exemplified. The production method will be described by taking barium titanate as an example. For the titanium source used in the present invention, an appropriate titanium compound such as titanium metal, titanium chloride, titanium sulfate, titanium alkoxide is prepared. It is suitable to be water-soluble, but a slurry containing a solid product titanium hydroxide (TiO 2 .xH 2 O) obtained by hydrolyzing an appropriate Ti compound is also possible. For the barium source, an appropriate barium salt such as barium nitrate, barium chloride, or barium hydroxide is prepared. It is preferable that it is water-soluble. It is necessary to add an alkali to each of the above titanium ion and barium ion solutions or mixed solutions to form a solution having a pH higher than neutral. Here, as the alkali, for example, LiOH, NaOH, KOH, and NH 4 OH are preferable, but Ba (OH) 2 that is a raw material is preferably used. As the second phase metal, chlorides such as platinum, silver and gold, silver nitrate, sulfate, iodide, iodate and the like are used.
次に、作用について説明すると、本発明では、例えば、チタンアルコキシドと塩化白金とを含む溶液をアルカリで加水分解し、バリウム塩と水熱反応させると、チタン酸バリウム粉末が合成される。第二相となる白金金属粒子は、焼結体を作製した場合に機械的特性の向上に寄与する。尚、これまで、BaTiO3とナノサイズのSiC粒子を分散してナノコンポジット化することによって機械的特性の向上を図る試みがあるが、このナノコンポジットは、BaTiO3原料粉末とSiCナノ粒子を機械的に混合し、ホットプレスして作製されているが、本発明の複合粉体は、例えば、白金粒子がマトリックス粒子の表面に析出又は高分散した複合体からなる点で、従来製品にない利点を有している。 Next, the function will be described. In the present invention, for example, when a solution containing titanium alkoxide and platinum chloride is hydrolyzed with an alkali and subjected to a hydrothermal reaction with a barium salt, barium titanate powder is synthesized. The platinum metal particles serving as the second phase contribute to improvement of mechanical properties when a sintered body is produced. Until now, attempts have been made to improve mechanical properties by dispersing BaTiO 3 and nano-sized SiC particles into a nanocomposite. However, this nanocomposite is a combination of BaTiO 3 raw material powder and SiC nanoparticles. However, the composite powder of the present invention has an advantage not found in conventional products in that it consists of a composite in which platinum particles are precipitated or highly dispersed on the surface of matrix particles, for example. have.
また、本発明において、水熱反応の条件は、pHが11以上である。水熱反応は100℃未満でも進行するが、この場合、チタン酸バリウムの生成に24時間以上の反応時間を要し、実用的ではないので、反応温度が高いほど好ましい。従って、反応容器の材質としては、耐熱性及び耐圧性に優れたものが好適であるが、その材質としてテトラフルオロエチレンを用いることも可能である。この場合、その耐熱性及び耐圧性の観点からは200℃以下が望ましい。 In the present invention, the pH of the hydrothermal reaction is 11 or more. The hydrothermal reaction proceeds even below 100 ° C., but in this case, the reaction time of 24 hours or more is required for the production of barium titanate, which is not practical, so the higher the reaction temperature, the better. Accordingly, a material having excellent heat resistance and pressure resistance is suitable as a material for the reaction vessel, but tetrafluoroethylene can also be used as the material. In this case, from the viewpoint of heat resistance and pressure resistance, 200 ° C. or lower is desirable.
本発明において、金属ナノ粒子のサイズは、数ナノメートルオーダーであり(図1(b))、その種類としては、例えば、白金粒子、銀粒子、金粒子が例示されるが、これらに制限されるものではなく同様の金属粒子であれば同様に使用される。また、ペロブスカイト型酸化物としては、チタン酸バリウムに代表される、Mg、Ca、Sr、Ba及びPbよりなるA群元素から選ばれる少なくとも1種の塩と、Ti、Zr、HfよりなるB群元素から選ばれる少なくとも1種の塩からなる化合物が例示される。本発明の金属ナノ粒子分散複合体としては、例えば、白金粒子分散チタン酸バリウムが例示されるが、これらに制限されるものではない。本複合粉体の用途としては、電磁遮蔽塗料などがあげられる。合成した粉体から作製した焼結体は、高強度で耐衝撃性が高い特徴を有する。その用途は、例えば、高強度誘電材料である。焼結条件は、好適には、大気中、1200〜1300℃である。本発明では、合成した粉体を適宜成形し、焼結することができる。 In the present invention, the size of the metal nanoparticles is on the order of several nanometers (FIG. 1 (b)), and examples of the type include platinum particles, silver particles, and gold particles, but are not limited thereto. If it is the same metal particle, it is used similarly. Further, as the perovskite oxide, at least one salt selected from group A elements consisting of Mg, Ca, Sr, Ba and Pb, represented by barium titanate, and group B consisting of Ti, Zr and Hf Examples include compounds composed of at least one salt selected from elements. Examples of the metal nanoparticle-dispersed composite of the present invention include, but are not limited to, platinum particle-dispersed barium titanate. Applications of the composite powder include electromagnetic shielding paints. A sintered body produced from the synthesized powder has characteristics of high strength and high impact resistance. The application is, for example, a high strength dielectric material. The sintering conditions are preferably 1200 to 1300 ° C. in the atmosphere. In the present invention, the synthesized powder can be appropriately molded and sintered.
本発明により、1)第二相となる金属ナノ粒子をマトリックス粒子の表面に析出又は分散させた複合粉体を提供することができる、2)それにより、金属ナノ粒子を凝集っせることなく、そのナノ粒子の機能を十分に生かすことができる金属ナノ粒子複合体からなる機能性部材を提供することができる、3)金属ナノ粒子を高分散化した複合材料を作製し、提供できる、という格別の効果が奏される。 According to the present invention, 1) it is possible to provide a composite powder in which the metal nanoparticles to be the second phase are deposited or dispersed on the surface of the matrix particles. 2) Thereby, without agglomerating the metal nanoparticles, It is possible to provide a functional member made of a metal nanoparticle composite that can make full use of the function of the nanoparticle, and 3) to produce and provide a composite material in which metal nanoparticles are highly dispersed. The effect of.
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これに限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
0.05molのチタンイソプロポキシド(Ti(O−i−C3H7)4)及び0.001molの硝酸銀(AgNO3)を正確に秤量し、内容積約100mlのテフロン(登録商標)製容器に入れて混合した後、30分超音波洗浄器にかけた。また、0.06molのBaOHを内容積約500mlのテフロン(登録商標)製容器中で300mlの蒸留水に溶解した。チタンの溶液をこの容器に混合し、6時間攪拌した。この溶液を内容積500mlのテフロン(登録商標)製内筒に入れてオートクレーブ装置を用い、テフロン(登録商標)製撹拌棒によって150rpmで撹拌しながら、温度180℃、圧力10kg/cm2の条件で6時間水熱合成を行なった。反応終了後、自然冷却した。生成物を容器から取り出し、水及びエタノールで数回洗浄した後、エバポレータにより固液分離し、真空乾燥し、チタン酸バリウム粉末を得た。得られた粉末は、粒子径:0.4μmであり、X線回折分析にしたところ、結晶構造は立方晶であった。また、TEMにより、数ナノメートルの粒子がチタン酸バリウム粒子の間に存在することが確認され、EDSにより銀のピークが確認された。 0.05 mol of titanium isopropoxide (Ti (O-i-C 3 H 7 ) 4 ) and 0.001 mol of silver nitrate (AgNO 3 ) are accurately weighed, and a Teflon (registered trademark) container having an internal volume of about 100 ml. And mixed in an ultrasonic cleaner for 30 minutes. Further, 0.06 mol of BaOH was dissolved in 300 ml of distilled water in a Teflon (registered trademark) container having an internal volume of about 500 ml. The titanium solution was mixed in the vessel and stirred for 6 hours. This solution was put in a Teflon (registered trademark) inner cylinder having an internal volume of 500 ml and stirred at 150 rpm with a Teflon (registered trademark) stirring rod at 150 rpm using a Teflon (registered trademark) stirring rod at a temperature of 180 ° C. and a pressure of 10 kg / cm 2 . Hydrothermal synthesis was performed for 6 hours. After completion of the reaction, it was naturally cooled. The product was taken out of the container, washed several times with water and ethanol, then solid-liquid separated by an evaporator and vacuum dried to obtain barium titanate powder. The obtained powder had a particle size of 0.4 μm and was subjected to X-ray diffraction analysis. As a result, the crystal structure was cubic. Further, it was confirmed by TEM that several nanometer particles were present between the barium titanate particles, and silver peak was confirmed by EDS.
0.05molのチタンイソプロポキシド(Ti(O−i−C3H7)4)及び0.001molの塩化白金(PtCl4・5H2O)を、内容積約100mlのテフロン(登録商標)製容器に入れて混合した後、30分超音波洗浄器にかけた。また、0.06molのBaOHを内容積約500mlのテフロン(登録商標)製容器中で300mlの蒸留水に溶解した。チタンの溶液をこの容器に混合し、6時間攪拌した。この溶液を内容積500mlのテフロン(登録商標)製内筒にいれてオートクレーブ装置を用い、テフロン(登録商標)製撹拌棒によって150rpmで撹拌しながら、温度180℃、圧力10kg/cm2の条件で6時間水熱合成を行なった。反応終了後、自然冷却した。生成物を容器から取り出し、水及びエタノールで数回洗浄した後、エバポレータにより固液分離し、真空乾燥し、チタン酸バリウム粉末を得た。得られた粉末は、粒子径:0.4μmであり、X線回折分析にしたところ、結晶構造は立方晶であった。また、TEMにより、数ナノメートルの粒子がチタン酸バリウム粒子の間に存在することが確認され、EDSにより白金のピークが確認された。 0.05 mol of titanium isopropoxide (Ti (Oi-C 3 H 7 ) 4 ) and 0.001 mol of platinum chloride (PtCl 4 .5H 2 O) were made of Teflon (registered trademark) with an internal volume of about 100 ml. After mixing in a container, it was subjected to an ultrasonic cleaner for 30 minutes. Further, 0.06 mol of BaOH was dissolved in 300 ml of distilled water in a Teflon (registered trademark) container having an internal volume of about 500 ml. The titanium solution was mixed in the vessel and stirred for 6 hours. This solution was placed in a Teflon (registered trademark) inner cylinder having an internal volume of 500 ml and stirred at 150 rpm with a Teflon (registered trademark) stirring rod at 150 rpm using a Teflon (registered trademark) stirring rod at a temperature of 180 ° C. and a pressure of 10 kg / cm 2 . Hydrothermal synthesis was performed for 6 hours. After completion of the reaction, it was naturally cooled. The product was taken out of the container, washed several times with water and ethanol, then solid-liquid separated by an evaporator and vacuum dried to obtain barium titanate powder. The obtained powder had a particle size of 0.4 μm and was subjected to X-ray diffraction analysis. As a result, the crystal structure was cubic. Further, it was confirmed by TEM that several nanometer particles were present between the barium titanate particles, and platinum peak was confirmed by EDS.
比較例
0.05molのチタンイソプロポキシド(Ti(O−i−C3H7)4)を、内容積約100mlのテフロン(登録商標)製容器に入れて混合した後、30分超音波洗浄器にかけた。また、0.06molのBaOHを内容積約500mlのテフロン(登録商標)製容器中で300mlの蒸留水に溶解した。チタンの溶液をこの容器に混合し、6時間攪拌した。この溶液を内容積500mlのテフロン(登録商標)製内筒にいれてオートクレーブ装置を用い、テフロン(登録商標)製撹拌棒によって150rpmで撹拌しながら、温度180℃、圧力10kg/cm2の条件で6時間水熱合成を行なった。反応終了後、自然冷却した。生成物を容器から取り出し、水及びエタノールで数回洗浄した後、エバポレータにより固液分離し、真空乾燥し、チタン酸バリウム粉末を得た。得られた粉末は、粒子径:0.6μmであり、X線回折分析にしたところ、結晶構造は立方晶であった。
Comparative Example After 0.05 mol of titanium isopropoxide (Ti (O-i-C 3 H 7 ) 4 ) was mixed in a Teflon (registered trademark) container having an internal volume of about 100 ml, ultrasonic cleaning was performed for 30 minutes. I put it in a bowl. Further, 0.06 mol of BaOH was dissolved in 300 ml of distilled water in a Teflon (registered trademark) container having an internal volume of about 500 ml. The titanium solution was mixed in the vessel and stirred for 6 hours. This solution was placed in a Teflon (registered trademark) inner cylinder having an internal volume of 500 ml and stirred at 150 rpm with a Teflon (registered trademark) stirring rod at 150 rpm using a Teflon (registered trademark) stirring rod at a temperature of 180 ° C. and a pressure of 10 kg / cm 2 . Hydrothermal synthesis was performed for 6 hours. After completion of the reaction, it was naturally cooled. The product was taken out of the container, washed several times with water and ethanol, then solid-liquid separated by an evaporator and vacuum dried to obtain barium titanate powder. The obtained powder had a particle size of 0.6 μm and was subjected to X-ray diffraction analysis. As a result, the crystal structure was cubic.
前記チタン酸バリウム粉末を0.8g取り、6.8MPaでペレット状(16mmφ×1mm)に一軸成形した後、CIP(Cold Isostatic Pressing)を100MPaかけた。成形体は、アルミナるつぼ中で焼成した。焼成は、大気中、電気炉によって昇温速度5℃/min、保持時間3時間で行った。焼結体の微構造は、試料表面を研磨後、熱処理温度の200℃低い温度で20分エッチングして走査電子顕微鏡で観察した。焼結体の比誘電率は(εs)及び誘電損失(tanδ)の温度特性(−10から150℃)は、試料を研磨した後、銀ペーストを塗布し、これを焼き付けて電極とし、インピーダンスアナライザー(アジレントテクノロジー製HP4194A)を用いて、交流1kHzで測定した。 0.8 g of the barium titanate powder was taken and uniaxially formed into a pellet (16 mmφ × 1 mm) at 6.8 MPa, and then CIP (Cold Isostatic Pressing) was applied at 100 MPa. The compact was fired in an alumina crucible. Firing was performed in the atmosphere with an electric furnace at a heating rate of 5 ° C./min and a holding time of 3 hours. The microstructure of the sintered body was observed with a scanning electron microscope after polishing the sample surface, etching for 20 minutes at a temperature 200 ° C. lower than the heat treatment temperature. The relative dielectric constant of the sintered body (εs) and the temperature characteristics (−10 to 150 ° C.) of dielectric loss (tan δ) were determined by polishing the sample, applying a silver paste, and baking it to form an electrode. (HP 4194A manufactured by Agilent Technologies) was used and measured at an alternating current of 1 kHz.
合成した粉体から作製した焼結体破面の走査電子顕微鏡写真を示す。チタン酸バリウムのみの場合には、10ミクロンまで粒子が大きく成長していることが確認された。しかし、チタン酸バリウム/銀の複合体は、4ミクロンまで抑制できた。これは、チタン酸バリウムマトリックスに分散した白金粒子や銀粒子などの二次粒子がマトリックスの粒成長を抑制したものと考えられる。また、同じくそれらの焼結体の誘電特性を測定した結果を示す。室温における誘電率は、銀との複合体が4000であり、白金との複合体が3000であった。それに対して、チタン酸バリウムのみの場合には2000であった。 The scanning electron micrograph of the sintered compact fracture surface produced from the synthesize | combined powder is shown. In the case of barium titanate alone, it was confirmed that the particles grew greatly to 10 microns. However, the barium titanate / silver composite could be suppressed to 4 microns. This is thought to be because secondary particles such as platinum particles and silver particles dispersed in the barium titanate matrix suppressed the growth of the matrix. Moreover, the result of having measured the dielectric characteristic of those sintered compacts similarly is shown. The dielectric constant at room temperature was 4000 for the complex with silver and 3000 for the complex with platinum. On the other hand, it was 2000 when only barium titanate was used.
以上詳述したように、本発明は、金属超微粒子分散金属酸化物粉体及びその製造方法に係るものであり、本発明によれば、粒子合成時より第二相となるナノ粒子をマトリックス粒子中に予め均一に分散した構造を持つ複合粉体を作製することにより、第二相ナノ粒子を凝集させることなく、そのナノ粒子の機能を十分に活かすことができ、粉体利用または焼結体原料として、製品の機能的特性を向上させることが可能となる。本発明は、シングルアノオーダーで完全に分散し、しかも長期安定性を有するナノ粒子複合粉体を提供するものとして有用である。 As described above in detail, the present invention relates to a metal ultrafine particle-dispersed metal oxide powder and a method for producing the same, and according to the present invention, the nanoparticle that becomes the second phase from the time of particle synthesis is converted into a matrix particle. By producing a composite powder having a structure that is uniformly dispersed in advance, the function of the nanoparticles can be fully utilized without agglomerating the second-phase nanoparticles. As a raw material, it is possible to improve the functional characteristics of the product. INDUSTRIAL APPLICABILITY The present invention is useful for providing a nanoparticle composite powder that is completely dispersed in a single ano-order and has long-term stability.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004302270A JP4320448B2 (en) | 2004-10-15 | 2004-10-15 | Metal ultrafine particle dispersed composite and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004302270A JP4320448B2 (en) | 2004-10-15 | 2004-10-15 | Metal ultrafine particle dispersed composite and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006111503A true JP2006111503A (en) | 2006-04-27 |
JP4320448B2 JP4320448B2 (en) | 2009-08-26 |
Family
ID=36380326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004302270A Expired - Fee Related JP4320448B2 (en) | 2004-10-15 | 2004-10-15 | Metal ultrafine particle dispersed composite and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4320448B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010507187A (en) * | 2006-07-13 | 2010-03-04 | ナノスケール コーポレーション | Nanocrystalline materials for electronics applications |
JP2015067556A (en) * | 2013-09-27 | 2015-04-13 | 株式会社セラフト | Cosmetic containing nano platinum particles |
US9202688B2 (en) | 2010-04-23 | 2015-12-01 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US9359689B2 (en) | 2011-10-26 | 2016-06-07 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US10753012B2 (en) | 2010-10-27 | 2020-08-25 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
CN112723878A (en) * | 2020-12-29 | 2021-04-30 | 苏州金宏气体股份有限公司 | Energy-collecting porous ceramic Pt-BaTiO3Its preparation method and high-efficiency hydrogen production |
CN113695583A (en) * | 2021-08-09 | 2021-11-26 | 浙江海虹控股集团有限公司 | Method and system for continuously preparing superfine silver powder under assistance of microwaves |
CN114349057A (en) * | 2020-10-13 | 2022-04-15 | 深圳大学 | Preparation method of electrode material, electrode and supercapacitor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104174840B (en) * | 2013-05-22 | 2016-04-13 | 国家纳米科学中心 | A kind of processing method of noble metal nano particles |
-
2004
- 2004-10-15 JP JP2004302270A patent/JP4320448B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010507187A (en) * | 2006-07-13 | 2010-03-04 | ナノスケール コーポレーション | Nanocrystalline materials for electronics applications |
US9202688B2 (en) | 2010-04-23 | 2015-12-01 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US9328432B2 (en) | 2010-04-23 | 2016-05-03 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US9617657B2 (en) | 2010-04-23 | 2017-04-11 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US9856581B2 (en) | 2010-04-23 | 2018-01-02 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US10753012B2 (en) | 2010-10-27 | 2020-08-25 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
US9359689B2 (en) | 2011-10-26 | 2016-06-07 | Pixelligent Technologies, Llc | Synthesis, capping and dispersion of nanocrystals |
JP2015067556A (en) * | 2013-09-27 | 2015-04-13 | 株式会社セラフト | Cosmetic containing nano platinum particles |
CN114349057A (en) * | 2020-10-13 | 2022-04-15 | 深圳大学 | Preparation method of electrode material, electrode and supercapacitor |
CN114349057B (en) * | 2020-10-13 | 2023-11-28 | 深圳大学 | Electrode material preparation method, electrode and supercapacitor |
CN112723878A (en) * | 2020-12-29 | 2021-04-30 | 苏州金宏气体股份有限公司 | Energy-collecting porous ceramic Pt-BaTiO3Its preparation method and high-efficiency hydrogen production |
CN113695583A (en) * | 2021-08-09 | 2021-11-26 | 浙江海虹控股集团有限公司 | Method and system for continuously preparing superfine silver powder under assistance of microwaves |
Also Published As
Publication number | Publication date |
---|---|
JP4320448B2 (en) | 2009-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8333912B2 (en) | Thermoelectric composite material and method of producing the same | |
Xue et al. | Nanosized barium titanate powder by mechanical activation | |
Mao et al. | Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites | |
Castkova et al. | Chemical synthesis, sintering and piezoelectric properties of Ba0. 85Ca0. 15 Zr0. 1Ti0. 9O3 lead‐free ceramics | |
US20070202036A1 (en) | Production Of Barium Titanate Compounds | |
Lu et al. | Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: Preparation, characterization and sintering | |
Pithan et al. | Preparation, processing, and characterization of nano‐crystalline BaTiO3 powders and ceramics derived from microemulsion‐mediated synthesis | |
Song et al. | Effects of particle size and polymorph type of TiO2 on the properties of BaTiO3 nanopowder prepared by solid-state reaction | |
JP6236706B2 (en) | Manufacturing method of ceramic capacitor containing fine metal particles | |
JP4320448B2 (en) | Metal ultrafine particle dispersed composite and method for producing the same | |
Ahmad et al. | Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4, and PbTiO3): Structural aspects and dielectric properties | |
JP2009161425A (en) | Manufacturing method of dysprosium oxide nanoparticles and manufacturing method of dysprosium oxide nanosole | |
JP2007290887A (en) | Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them | |
Zhang et al. | A single-step direct hydrothermal synthesis of SrTiO 3 nanoparticles from crystalline P25 TiO 2 powders | |
US20050014850A1 (en) | Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems | |
Dang et al. | Oriented aggregation of BaTiO 3 nanocrystals and large particles in the ultrasonic-assistant synthesis | |
JP5046044B2 (en) | Method for producing magnesium oxide nanoparticles and method for producing magnesium oxide nanoparticles | |
JP4743481B2 (en) | Titanium-containing perovskite type compound and method for producing the same | |
JP5057300B2 (en) | Manufacturing method of ceramic powder | |
Santos et al. | Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles | |
Tao et al. | Synthesis of barium titanate nanoparticles via a novel electrochemical route | |
JP4643443B2 (en) | Method for producing barium titanate powder | |
Vaidya et al. | Controlled synthesis of nanomaterials using reverse micelles | |
Kinemuchi et al. | Synthesis of nanosize PZT powders by pulsed wire discharge | |
JP4224006B2 (en) | Indium oxide powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090515 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |