JP2006110949A - Viscosity calculating method for molten resin - Google Patents

Viscosity calculating method for molten resin Download PDF

Info

Publication number
JP2006110949A
JP2006110949A JP2004303051A JP2004303051A JP2006110949A JP 2006110949 A JP2006110949 A JP 2006110949A JP 2004303051 A JP2004303051 A JP 2004303051A JP 2004303051 A JP2004303051 A JP 2004303051A JP 2006110949 A JP2006110949 A JP 2006110949A
Authority
JP
Japan
Prior art keywords
viscosity
resin
numerical value
temperature
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303051A
Other languages
Japanese (ja)
Inventor
Kenji Sugita
健二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiki Seisakusho KK
Original Assignee
Meiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiki Seisakusho KK filed Critical Meiki Seisakusho KK
Priority to JP2004303051A priority Critical patent/JP2006110949A/en
Publication of JP2006110949A publication Critical patent/JP2006110949A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a viscosity calculating method for a molten resin capable of obtaining the viscosity of a molten resin according to change in set temperature of the resin used for molding. <P>SOLUTION: A numerical value X2 is calculated by subtracting a numerical value X1 obtained by adding a constant a to the glass transition temperature Tg of a resin from the standard molding temperature Ta of the resin. A numerical value X3 is calculated by dividing the value X2 by a constant b. A numerical value X4 is calculated by subtracting the numerical value X3 from a constanc c. The viscosity change rate Δη/°C accompanying change in temperature of the resin is calculated by dividing the numerical value X4 by the numerical value X2. A value Y2 is calculated by multiplying a numerical value Y1 obtained by subtracting the standard molding temperature Ta from the actual molding temperature Tc by the viscosity change rate Δη/°C. The viscosity η corresponding to the actual molding temperature Tc is calculated by subtracting the value Y2 from the standard viscosity ηd at the standard molding temperature Ta. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、射出成形、注型成形、押出成形等の成形に用いる溶融樹脂の粘度演算方法に関するものである。   The present invention relates to a method for calculating the viscosity of a molten resin used for molding such as injection molding, cast molding, and extrusion molding.

射出成形、注型成形、押出成形等の樹脂成形においては、樹脂を溶融状態にして金型内部に供給、或いは金型を介して押出して成形がなされる。そして前記成形の際に溶融樹脂の流動状態をシュミレーションする際には、溶融樹脂の粘度を求めることが重要となる。前記溶融樹脂の粘度を求めるためには、溶融樹脂の供給圧力・速度、溶融樹脂通路の断面積等の形状、および前記溶融樹脂の温度(成形温度)が重要な要素となる。とりわけ溶融樹脂の温度は粘度と密接な関係にあり、溶融樹脂の温度上昇とともに粘度が低下するのは周知の通りである。しかし溶融樹脂の粘度が温度とともに変化するといっても、樹脂の種類毎によりその変化する比率は大きく異なっている。そこで従来から、樹脂の種類に応じて、溶融樹脂の温度に対応する樹脂の粘度を簡易な方法で知ることが望まれていた。   In resin molding such as injection molding, cast molding, and extrusion molding, the resin is melted and supplied into the mold or extruded through the mold. Then, when simulating the flow state of the molten resin during the molding, it is important to determine the viscosity of the molten resin. In order to determine the viscosity of the molten resin, the supply pressure / speed of the molten resin, the shape of the cross section of the molten resin passage, and the temperature (molding temperature) of the molten resin are important factors. In particular, the temperature of the molten resin is closely related to the viscosity, and it is well known that the viscosity decreases as the temperature of the molten resin increases. However, even if the viscosity of the molten resin changes with temperature, the rate of change varies greatly depending on the type of resin. Therefore, conventionally, it has been desired to know the viscosity of the resin corresponding to the temperature of the molten resin by a simple method according to the type of the resin.

従来の溶融樹脂の粘度を求めるものとしては、特許文献1、特許文献2、特許文献3に記載されたものが知られている。非ニュートン流体である溶融樹脂は、せん断応力をひずみ速度により除算した粘度を求める公式をそのまま適用することはできない。そこで特許文献1、特許文献2には、射出圧力を実測することにより溶融樹脂の粘度の演算または計測を行うことが記載されている。また特許文献3には、粘性流体の粘度、通路長さ、流速及び通路断面積に基づく圧力損失の公式に、せん断速度に基づく粘度係数、せん断長さに基づく粘度係数、樹脂種類による粘度係数を乗じて圧力損失を予測する方法が記載されている。しかし前記特許文献1ないし特許文献3に記載のものは、いずれも、各樹脂の成形温度の変化に応じて、溶融樹脂の粘度を求めることができるものではなかった。   As what calculates | requires the viscosity of the conventional molten resin, what was described in patent document 1, patent document 2, and patent document 3 is known. For a molten resin that is a non-Newtonian fluid, the formula for obtaining the viscosity obtained by dividing the shear stress by the strain rate cannot be applied as it is. Therefore, Patent Document 1 and Patent Document 2 describe that the viscosity of the molten resin is calculated or measured by actually measuring the injection pressure. In Patent Document 3, the pressure loss formula based on the viscosity of the viscous fluid, the passage length, the flow velocity, and the passage cross-sectional area includes the viscosity coefficient based on the shear rate, the viscosity coefficient based on the shear length, and the viscosity coefficient depending on the resin type. A method of multiplying to predict pressure loss is described. However, none of those described in Patent Documents 1 to 3 can determine the viscosity of the molten resin in accordance with the change in molding temperature of each resin.

特開2004−142204号公報(0018ないし0022、図9)JP 2004-142204 A (0018 to 0022, FIG. 9) 特開平11−10693号公報(0044、0045)JP 11-10893 A (0044, 0045) 特開平10−80941号公報(0005、0006)JP 10-80941 A (0005, 0006)

本発明では上記の問題を鑑みてなされたものであって、成形に使用される各樹脂の成形温度の変化に応じて、溶融樹脂の粘度を求めることのできる溶融樹脂の粘度演算方法を提供するものである。   The present invention has been made in view of the above problems, and provides a viscosity calculation method for a molten resin that can determine the viscosity of the molten resin in accordance with a change in the molding temperature of each resin used for molding. Is.

本発明の請求項1に記載の溶融樹脂の粘度演算方法は、樹脂の標準成形温度と樹脂のガラス転移温度とから樹脂の温度変化に伴なう粘度変化率を演算するとともに、その粘度変化率を用いて樹脂の成形温度に対応した粘度を演算することを特徴とする。   The method for calculating the viscosity of a molten resin according to claim 1 of the present invention calculates a viscosity change rate accompanying a temperature change of the resin from the standard molding temperature of the resin and the glass transition temperature of the resin, and the viscosity change rate. Is used to calculate the viscosity corresponding to the molding temperature of the resin.

本発明の請求項2に記載の溶融樹脂の粘度演算方法は、樹脂のガラス転移温度Tgに常数aを加算した数値X1を、樹脂の標準成形温度Taから減算して数値X2を算出し、数値X2を常数bで除算して数値X3を算出し、数値X3を常数cから減算して数値X4を算出し、数値X4を数値X2で除算して樹脂の温度変化に伴なう粘度変化率△η/℃を演算するとともに、実際の成形温度Tcから標準成形温度Taを減算した数値Y1に粘度変化率△η/℃を乗算して数値Y2を算出し、標準成形温度Taにおける標準粘度ηdから該数値Y2を減算して樹脂の実際の成形温度Tcに対応した粘度ηを演算することを特徴とする。   In the method for calculating the viscosity of the molten resin according to claim 2 of the present invention, the numerical value X1 obtained by adding the constant a to the glass transition temperature Tg of the resin is subtracted from the standard molding temperature Ta of the resin to calculate the numerical value X2. X2 is divided by the constant b to calculate the numerical value X3, the numerical value X3 is subtracted from the constant c, the numerical value X4 is calculated, and the numerical value X4 is divided by the numerical value X2 to change the viscosity change rate accompanying the temperature change of the resin Δ η / ° C. is calculated, and a numerical value Y 2 is calculated by multiplying the numerical value Y 1 obtained by subtracting the standard molding temperature Ta from the actual molding temperature Tc by the viscosity change rate Δη / ° C. From the standard viscosity ηd at the standard molding temperature Ta. By subtracting the numerical value Y2, the viscosity η corresponding to the actual molding temperature Tc of the resin is calculated.

本発明の請求項3に記載のコンピュータ読取り可能な記録媒体は、請求項1または請求項2に記載の溶融樹脂の粘度演算方法を格納したものであることを特徴とする。   A computer-readable recording medium according to a third aspect of the present invention stores the melt resin viscosity calculation method according to the first or second aspect.

本発明の溶融樹脂の粘度演算方法は、樹脂の標準成形温度とガラス転移温度とから樹脂の粘度変化率を演算するとともに、その粘度変化率を用いて該樹脂の粘度を演算するようにしたので、簡単な方法により、溶融樹脂の成形温度に対応した粘度を求めることができる。そして各樹脂の成形温度に対応した粘度が算出されることにより、成形機の選定や、成形機における成形条件の設定、金型のキャビティや溶融樹脂通路の設計等に活用することができる。   Since the viscosity calculation method of the molten resin of the present invention calculates the viscosity change rate of the resin from the standard molding temperature and glass transition temperature of the resin, the viscosity of the resin is calculated using the viscosity change rate. The viscosity corresponding to the molding temperature of the molten resin can be determined by a simple method. Then, by calculating the viscosity corresponding to the molding temperature of each resin, it can be used for selecting a molding machine, setting molding conditions in the molding machine, designing a mold cavity and a molten resin passage, and the like.

本発明の実施形態について図1、図2を参照して説明する。図1は、各樹脂の粘度変化率を示すグラフである。図2は、本実施形態の粘度の演算方法における演算ソフトの入力画面図である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a graph showing the viscosity change rate of each resin. FIG. 2 is an input screen diagram of calculation software in the viscosity calculation method of the present embodiment.

射出成形により成形品を成形するに当たっては、成形品を成形するキャビティと該キャビティに向けて溶融樹脂導入路が形成された金型と、溶融樹脂を前記金型に供給して成形するのに適した射出成形機が用いられる(いずれも図示せず)。そして前記射出成形機に供給されたペレット等からなる固体樹脂は、前記射出成形機の加熱筒内において溶融状態とされ、前記金型のキャビティ内に射出充填される。その際、溶融樹脂の成形温度(実際に成形機に設定するのは加熱筒温度およびノズル温度)、射出圧力、および射出速度が重要な成形条件となる。よって本実施形態では前記溶融樹脂の成形温度と溶融樹脂の粘度との関係に着目し、溶融樹脂の成形温度から溶融樹脂の粘度を算出することにより、射出成形機の成形条件の設定等に活用するようにしたものである。   When molding a molded product by injection molding, it is suitable for molding a molded product, a mold in which a molten resin introduction path is formed toward the cavity, and supplying molten resin to the mold. An injection molding machine is used (both not shown). The solid resin made of pellets or the like supplied to the injection molding machine is brought into a molten state in the heating cylinder of the injection molding machine, and is injected and filled into the cavity of the mold. At that time, the molding temperature of the molten resin (actually set in the molding machine is the heating cylinder temperature and the nozzle temperature), the injection pressure, and the injection speed are important molding conditions. Therefore, in this embodiment, paying attention to the relationship between the molding temperature of the molten resin and the viscosity of the molten resin, the viscosity of the molten resin is calculated from the molding temperature of the molten resin to be used for setting the molding conditions of the injection molding machine. It is what you do.

溶融樹脂の温度変化に伴なう粘度の変化は、各樹脂により大きく異なるが、本実施形態では下記の数式1によりそれぞれの樹脂について粘度変化率を求めることができる。   Although the change of the viscosity accompanying the temperature change of the molten resin varies greatly depending on each resin, in this embodiment, the viscosity change rate can be obtained for each resin by the following formula 1.

Figure 2006110949
Figure 2006110949

上記の数式1について説明すると、溶融樹脂のガラス転移温度Tgに50(常数a)を加算した数値X1を、該樹脂の標準成形温度Taから減算して数値X2を算出し、該数値X2を0.35(常数b)で除算して数値X3を算出し、該数値X3を1600(常数c)から減算して数値X4を算出し、該数値X4を前記数値X2で除算して該樹脂の温度変化に伴なう粘度変化率△η/℃を演算する。なお数式1に用いる常数a、常数b、常数cについては必ずしも本数値に限定されるものではなく近似した値であってもよい。また同一の結果を得るために演算方法・順序等を変更してもよい。更にまた単位としてポアズ(P)を用いて粘度変化率△η/℃を求めるようにしてもよい。   Explaining the above formula 1, the numerical value X1 obtained by adding 50 (the constant a) to the glass transition temperature Tg of the molten resin is subtracted from the standard molding temperature Ta of the resin to calculate the numerical value X2, and the numerical value X2 is set to 0. The numerical value X3 is calculated by dividing by .35 (constant number b), the numerical value X3 is subtracted from 1600 (constant number c) to calculate the numerical value X4, and the numerical value X4 is divided by the numerical value X2 to obtain the temperature of the resin. Viscosity change rate Δη / ° C. accompanying change is calculated. Note that the constant a, constant b, and constant c used in Equation 1 are not necessarily limited to these values, and may be approximate values. In addition, the calculation method and order may be changed in order to obtain the same result. Further, the viscosity change rate Δη / ° C. may be obtained by using Poise (P) as a unit.

図1は、この数式1により各樹脂の粘度変化率△η/℃を演算して示すものである。例えばポリスチレン(PS)の場合では、標準成形温度Ta=220℃、ガラス転移温度Tg=100℃であるから、その数値を前記の数式1に代入すると、粘度変化率△η/℃=2Pa・sが算出される。またポリプロピレン(PP)の場合では、標準成形温度Ta=240℃、ガラス転移温度Tg=−10℃であるから、その数値を上の数式1に代入すると、粘度変化率△η/℃=0.5Pa・sが算出される。また前記数式1とは別に、各樹脂の標準成形温度Taにおける標準粘度ηdは、樹脂の流動が極低速と仮定して粘度ηdの数値が予め準備されている。   FIG. 1 shows the viscosity change rate [Delta] [eta] / [deg.] C. of each resin calculated by the equation 1. For example, in the case of polystyrene (PS), the standard molding temperature Ta = 220 ° C. and the glass transition temperature Tg = 100 ° C. Therefore, when the numerical values are substituted into the above equation 1, the viscosity change rate Δη / ° C. = 2 Pa · s. Is calculated. In the case of polypropylene (PP), the standard molding temperature Ta = 240 ° C. and the glass transition temperature Tg = −10 ° C. When the numerical values are substituted into the above equation 1, the viscosity change rate Δη / ° C. = 0. 5 Pa · s is calculated. Separately from Equation 1, the standard viscosity ηd of each resin at the standard molding temperature Ta is prepared in advance as a numerical value of the viscosity ηd on the assumption that the flow of the resin is extremely low.

次に実際の成形温度Tcが標準成形温度Taと異なる場合、それに対応した粘度ηを次の数式2において算出する。   Next, when the actual molding temperature Tc is different from the standard molding temperature Ta, the corresponding viscosity η is calculated by the following formula 2.

Figure 2006110949
Figure 2006110949

そして例えばポリスチレン(PS)の場合では、標準成形温度Ta=220℃、標準粘度ηd=360Pa・sであるが、実際には240℃で成形しようとする場合、前記数値および上記数式1で求めた粘度変化率△η/℃=2Pa・sを前記の数式2に代入して演算する。具体的には成形温度Tcから標準成形温度Taを減算した数値Y1に前記粘度変化率△η/℃を乗算して数値Y2を算出し、標準成形温度Taにおける標準粘度ηdから該数値Y2を減算して該樹脂の実際の成形温度Tcに対応した粘度ηを演算し、実際の成形温度240℃に対応する粘度ηが320Pa・sと算出される。なおこの場合の粘度ηについても樹脂の流動が極低速と仮定してのものである。またポリプロピレン(PP)の場合では、標準成形温度Ta=240℃、標準粘度ηd=260Pa・sであるが、実際には260℃で成形しようとする場合、その数値および上記数式1で求めた粘度変化率△η/℃=0.5Pa・sを前記の数式2に代入すると、実際の成形温度260℃に対応する粘度ηが250Pa・sと算出される。   For example, in the case of polystyrene (PS), the standard molding temperature Ta = 220 ° C. and the standard viscosity ηd = 360 Pa · s, but when actually molding at 240 ° C., the numerical value and the above formula 1 were used. Calculation is performed by substituting the viscosity change rate Δη / ° C. = 2 Pa · s into Equation 2 above. Specifically, a numerical value Y2 is calculated by multiplying the numerical value Y1 obtained by subtracting the standard molding temperature Ta from the molding temperature Tc by the viscosity change rate Δη / ° C, and the numerical value Y2 is subtracted from the standard viscosity ηd at the standard molding temperature Ta. Then, the viscosity η corresponding to the actual molding temperature Tc of the resin is calculated, and the viscosity η corresponding to the actual molding temperature 240 ° C. is calculated as 320 Pa · s. The viscosity η in this case is also based on the assumption that the flow of the resin is extremely low. In the case of polypropylene (PP), the standard molding temperature Ta = 240 ° C. and the standard viscosity ηd = 260 Pa · s, but when actually molding at 260 ° C., the numerical value and the viscosity determined by the above formula 1 are used. By substituting the change rate Δη / ° C. = 0.5 Pa · s into Equation 2, the viscosity η corresponding to the actual molding temperature of 260 ° C. is calculated as 250 Pa · s.

次に本実施形態を図2の演算ソフトの入力画面に添って説明すると、上段の樹脂名に対応するセル1から樹脂名を選択入力または直接入力すると、その樹脂のガラス転移温度Tg、標準成形温度Ta、標準粘度ηd、粘度ηが各セル2,3,5,6に表示される。なお標準成形温度Taのみを入力した際には、標準粘度ηd、粘度ηは同じ値が表示される。そして樹脂温度を表示するセル3の下のセル4には実際の成形温度(成形温度Tc)が入力可能に設けられ、実際の加熱筒の設定温度等が入力可能となっている。そして前記セル4に実際の成形温度(成形温度Tc)を入力すると、実際の成形温度(成形温度Tc)における粘度ηが前記粘度変化率△η/℃を用いた数式2を用いて修正されてセル6に算出される。なお演算ソフトの入力画面では粘度変化率△η/℃はセルに表示されないが、別途表示されるようにしてもよい。   Next, the present embodiment will be described with reference to the calculation software input screen of FIG. 2. When a resin name is selected or directly input from the cell 1 corresponding to the upper resin name, the glass transition temperature Tg of the resin, standard molding The temperature Ta, the standard viscosity ηd, and the viscosity η are displayed in the respective cells 2, 3, 5, and 6. When only the standard molding temperature Ta is input, the same values are displayed for the standard viscosity ηd and the viscosity η. An actual molding temperature (molding temperature Tc) can be input to the cell 4 below the cell 3 that displays the resin temperature, and an actual set temperature of the heating cylinder can be input. When the actual molding temperature (molding temperature Tc) is input to the cell 4, the viscosity η at the actual molding temperature (molding temperature Tc) is corrected using Equation 2 using the viscosity change rate Δη / ° C. Calculated in cell 6. The viscosity change rate Δη / ° C. is not displayed in the cell on the calculation software input screen, but may be displayed separately.

また図2において演算ソフトに設定されていない樹脂や、設定されていても標準的な樹脂とは別のグレードの場合は、セル2,3,5の右側に配置されたセル7,8,9からその樹脂のガラス転移温度Tg、標準成形温度Ta、標準粘度ηdを入力してその樹脂の粘度ηを求めることもできる。更には、射出装置から実際に溶融樹脂をパージし、その際の射出速度、射出圧力、ノズルの断面積や長さ等から求めた粘度をセル9に直接入力することもできる。前記のように直接セル9に任意粘度入力を行った場合は、前記セル9に入力された値がセル6にそのまま粘度ηとして表示される。このようにして算出された実際の成形温度(成形温度Tc)における粘度ηは、そのまま利用してもよく、更に下記のようにして樹脂通路およびせん断速度等との関係において流動中の粘度や樹脂の圧力損失を求め、成形条件等の設定に利用してもよい。   In the case of a resin not set in the calculation software in FIG. 2 or a grade different from the standard resin even if set, the cells 7, 8, 9 arranged on the right side of the cells 2, 3, 5 are used. From this, the glass transition temperature Tg, standard molding temperature Ta, and standard viscosity ηd of the resin can be input to determine the viscosity η of the resin. Furthermore, the molten resin is actually purged from the injection device, and the viscosity obtained from the injection speed, injection pressure, nozzle cross-sectional area and length, etc. at that time can be directly input to the cell 9. When the arbitrary viscosity is directly input to the cell 9 as described above, the value input to the cell 9 is directly displayed in the cell 6 as the viscosity η. The viscosity η at the actual molding temperature (molding temperature Tc) calculated in this way may be used as it is, and the viscosity during the flow and the resin in relation to the resin passage and the shear rate as described below. The pressure loss may be obtained and used for setting molding conditions and the like.

次に上記により算出された粘度ηを用いた、円管からなる樹脂通路流動中における粘度の演算について説明する。図2における「円管流動中の樹脂粘度の計算」のセル10にはセル6の粘度ηがそのまま表示される。次のセル11には、流動通路の樹脂の流れる長さLに対する円管の直径dの比率であるL/Dが入力されるようになっている。また次のセル12には、せん断速度γが入力されるようになっている。なおせん断速度γについては、次の数式3から求められる。   Next, calculation of the viscosity during the flow of the resin passage made of a circular pipe using the viscosity η calculated as described above will be described. In cell 10 of “calculation of resin viscosity during circular pipe flow” in FIG. 2, the viscosity η of cell 6 is displayed as it is. The next cell 11 is inputted with L / D which is a ratio of the diameter d of the circular tube to the length L of the resin flowing in the flow passage. The next cell 12 is input with a shear rate γ. The shear rate γ can be obtained from the following formula 3.

Figure 2006110949
Figure 2006110949

次にセル13には、せん断速度による粘度係数Cが次の数式4により演算される。   Next, the viscosity coefficient C according to the shear rate is calculated in the cell 13 by the following formula 4.

Figure 2006110949
Figure 2006110949

更にせん断速度γを媒介変数として、樹脂の流れる長さLをその通路の直径dで除した値をせん断長さと定義し、該せん断長さに対する粘度低下の変化を次の数式5により求め、セル14に表示する。   Further, the value obtained by dividing the flow length L of the resin by the diameter d of the passage is defined as the shear length with the shear rate γ as a parameter, and the change in the viscosity decrease with respect to the shear length is obtained by the following equation 5; 14 is displayed.

Figure 2006110949
Figure 2006110949

なお、せん断速度γは通路が円管の場合における式を示したので、ノズルおよびスプルにはそのまま適用出来る。しかし、台形や方形の通路断面を有するランナにおいては上式とは別の式を適用する必要がある。   Note that the shear rate γ is an expression when the passage is a circular pipe, and therefore can be applied to the nozzle and the sprue as they are. However, in a runner having a trapezoidal or square passage cross section, it is necessary to apply a formula different from the above formula.

さらに、C2として樹脂種類による粘度係数を定義した。該C2は樹脂の種類の相違によって変化する粘度を補正する経験値としての係数であり、標準グレードの樹脂では1.0とし、ガラス繊維を含有する樹脂では1.1〜1.2とし、難燃性グレードでは1.5〜1.8を基準とする。そして次に前記粘度係数C2を用いた次の数式6により粘度修正係数C3を求め、セル15に表示する。なおセル7,8,9において樹脂のグレードに対応した値を入力した場合は、ここでC2により補正を行わなくてもよい。   Furthermore, the viscosity coefficient by the kind of resin was defined as C2. The C2 is a coefficient as an empirical value for correcting the viscosity that varies depending on the type of resin, and is 1.0 for a standard grade resin and 1.1 to 1.2 for a resin containing glass fiber. For flammability grades, the standard is 1.5 to 1.8. Then, the viscosity correction coefficient C3 is obtained by the following formula 6 using the viscosity coefficient C2 and displayed in the cell 15. When the values corresponding to the resin grade are input in the cells 7, 8, and 9, correction by C2 is not necessary here.

Figure 2006110949
Figure 2006110949

そして次の数式7により流動中の樹脂粘度ηvを求め、セル16に表示する。   Then, the resin viscosity ηv during the flow is obtained by the following formula 7 and displayed in the cell 16.

Figure 2006110949
Figure 2006110949

よって前記数式7により流動中の樹脂粘度ηvが算出されるから、非ニュートン流体である溶融樹脂の流動のシュミレーションに利用することができる。   Therefore, since the resin viscosity ηv during the flow is calculated by the formula 7, it can be used for the simulation of the flow of the molten resin that is a non-Newtonian fluid.

また前記粘度η、せん断速度による粘度係数C、せん断速度を媒介変数としたせん断長さに基づく粘度係数C1、および粘度係数C2を用い、公式8(以下においては数式8として記載)に乗じて、溶融樹脂の圧力損失△pを求める数式9を得ることもできる。   Further, using the viscosity η, the viscosity coefficient C due to the shear rate, the viscosity coefficient C1 based on the shear length with the shear rate as a parameter, and the viscosity coefficient C2, the formula 8 (described below as Formula 8) is multiplied, Formula 9 which calculates | requires pressure loss (DELTA) p of molten resin can also be obtained.

Figure 2006110949
Figure 2006110949

Figure 2006110949
Figure 2006110949

そして実際に各樹脂を用いて様々な円管通路径と樹脂の流れる長さ(または通路長さ)を有するノズル等に適用して成形を行い、その場合の圧力損失の実測値と前記演算値△pとを比較した結果、実測値と演算値△pとの差は±10%以内であり、実用に耐え得るものであることが確認された。そして前記に求められた圧力損失△pを用いて射出速度や射出圧力等の成形条件の算出、型締圧力の検証、および成形に使用される射出成形機や金型の選択等に利用することが可能である。   Then, using each resin, molding is carried out by applying it to a nozzle having various circular pipe passage diameters and resin flow lengths (or passage lengths), and in this case, the measured value of pressure loss and the calculated value As a result of comparing Δp, the difference between the actually measured value and the calculated value Δp was within ± 10%, and it was confirmed that the difference was within practical use. The pressure loss Δp determined above is used for calculation of molding conditions such as injection speed and injection pressure, verification of mold clamping pressure, and selection of injection molding machines and molds used for molding. Is possible.

上記演算ソフトは一般には射出成形機とは独立したパソコン等に格納され実行されるが、最近の多くの射出成形機はマイクロプロセッサによる制御装置を搭載するので、該制御装置で演算するようにしてもよい。その場合、演算結果により圧力損失が大きく、成形が不可能なことが予測されたときは警報を発したり、設定された射出圧力を最高射出圧力の範囲内で自動的に上昇させることも出来る。   The above calculation software is generally stored and executed in a personal computer or the like independent from the injection molding machine, but since many recent injection molding machines are equipped with a control device by a microprocessor, it is assumed that the calculation is performed by the control device. Also good. In that case, when it is predicted that the pressure loss is large due to the calculation result and molding is impossible, an alarm can be issued or the set injection pressure can be automatically increased within the range of the maximum injection pressure.

また本発明については、一々列挙はしないが、上記した本実施形態のものに限定されず、当業者が本発明の趣旨を踏まえて変更を加えたものについても、適用されることは言うまでもないことである。   Further, the present invention is not enumerated one by one, but is not limited to the above-described embodiment, and it goes without saying that the present invention can be applied to those modified by a person skilled in the art based on the gist of the present invention. It is.

各樹脂の粘度変化率を示すグラフである。It is a graph which shows the viscosity change rate of each resin. 本実施形態の粘度の演算方法における演算ソフトの入力画面図である。It is an input screen figure of the calculation software in the calculation method of the viscosity of this embodiment.

符号の説明Explanation of symbols

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 セル   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 cells

Claims (3)

樹脂の標準成形温度と樹脂のガラス転移温度とから該樹脂の温度変化に伴なう粘度変化率を演算するとともに、該粘度変化率を用いて樹脂の成形温度に対応した粘度を演算することを特徴とする溶融樹脂の粘度演算方法。   The viscosity change rate accompanying the temperature change of the resin is calculated from the standard molding temperature of the resin and the glass transition temperature of the resin, and the viscosity corresponding to the molding temperature of the resin is calculated using the viscosity change rate. A method for calculating the viscosity of a molten resin. 樹脂のガラス転移温度Tgに常数aを加算した数値X1を、該樹脂の標準成形温度Taから減算して数値X2を算出し、該数値X2を常数bで除算して数値X3を算出し、該数値X3を常数cから減算して数値X4を算出し、該数値X4を前記数値X2で除算して該樹脂の温度変化に伴なう粘度変化率△η/℃を演算するとともに、実際の成形温度Tcから標準成形温度Taを減算した数値Y1に前記粘度変化率△η/℃を乗算して数値Y2を算出し、標準成形温度Taにおける標準粘度ηdから該数値Y2を減算して該樹脂の実際の成形温度Tcに対応した粘度ηを演算する溶融樹脂の粘度演算方法。   The numerical value X1 obtained by adding the constant a to the glass transition temperature Tg of the resin is subtracted from the standard molding temperature Ta of the resin to calculate the numerical value X2, and the numerical value X2 is divided by the constant b to calculate the numerical value X3. The numerical value X3 is subtracted from the constant c to calculate the numerical value X4, and the numerical value X4 is divided by the numerical value X2 to calculate the viscosity change rate Δη / ° C. accompanying the temperature change of the resin, and the actual molding A numerical value Y2 is calculated by multiplying the numerical value Y1 obtained by subtracting the standard molding temperature Ta from the temperature Tc by the viscosity change rate Δη / ° C., and the numerical value Y2 is subtracted from the standard viscosity ηd at the standard molding temperature Ta. A method for calculating a viscosity of a molten resin, which calculates a viscosity η corresponding to an actual molding temperature Tc. 請求項1または請求項2に記載の溶融樹脂の粘度演算方法を格納したコンピュータ読取り可能な記録媒体。   A computer-readable recording medium storing the melt resin viscosity calculation method according to claim 1.
JP2004303051A 2004-10-18 2004-10-18 Viscosity calculating method for molten resin Pending JP2006110949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303051A JP2006110949A (en) 2004-10-18 2004-10-18 Viscosity calculating method for molten resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303051A JP2006110949A (en) 2004-10-18 2004-10-18 Viscosity calculating method for molten resin

Publications (1)

Publication Number Publication Date
JP2006110949A true JP2006110949A (en) 2006-04-27

Family

ID=36379857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303051A Pending JP2006110949A (en) 2004-10-18 2004-10-18 Viscosity calculating method for molten resin

Country Status (1)

Country Link
JP (1) JP2006110949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599498A (en) * 2019-10-28 2022-06-07 芝浦机械株式会社 Method and apparatus for controlling fluidity index of molten resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599498A (en) * 2019-10-28 2022-06-07 芝浦机械株式会社 Method and apparatus for controlling fluidity index of molten resin

Similar Documents

Publication Publication Date Title
CN111163914B (en) Real-time material and speed control in a molding system
DK2212086T3 (en) A method and device for monitoring, documenting, and / or controlling an injection molding machine
JP5888817B2 (en) Plasticization simulation apparatus, plasticization simulation method thereof, and plasticization simulation program
KR102285242B1 (en) Screw shape estimation device, screw shape estimation method and screw shape estimation program
US11883992B2 (en) Molding support device for injection molding machine
JP6185515B2 (en) Plasticization simulation apparatus, plasticization simulation method thereof, and plasticization simulation program
US10343319B2 (en) Injection molding machine and method for assisting in manipulation of injection molding machine
Clavería et al. Method for generation of rheological model to characterize non-conventional injection molding by means of spiral mold
JP2006110949A (en) Viscosity calculating method for molten resin
Zhang et al. Characterization of microinjection molding process for milligram polymer microparts
EP3421219B1 (en) Method and apparatus for molding an object according to a computational model
Bilovol et al. The effect of constitutive description of PIM feedstock viscosity in numerical analysis of the powder injection moulding process
JPH09272145A (en) Injection molding machine
JP2020131600A (en) Molding support equipment for injection molding machine
JP5678432B2 (en) Resin viscosity measuring method and resin viscosity measuring device
Smith et al. A computational model for the cooling phase of injection moulding
JP3618452B2 (en) Setting method of injection speed profile in injection molding machine
JPH10138313A (en) Method for estimating pressure loss in mold cavity and injection molding machine using the same
JP2017165028A (en) Plasticization simulation device, and plasticization simulation method and plasticization simulation program of the same
JP2622925B2 (en) Injection molding method
US20230024716A1 (en) Method for calculating a target profile for the movement of an injection actuator shaping machine and/or simulating the injecting the molding compound into a cavity
JP2012187787A (en) Method of supporting adjustment of molding condition and injection molding machine
Falconer-Flint Computer-Aided Mold Design
Kim et al. Simulation of Multi-cavity Micro-injection System for Reducing Cavity Filling Deviation
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine