JP2006110701A - Carbon fiber body, member having it, and their manufacturing method - Google Patents

Carbon fiber body, member having it, and their manufacturing method Download PDF

Info

Publication number
JP2006110701A
JP2006110701A JP2004303355A JP2004303355A JP2006110701A JP 2006110701 A JP2006110701 A JP 2006110701A JP 2004303355 A JP2004303355 A JP 2004303355A JP 2004303355 A JP2004303355 A JP 2004303355A JP 2006110701 A JP2006110701 A JP 2006110701A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber body
carbon
substrate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303355A
Other languages
Japanese (ja)
Inventor
Hisahiro Ando
寿浩 安藤
Kiyoharu Nakagawa
清晴 中川
Mika Gamo
美香 蒲生
Yosuke Takazawa
要介 高澤
Yoichi Sato
洋一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Sekisui Chemical Co Ltd
Original Assignee
National Institute for Materials Science
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Sekisui Chemical Co Ltd filed Critical National Institute for Materials Science
Priority to JP2004303355A priority Critical patent/JP2006110701A/en
Publication of JP2006110701A publication Critical patent/JP2006110701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber body, which can be applied to various kinds of electrode materials, etc., and further to provide a member having the same and their manufacturing method. <P>SOLUTION: In the carbon fiber body, one end side of a plurality of carbon fibers is connected to the body portion of a carbon body elongated in one direction in the state that the carbon fibers are arranged in parallel. Such carbon fiber body can be manufactured by heating a catalyst in a liquid material in two steps. As for the materials, the material composed of a kind of liquid alcohol at an ordinary temperature and ordinary pressure, and a kind of hydrocarbon can be used. Furthermore particularly, a substrate having a catalyst on its surface is heated in the liquid material in two steps. By this manufacturing method, the member having the carbon fibers grown from the catalyst existing on the substrate can be obtained. This member can be used as various electrode materials without requiring any other treatments. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭素繊維体およびそれを有する部材、それらの製造方法に関し、詳細には、電気二重層キャパシタ及び二次電池等に使用できる炭素繊維体およびそれを有する部材、それらの製造方法に関する。   The present invention relates to a carbon fiber body, a member having the same, and a method for manufacturing the same, and more particularly, to a carbon fiber body that can be used for an electric double layer capacitor, a secondary battery, and the like, and a member having the carbon fiber body.

炭素繊維体の一形態であるカーボンナノチューブは、その特異な電気的及び機械的性質により、電界放射電子源、ナノスケール電子デバイス、化学的貯蔵システム、機械的補強材などといった将来のナノテクノロジーに応用できる可能性が高い。   Carbon nanotubes, a form of carbon fiber body, can be applied to future nanotechnology such as field emission electron sources, nanoscale electronic devices, chemical storage systems, mechanical reinforcements, etc. due to their unique electrical and mechanical properties It is highly possible.

また、パーソナルコンピューターのメモリーバックアップ電源、二次電池の補助、代替などの用途、また、電気自動車あるいは燃料電池自動車のバッテリーのバックアップ電源、ハイブリッド用電源などに電気二重層キャパシタが用いられるようになってきている。   In addition, electric double layer capacitors have come to be used in applications such as memory backup power supplies for personal computers, subsidizing and substituting secondary batteries, battery backup power supplies for electric vehicles or fuel cell vehicles, and power supplies for hybrid vehicles. ing.

この電気二重層キャパシタは、電極を構成する導電体と、それに含浸させた電解質溶液とからなり、両電極の間に電圧が印加されると、分極性電極の界面に電解液中のイオン種が吸着され、これによって生じる電極と電解液界面の電気二重層に電荷を蓄積するものであり、それぞれ符号の異なる一対の電荷層(電気二重層)が生じることを利用するものであって、充放電に伴う劣化が生じないという特徴を有している。そのため、電気二重層キャパシタは、例えば、電源(電池、又は商用交流電源を直流に変換した電源)と並列に接続して電荷を蓄積させておき、電源の瞬断時にそこに蓄積された電荷を放出させることにより、種々の電気・電子機器(例えばD−RAM等)のバックアップをするという形で使用されている。   This electric double layer capacitor is composed of a conductor constituting an electrode and an electrolyte solution impregnated therein, and when a voltage is applied between both electrodes, the ionic species in the electrolyte is present at the interface of the polarizable electrode. Charges are accumulated in the electric double layer at the electrode-electrolyte interface that is adsorbed and generated by this, utilizing the fact that a pair of charge layers (electric double layers) with different signs are generated, and charging and discharging It has the characteristic that the deterioration accompanying this does not occur. Therefore, the electric double layer capacitor is connected in parallel with, for example, a power source (battery or a power source obtained by converting a commercial AC power source into a direct current), and charges are accumulated. By discharging, it is used in the form of backing up various electric / electronic devices (for example, D-RAM).

従来の電気二重層キャパシタでは、その電極用導電体(炭素繊維体)として、活性炭粉末等が用いられている。これは、電気二重層キャパシタの静電容量は、電気二重層に蓄えられる電荷量によって決まり、その電荷量は電極の表面積が大きければ大きいほど大きいからである。活性炭は、1000m/g以上という高い比表面積を有していることから、大きな表面積を必要とする電気二重層キャパシタの電極材料として適した材料である。 In the conventional electric double layer capacitor, activated carbon powder or the like is used as the electrode conductor (carbon fiber body). This is because the capacitance of the electric double layer capacitor is determined by the amount of charge stored in the electric double layer, and the amount of charge increases as the surface area of the electrode increases. Since activated carbon has a high specific surface area of 1000 m 2 / g or more, it is a material suitable as an electrode material for an electric double layer capacitor that requires a large surface area.

活性炭粉末を分極性電極として用いた電気二重層キャパシタとしては、活性炭粉末をフェノール樹脂等の熱硬化性樹脂と混合して固形化し、固体活性炭電極として利用している(例えば、特許文献1参照。)。
電気二重層キャパシタのうち、特に大容量のものは、パルスパワー用電源としての利用が期待できる。しかしながら、従来の電気二重層キャパシタは、瞬時に大電流を供給することができず、パルスパワー用電源として必要とされる機能を果たすことができない。これは、活性炭粉末のもつ直径数nmの微細な細孔の内部において、イオン種の移動が抑制されてしまうからである。詳述すると、活性炭粉末を用いた固体活性炭電極は、活性炭粉末のもつ直径数nmの細孔と、フェノール樹脂の炭化時に形成される直径100nm以上の細孔とを有している(例えば、特許文献2参照。)。
これらの細孔のうち、活性炭粉末のもつ直径数nmの微細な細孔の内部では、イオン種の移動が抑制されてしまう。従って、従来の電気二重層キャパシタには、大電流で放電を行うと、見かけ上、容量が減少し、十分な性能を発揮できないという問題点がある。このため、イオン種の保持および移動がより容易であるような微細な構造を有する電極の実現が望まれている。
As an electric double layer capacitor using activated carbon powder as a polarizable electrode, the activated carbon powder is mixed with a thermosetting resin such as a phenol resin to be solidified and used as a solid activated carbon electrode (see, for example, Patent Document 1). ).
Among electric double layer capacitors, those with particularly large capacities can be expected to be used as power sources for pulse power. However, the conventional electric double layer capacitor cannot supply a large current instantaneously and cannot perform a function required as a power source for pulse power. This is because the movement of ionic species is suppressed inside the fine pores with a diameter of several nm that the activated carbon powder has. More specifically, a solid activated carbon electrode using activated carbon powder has pores with a diameter of several nm that the activated carbon powder has and pores with a diameter of 100 nm or more that are formed when the phenol resin is carbonized (for example, patents). Reference 2).
Among these pores, the movement of ionic species is suppressed inside the fine pores with a diameter of several nm that the activated carbon powder has. Therefore, the conventional electric double layer capacitor has a problem that when discharging is performed with a large current, the capacity is apparently reduced and sufficient performance cannot be exhibited. Therefore, it is desired to realize an electrode having a fine structure that makes it easier to hold and move ionic species.

また、単位体積あたりの電極に流すことができる最大電流値は、その電極の単位体積あたりの静電容量に比例する。そのため、電極の単位体積あたりの静電容量は、より大きいことが望ましい。   In addition, the maximum current value that can be passed to the electrode per unit volume is proportional to the capacitance per unit volume of the electrode. Therefore, it is desirable that the capacitance per unit volume of the electrode is larger.

また、リチウム二次電池は、各種二次電池の中で、携帯電話やノートパソコンに代表される情報通信機器に必須の電源として使用され、モバイル機器の小型軽量化に寄与している。かかるリチウム二次電池の電極材(添加材)として、電極の強度付与、導電性付与等の目的で黒鉛や炭素繊維が用いられている。リチウム二次電池の正極材、負極材ともに層状構造を有しており、充電時には正極からリチウムイオンが引き抜かれ、負極の炭素六角網層間に挿入されてリチウム層間化合物を形成する。放電時には逆に炭素負極から正極へリチウムイオンが移動する反応が起こる。電極材の炭素材料は上記のように、リチウムイオンを吸蔵、放出する機能を有し、この吸蔵、放出機能の良否が充放電特性等の電池特性に大きな影響を与える。   A lithium secondary battery is used as an indispensable power source for information communication devices represented by mobile phones and notebook computers among various secondary batteries, and contributes to the reduction in size and weight of mobile devices. As an electrode material (additive) for such a lithium secondary battery, graphite or carbon fiber is used for the purpose of imparting strength and conductivity to the electrode. Both the positive electrode material and the negative electrode material of a lithium secondary battery have a layered structure, and during charging, lithium ions are extracted from the positive electrode and inserted between carbon hexagonal network layers of the negative electrode to form a lithium intercalation compound. Conversely, during discharge, a reaction occurs in which lithium ions move from the carbon negative electrode to the positive electrode. As described above, the carbon material of the electrode material has a function of occluding and releasing lithium ions, and the quality of the occluding and releasing functions greatly affects battery characteristics such as charge / discharge characteristics.

黒鉛、特に異方性グラファイトは典型的な層状構造を有し、種々の原子、分子を導入してグラファイト層間化合物(Graphite Intercalation Compounds;GIC)を形成する。この黒鉛の層間にリチウムイオンが挿入されると、層間が広がり、電極材(特に負極材)は膨張する。このような状態で充放電が繰り返されると、電極の変形がもたらしたり、金属リチウムの析出が起こりやすくなり、容量劣化や内部ショートの原因となる。また層間が伸縮を繰り返すと、黒鉛結晶構造の破壊原因となり、サイクル特性(寿命)に悪影響を与える。加えて、黒鉛は電極材として導電性に劣るという問題がある。一方、炭素材料には、気相成長法によって製造されるチューブ状の炭素繊維も知られている。この炭素繊維は複数の同心状の炭素六角網層が形成されたチューブ状をなし、負極材として用いられる場合、リチウムイオンの挿入口は繊維の端面でしかなく、十分なリチウム層間化合物が形成されず、電気エネルギー密度が小さく、十分な容量が得られないという課題がある。また炭素六角網層が同心状をなすため、リチウムイオンが挿入されると、同心状の炭素六角網層が無理に押し広げられ、ストレスが生じて、やはり結晶構造の破壊原因となるという問題がある。   Graphite, particularly anisotropic graphite, has a typical layered structure, and various atoms and molecules are introduced to form a graphite intercalation compound (GIC). When lithium ions are inserted between the graphite layers, the layers expand and the electrode material (particularly the negative electrode material) expands. If charging / discharging is repeated in such a state, the electrode is deformed or metal lithium is liable to be deposited, resulting in capacity deterioration and internal short circuit. Moreover, repeated expansion and contraction between layers causes destruction of the graphite crystal structure and adversely affects cycle characteristics (life). In addition, graphite has a problem of poor conductivity as an electrode material. On the other hand, a tubular carbon fiber manufactured by a vapor deposition method is also known as a carbon material. This carbon fiber has a tube shape in which a plurality of concentric carbon hexagonal network layers are formed, and when used as a negative electrode material, the insertion port of lithium ions is only the end face of the fiber, and a sufficient lithium intercalation compound is formed. However, there is a problem that the electric energy density is small and sufficient capacity cannot be obtained. Also, since the carbon hexagonal network layer is concentric, when lithium ions are inserted, the concentric carbon hexagonal network layer is forcibly spread and stress is generated, which also causes destruction of the crystal structure. is there.

特公平4−44407号公報Japanese Examined Patent Publication No. 4-44407 特開平4−288361号公報JP-A-4-288361

本発明の目的は、上記の課題を解決するために、イオン種の保持・移動を容易にするような微細な構造を有し、静電容量が大きくかつ瞬時に大電流を取り出すことができる電気二重層キャパシタの部材(電極材料)、または、寿命性能に優れ容量増加も図れる二次電池の負極材等に応用可能な炭素繊維体およびそれを有する部材並びにそれらの製造方法を提供することである。   An object of the present invention is to solve the above-mentioned problems by providing an electric structure that has a fine structure that facilitates the retention and movement of ionic species, has a large capacitance, and can instantaneously extract a large current. It is to provide a carbon fiber body applicable to a member of a double layer capacitor (electrode material) or a negative electrode material of a secondary battery which has excellent life performance and can also increase capacity, a member having the carbon fiber body, and a method for manufacturing the same. .

上記課題は、以下の構成により達成される。
即ち、本発明は以下の通りである。
(1)一方向に延びた炭素体の胴部に、複数の炭素繊維の一端側が、当該炭素繊維が並列するような状態で結合されていることを特徴とする炭素繊維体。
(2)1本の炭素繊維が直径20〜100nmであることを特徴とする前記(1)記載の炭素繊維体。
(3)1本の炭素繊維の長さが100〜1000nmであることを特徴とする前記(1)記載の炭素繊維体。
(4)炭素繊維間が5〜100nmであることを特徴とする前記(1)記載の炭素繊維体。
The above-mentioned subject is achieved by the following composition.
That is, the present invention is as follows.
(1) A carbon fiber body characterized in that one end side of a plurality of carbon fibers is bonded to a body portion of a carbon body extending in one direction so that the carbon fibers are arranged in parallel.
(2) One carbon fiber is 20-100 nm in diameter, The carbon fiber body as described in said (1) characterized by the above-mentioned.
(3) The carbon fiber body according to (1), wherein the length of one carbon fiber is 100 to 1000 nm.
(4) The carbon fiber body according to (1), wherein the distance between the carbon fibers is 5 to 100 nm.

(5)前記(1)〜(4)のいずれかに記載の炭素繊維体と、表面に触媒が存在する基板とからなり、前記炭素繊維体と前記基板とが結合して一体化されていることを特徴とする部材。 (5) The carbon fiber body according to any one of (1) to (4) and a substrate having a catalyst on the surface thereof, and the carbon fiber body and the substrate are combined and integrated. A member characterized by that.

(6)表面に触媒が存在する基板を常温常圧で液体である原料中で加熱し、当該触媒および基板を常温から600℃〜700℃に昇温させ、所定の時間後さらに800℃〜900℃に昇温させる工程を含むことを特徴とする前記(1)〜(4)のいずれかに記載の炭素繊維体の製造方法。 (6) A substrate having a catalyst on the surface is heated in a raw material that is liquid at normal temperature and pressure, the catalyst and the substrate are heated from normal temperature to 600 ° C. to 700 ° C., and after a predetermined time, further 800 ° C. to 900 ° C. The method for producing a carbon fiber body according to any one of (1) to (4), further comprising a step of raising the temperature to ° C.

(7)前記液体原料は、アルコール類としてはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール又はオクタノールであり、炭化水素類としてはヘキサン、ペプタン、オクタン、ベンゼン又はトルエンであり、前記触媒は、Fe、Co及びNiからなるグループから選ばれる一つ又は複数の元素であることを特徴とする前記(6)に記載の炭素繊維体の製造方法。 (7) The liquid raw material is methanol, ethanol, propanol, isopropanol, butanol, pentanol or octanol as alcohols, and hexane, peptane, octane, benzene or toluene as hydrocarbons, The method for producing a carbon fiber body as described in (6) above, which is one or more elements selected from the group consisting of Fe, Co and Ni.

本発明の炭素繊維体は、一方向に延びた炭素体の胴部に、複数の炭素繊維の一端側が、当該炭素繊維が並列するような状態で結合されており、炭素繊維同士の間隔は5から100nmの幾何学的空間が存在し、半径0.05〜0.5nmのイオン種を炭素繊維に保持するための十分な空間が確保されている。
上記半径範囲のイオン種としては、BF4 -、ClO4 -、PF6 -、AsF6 -などが挙げられる。さらに本発明の炭素繊維体の製造方法によって得られた炭素繊維体およびそれを有する部材(炭素繊維体の片末端が基板に結合したもの)はそのまま電気二重層キャパシタの電極、二次電池の負極材等、多様な用途に使用可能である。
In the carbon fiber body of the present invention, one end side of a plurality of carbon fibers is bonded to the body of the carbon body extending in one direction so that the carbon fibers are juxtaposed, and the spacing between the carbon fibers is 5 To 100 nm geometric space exists, and sufficient space is secured to hold ionic species with a radius of 0.05 to 0.5 nm in the carbon fiber.
Examples of the ion species in the radius range include BF 4 , ClO 4 , PF 6 , and AsF 6 . Furthermore, the carbon fiber body obtained by the carbon fiber body manufacturing method of the present invention and the member having the carbon fiber body (one end of the carbon fiber body bonded to the substrate) are used as they are for the electrode of the electric double layer capacitor and the negative electrode of the secondary battery. It can be used for various purposes such as materials.

以下、本発明の炭素繊維体およびそれを有する部材、それらの製造方法、並びにその応用について詳細に説明する。
本発明における炭素繊維とは、一方向に延びた炭素体の胴部に、一端側が結合した最小単位の繊維を意味し、炭素繊維体とは上記の複数の炭素繊維とそれらを結合する炭素体の胴部から構成される構造体を意味するものとする。
Hereinafter, the carbon fiber body of the present invention, members having the same, methods for producing the same, and applications thereof will be described in detail.
The carbon fiber in the present invention means a minimum unit fiber bonded at one end to the body of a carbon body extending in one direction, and the carbon fiber body is a carbon body that binds the plurality of carbon fibers to each other. It shall mean the structure comprised from the trunk | drum part.

本発明に係る炭素繊維体は、一方向に延びた炭素体の胴部に、複数の炭素繊維の一端側が、当該炭素繊維が並列するような状態で結合されていることを特徴としている。
このような炭素繊維の直径は、20〜100nmの範囲が好ましい。20〜100nmであれば、イオンを保持するための十分な表面積と構造体としての強度を保つことが可能である。
炭素繊維体を構成する炭素繊維の長さは、100〜1000nmの範囲が好ましく、炭素繊維に対するイオンの吸着と脱着のバランスが最適化される。
The carbon fiber body according to the present invention is characterized in that one end side of a plurality of carbon fibers is bonded to a body of a carbon body extending in one direction so that the carbon fibers are juxtaposed.
The diameter of such carbon fibers is preferably in the range of 20 to 100 nm. When the thickness is 20 to 100 nm, it is possible to maintain a sufficient surface area for holding ions and strength as a structure.
The length of the carbon fiber constituting the carbon fiber body is preferably in the range of 100 to 1000 nm, and the balance between adsorption and desorption of ions to the carbon fiber is optimized.

上記のような特異な構造を有する炭素繊維体は、大きな表面積を有する。また、この炭素繊維体を電気二重層キャパシタの分極性電極または二次電池の負極材の炭素材として用いる場合、得られた分極性電極または負極材は、炭素繊維体が集合したものとなる。そして、それらの炭素繊維体に微細孔が多数存在する。即ち、炭素繊維体を用いた分極性電極は、活性炭に比べて大きな径の細孔を有する多孔質構造となる。その結果、この部分でイオンの保持性及び移動性が活性炭を用いた場合よりも高まり、大電流の放電の際にも見かけ上の容量の低下が起こり難い。このように、本実施の形態では、特異な構造を有する櫛状炭素繊維体を電気二重層キャパシタの分極性電極または二次電池の負極材に用いることにより、比表面積を大きくして静電容量を高めるとともに、イオンの移動性が高くなるような微細な構造を形成することができる。   The carbon fiber body having the unique structure as described above has a large surface area. When this carbon fiber body is used as a polarizable electrode of an electric double layer capacitor or a carbon material of a negative electrode material of a secondary battery, the obtained polarizable electrode or negative electrode material is a collection of carbon fiber bodies. And many fine pores exist in those carbon fiber bodies. That is, a polarizable electrode using a carbon fiber body has a porous structure having pores having a larger diameter than activated carbon. As a result, the ion retention and mobility at this portion are higher than when activated carbon is used, and the apparent capacity is unlikely to decrease even during large current discharge. Thus, in this embodiment, the comb-like carbon fiber body having a unique structure is used for the polarizable electrode of the electric double layer capacitor or the negative electrode material of the secondary battery, thereby increasing the specific surface area and the capacitance. In addition, it is possible to form a fine structure that increases ion mobility.

本発明の炭素繊維体の製造方法としては、特に限定されないが、例えば、液体原料中で炭素繊維体の生成を促進する触媒を加熱する方法が挙げられる。
より具体的には、基板の表面に触媒が存在するものを用い、該基板ごと原料(有機化合物)中で加熱する方法が挙げられる。
本発明の炭素繊維体およびその部材の製造方法に用いられる原料(有機化合物)は、触媒の作用を受けて、加熱により生じた熱により反応し、炭素繊維を生成できるものである。
本発明の櫛状炭素繊維体の成長は、その製造方法に依存し、特徴ある櫛状構造ができたと推測される。
本発明の炭素繊維体およびその部材の製造方法における液体原料は下記の通りである。
Although it does not specifically limit as a manufacturing method of the carbon fiber body of this invention, For example, the method of heating the catalyst which accelerates | stimulates the production | generation of a carbon fiber body in a liquid raw material is mentioned.
More specifically, there is a method in which a catalyst is present on the surface of the substrate and the substrate is heated in the raw material (organic compound).
The raw material (organic compound) used in the carbon fiber body and the method for producing the member of the present invention is capable of generating carbon fiber by receiving the action of a catalyst and reacting with heat generated by heating.
The growth of the comb-like carbon fiber body of the present invention depends on the production method, and it is presumed that a characteristic comb-like structure was formed.
The liquid raw material in the manufacturing method of the carbon fiber body and its member of the present invention is as follows.

液体原料としては、特に限定されないが、アルコール類としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、オクタノール等が挙げられ、炭化水素類としてヘキサン、ペプタン、オクタン、ベンゼン、トルエン等が挙げられる。   The liquid raw material is not particularly limited, but alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol and the like, and hydrocarbons include hexane, peptane, octane, benzene, toluene and the like. It is done.

本発明の炭素繊維体の生成方法に用いられる触媒は、液体原料である有機化合物との加熱により、炭素繊維の生成反応の活性点となり、かつ該反応を促進するものであれば、特に限定されず、炭素繊維体の生成技術の分野において、公知公用であるもの、また、使用可能なもの、使用可能性が期待できるもの等を全て含むものである。例として、金属および金属酸化物等が挙げられる。また該金属の中でも遷移金属が好ましい。ここで遷移金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、タンタル、タングステン、レニウム、イリジウムまたは白金を指すものであるが、これらの内特に周期律表VIII族に属するもの、その内で特に鉄、ニッケル、コバルトが好適であって、鉄が最も好適である。   The catalyst used in the method for producing a carbon fiber body of the present invention is not particularly limited as long as it becomes an active point of a carbon fiber production reaction by heating with an organic compound that is a liquid raw material and accelerates the reaction. In addition, in the field of carbon fiber body production technology, it includes all those that are publicly known, those that can be used, and those that can be expected to be usable. Examples include metals and metal oxides. Of these metals, transition metals are preferred. Here, the transition metal refers to scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium or platinum. Among them, particularly those belonging to Group VIII of the Periodic Table, among which iron, nickel and cobalt are particularly preferred, and iron is most preferred.

本発明の炭素繊維体の製造方法において、加熱方法として抵抗加熱または誘導加熱を用いることができる。
加熱温度は基板の表面に存在する触媒の温度が第1段階として600〜700℃、第2段階として800〜900℃の範囲になるように抵抗加熱または誘導加熱を行い、合成中もこの加熱温度に保つ。
この2段階における温度制御が特異な炭素繊維体を形成する。
In the method for producing a carbon fiber body of the present invention, resistance heating or induction heating can be used as a heating method.
The heating temperature is resistance heating or induction heating so that the temperature of the catalyst existing on the surface of the substrate is in the range of 600 to 700 ° C. as the first stage and 800 to 900 ° C. as the second stage. Keep on.
A carbon fiber body having a unique temperature control in these two stages is formed.

本発明の炭素繊維体の製造方法における抵抗加熱とは、基板としてSi等の比較的に抵抗率が高いものに電流を流すことによって加熱する方式であり、前記したように、触媒金属を表面に付着した基板を用いるものである。   The resistance heating in the method for producing a carbon fiber body of the present invention is a system in which a substrate is heated by passing an electric current through a relatively high resistivity such as Si, and as described above, the catalytic metal is applied to the surface. An attached substrate is used.

本発明の炭素繊維体の製造方法における誘導加熱とは、電場の変化によって電気的導体内の生じる渦電流により加熱される原理である。より詳細に説明すると以下の通りである。
導線に交流電気を流すと、その周囲に磁力線が発生する。導線をコイル状に巻き、その中心部に金属のような電気的導体を置いてコイルに通電すると、磁力線の影響を受けて、電気的導体(金属等)の中に誘導電流(うず電流)が生じる。この誘導電流は、電気的導体(金属等)のもつ抵抗によりエネルギーを損失し、熱を発生させる。この発熱現象を熱源として加熱に利用したものである。
この誘導加熱によって加熱対象である基板を加熱する場合、電気的導体である金属あるいは炭素繊維基板を加熱し、それに加熱対象基板を密着させることで行う。なおここでいう密着とは、完全に面的に一体化している場合から、熱伝達が可能な範囲で適度な隙間を介している場合までを含んでいる。また、電流を流すための電極部分が必要なく構造が簡易かつ加熱対象である基板の形状も自由度が高くなる。また、抵抗加熱と異なる非接触加熱であり、温度制御がしやすい。特に大面積・大容量の加熱対象の場合でも加熱温度にムラを生じることなく緻密に温度制御可能となる。
Induction heating in the method for producing a carbon fiber body of the present invention is a principle of heating by an eddy current generated in an electrical conductor due to a change in electric field. This will be described in more detail as follows.
When AC electricity is passed through the conducting wire, lines of magnetic force are generated around it. When a conducting wire is wound in the shape of a coil and an electric conductor such as metal is placed in the center of the coil and the coil is energized, an induced current (eddy current) is generated in the electric conductor (metal, etc.) due to the influence of magnetic lines of force. Arise. This induced current loses energy due to the resistance of the electrical conductor (metal or the like) and generates heat. This exothermic phenomenon is used for heating as a heat source.
When the substrate to be heated is heated by this induction heating, the metal or carbon fiber substrate which is an electrical conductor is heated, and the substrate to be heated is brought into close contact therewith. Here, the close contact includes from the case where the surface is completely integrated to the case where an appropriate gap is provided as long as heat transfer is possible. Further, there is no need for an electrode portion for flowing current, the structure is simple, and the shape of the substrate to be heated increases the degree of freedom. Moreover, it is non-contact heating different from resistance heating, and temperature control is easy. In particular, even in the case of a heating object having a large area and a large capacity, the temperature can be precisely controlled without causing unevenness in the heating temperature.

誘導加熱による炭素繊維体の製造方法に用いられる基板は、表面に触媒金属を堆積したSi基板が用いられる。これの触媒が付着しない面を、誘導加熱で直接加熱する金属あるいは炭素繊維基板に密着させる。   As the substrate used in the method for producing a carbon fiber body by induction heating, a Si substrate having a catalytic metal deposited on the surface is used. The surface on which the catalyst does not adhere is adhered to a metal or carbon fiber substrate that is directly heated by induction heating.

炭素繊維体は上述したように2段階の温度制御によって形成される。加熱前の常温時には、Si基板の表面には、金属触媒が近接したような状態もしくは全体を薄く覆ったような状態で存在する。溶液中にて、Si基板および金属触媒を加熱し、その温度を徐々に上げていくと触媒が動き始め、シリコンの結晶面に沿った形で適度な長さを持った略直線状に触媒が凝集する。この時点の温度は600〜700℃であり、ここで一旦、昇温を停止させ、Si基板および金属触媒の温度を維持すると、略直線状の触媒表面から炭素が析出しはじめ、炭素体の胴部が形成される。この部分は温度が低いために明確な層構造ではなく、半アモルファス的な炭素体となっている。
その後、第2段階としてSi基板および金属触媒を800〜900℃の範囲まで昇温すると、略直線状の触媒の一部はSi基板へ沈降して行き、粒状、島状となる。その温度を保持すると、今度は粒状、島状の部分がそれぞれ独立して1本の炭素繊維を析出することになる。すると上部に第1段階で析出した胴部を載せたままで、炭素繊維が成長して炭素繊維体を形成する。
The carbon fiber body is formed by two-stage temperature control as described above. At normal temperature before heating, the surface of the Si substrate is present in a state where the metal catalyst is close or in a state where the whole is thinly covered. When the Si substrate and the metal catalyst are heated in the solution and the temperature is gradually raised, the catalyst starts to move, and the catalyst is formed in a substantially linear shape with an appropriate length along the crystal plane of silicon. Aggregate. The temperature at this point is 600 to 700 ° C. Here, once the temperature rise is stopped and the temperature of the Si substrate and the metal catalyst is maintained, carbon begins to deposit from the substantially linear catalyst surface, and the body of the carbon body Part is formed. This part has a semi-amorphous carbon body rather than a clear layer structure because of the low temperature.
Thereafter, when the temperature of the Si substrate and the metal catalyst is raised to a range of 800 to 900 ° C. as a second stage, a part of the substantially linear catalyst settles on the Si substrate and becomes granular and island-like. If the temperature is maintained, the granular and island-like portions will each be deposited independently to form a single carbon fiber. Then, the carbon fiber grows and forms a carbon fiber body with the body part deposited in the first stage on the upper part.

本発明の炭素繊維体の製造方法においては、炭素繊維体の生成反応中に、所望しない酸素が副生し、原料有機化合物の燃焼を引き起こす。その問題を回避するために、上記誘導加熱によって反応系内に生成される酸素を、不活性ガスを導入することによって排出することが好ましい。   In the carbon fiber body manufacturing method of the present invention, undesired oxygen is by-produced during the carbon fiber body formation reaction, causing combustion of the raw organic compound. In order to avoid the problem, it is preferable to discharge oxygen generated in the reaction system by the induction heating by introducing an inert gas.

以下、実施例及び比較例を挙げ、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
メタノールを液体原料として用いた。体積抵抗率が0.02ΩcmのSi(100)面方位、寸法10×20×0.5mm3 の基板を用いた。Si基板は、アセトン中で超音波洗浄した。Si(100)基板表面に、Arガスによるスパッタ法で平均5nm厚のFe薄膜を堆積した。このSi基板を、基板ホルダーに配置し、セパラブルフラスコに入れたメタノールに浸漬した後、窒素ガスを導入して直流電流を流し、700℃に加熱した。Si基板表面はアルコールの蒸気(泡)で覆われ、フラスコの液体の温度は約60℃に上昇した。原料のメタノールの沸騰点よりも低くするために液体の入ったフラスコを冷水で満たした冷却槽に入れた。また、蒸発したメタノールを回収するためにリービッヒコンデンサーを取り付けた。Si基板温度は、光学放射温度計を使用し、焦点を基板表面に合わせて測定した。Si基板に流す電流は成長中一定に保った。この状態で約1分間保持した後、温度を850℃に上げ、更に4分間そのまま加熱した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.
[Example 1]
Methanol was used as a liquid raw material. A substrate having a volume resistivity of 0.02 Ωcm and a Si (100) plane orientation of 10 × 20 × 0.5 mm 3 was used. The Si substrate was ultrasonically cleaned in acetone. An Fe thin film having an average thickness of 5 nm was deposited on the Si (100) substrate surface by sputtering with Ar gas. This Si substrate was placed in a substrate holder and immersed in methanol placed in a separable flask, and then nitrogen gas was introduced to flow a direct current and heated to 700 ° C. The surface of the Si substrate was covered with alcohol vapor (bubbles), and the temperature of the liquid in the flask rose to about 60 ° C. In order to lower the boiling point of the raw material methanol, the flask containing the liquid was placed in a cooling tank filled with cold water. A Liebig condenser was attached to collect the evaporated methanol. The Si substrate temperature was measured by using an optical radiation thermometer and focusing on the substrate surface. The current passed through the Si substrate was kept constant during growth. After maintaining in this state for about 1 minute, the temperature was raised to 850 ° C. and further heated for 4 minutes.

図1は、炭素繊維体を生成するための合成装置の構成の一例を示す図である。この合成装置は、液体槽1の外側に液体槽1を冷却するための水冷手段2と、基板3を保持し、かつ、基板3に電流を流すための電極4を有する基板ホルダー5と、液体槽1から蒸発する有機液体蒸気を冷却凝縮して液体槽1に戻す水冷パイプ6からなる凝縮手段7と、基板ホルダー5と凝縮手段7とN2ガスを導入するバルブ8とを保持する蓋9を有し、液体槽1と蓋9で有機液体10を密閉して保持する構成である。
図2は、合成した炭素繊維体のSEM(電子顕微鏡)像である。基板表面に櫛状炭素繊維体が成長していることが観察された。
FIG. 1 is a diagram illustrating an example of a configuration of a synthesis apparatus for generating a carbon fiber body. This synthesizer includes a water cooling means 2 for cooling the liquid tank 1 outside the liquid tank 1, a substrate holder 5 that holds the substrate 3 and has an electrode 4 for passing a current through the substrate 3, a liquid A lid 9 holding a condensing means 7 comprising a water-cooled pipe 6 that cools and condenses the organic liquid vapor evaporating from the tank 1 and returns it to the liquid tank 1, a substrate holder 5, the condensing means 7, and a valve 8 for introducing N 2 gas. The organic liquid 10 is hermetically sealed and held by the liquid tank 1 and the lid 9.
FIG. 2 is an SEM (electron microscope) image of the synthesized carbon fiber body. It was observed that the comb-like carbon fiber was growing on the substrate surface.

本発明の炭素繊維体またはそれを有する部材は、電気二重層キャパシタの部材(電極材料)、二次電池の負極材の他、FED・エミッタ、燃料電池用電極、電気化学電極、触媒担体、太陽電池電極等に適用可能である。   The carbon fiber body of the present invention or a member having the same includes an electric double layer capacitor member (electrode material), a negative electrode material for a secondary battery, an FED / emitter, an electrode for a fuel cell, an electrochemical electrode, a catalyst carrier, a solar cell It can be applied to battery electrodes and the like.

実施例1で使われた合成装置の構成を示す図である。1 is a diagram illustrating a configuration of a synthesis apparatus used in Example 1. FIG. 実施例1で得られた基板上に成長した炭素繊維体の電子顕微鏡(SEM)像である。2 is an electron microscope (SEM) image of a carbon fiber body grown on a substrate obtained in Example 1. FIG.

符号の説明Explanation of symbols

1 液体槽
2 水冷手段
3 基板
4 電極
5 基板ホルダー
6 水冷管
7 凝縮手段
8 バルブ
9 蓋
10 有機液体
DESCRIPTION OF SYMBOLS 1 Liquid tank 2 Water cooling means 3 Substrate 4 Electrode 5 Substrate holder 6 Water cooling tube 7 Condensing means 8 Valve 9 Lid 10 Organic liquid

Claims (7)

一方向に延びた炭素体の胴部に、複数の炭素繊維の一端側が、当該炭素繊維が並列するような状態で結合されていることを特徴とする炭素繊維体。   A carbon fiber body, wherein one end side of a plurality of carbon fibers is bonded to a body of a carbon body extending in one direction so that the carbon fibers are juxtaposed. 前記炭素繊維は、直径20〜100nmであることを特徴とする請求項1記載の炭素繊維体。   The carbon fiber body according to claim 1, wherein the carbon fiber has a diameter of 20 to 100 nm. 前記炭素繊維は、長さが100〜1000nmであることを特徴とする請求項1記載の炭素繊維体。   The carbon fiber body according to claim 1, wherein the carbon fiber has a length of 100 to 1000 nm. 炭素繊維間の間隔が5〜100nmであることを特徴とする請求項1記載の炭素繊維体。   The carbon fiber body according to claim 1, wherein an interval between the carbon fibers is 5 to 100 nm. 請求項1〜4のいずれかに記載の炭素繊維体と、表面に触媒が存在する基板とからなり、前記炭素繊維体と前記基板とが結合して一体化されていることを特徴とする部材。   A member comprising the carbon fiber body according to any one of claims 1 to 4 and a substrate having a catalyst on a surface thereof, wherein the carbon fiber body and the substrate are combined and integrated. . 表面に触媒が存在する基板を常温常圧で液体である原料中で加熱し、当該触媒および基板を常温から600℃〜700℃に昇温させ、所定の時間後さらに800℃〜900℃に昇温させる工程を含むことを特徴とする請求項1〜4のいずれかに記載の炭素繊維体の製造方法。   A substrate having a catalyst on the surface is heated in a raw material that is liquid at normal temperature and pressure, and the temperature of the catalyst and the substrate is increased from normal temperature to 600 ° C. to 700 ° C. After a predetermined time, the temperature is further increased to 800 ° C. to 900 ° C. The method for producing a carbon fiber body according to any one of claims 1 to 4, further comprising a step of heating. 前記液体原料は、アルコール類としてはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール又はオクタノールであり、炭化水素類としてはヘキサン、ペプタン、オクタン、ベンゼン又はトルエンであり、前記触媒は、Fe、CoおよびNiからなるグループから選ばれる一つ又は複数の元素であることを特徴とする請求項6に記載の炭素繊維体の製造方法。   The liquid raw material is methanol, ethanol, propanol, isopropanol, butanol, pentanol or octanol as alcohols, and hexane, peptane, octane, benzene or toluene as hydrocarbons, and the catalyst is Fe, Co The method for producing a carbon fiber body according to claim 6, wherein the carbon fiber body is one or a plurality of elements selected from the group consisting of Ni and Ni.
JP2004303355A 2004-10-18 2004-10-18 Carbon fiber body, member having it, and their manufacturing method Pending JP2006110701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303355A JP2006110701A (en) 2004-10-18 2004-10-18 Carbon fiber body, member having it, and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303355A JP2006110701A (en) 2004-10-18 2004-10-18 Carbon fiber body, member having it, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2006110701A true JP2006110701A (en) 2006-04-27

Family

ID=36379630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303355A Pending JP2006110701A (en) 2004-10-18 2004-10-18 Carbon fiber body, member having it, and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2006110701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988056A3 (en) * 2005-11-25 2009-04-08 National Institute for Materials Science Carbon nanotubes, substrate and electron emission device with such carbon nanotubes and carbon nanotube sythesizing substrate as well as methods of and apparatus for making them
JP2009215122A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2009215120A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2010116279A (en) * 2008-11-11 2010-05-27 National Institute For Materials Science Method for producing nano carbon material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988056A3 (en) * 2005-11-25 2009-04-08 National Institute for Materials Science Carbon nanotubes, substrate and electron emission device with such carbon nanotubes and carbon nanotube sythesizing substrate as well as methods of and apparatus for making them
EP2014616A3 (en) * 2005-11-25 2009-04-08 National Institute for Materials Science Carbon nanotubes, substrate and electron emission device with such carbon nanotubes and carbon nanotube synthesizing substrate as well as methods of and apparatus for making them
JP2009215122A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2009215120A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
JP2010116279A (en) * 2008-11-11 2010-05-27 National Institute For Materials Science Method for producing nano carbon material

Similar Documents

Publication Publication Date Title
Yu et al. Battery‐like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator
Signorelli et al. Electrochemical double-layer capacitors using carbon nanotube electrode structures
Zhang et al. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high‐performance electrodes for supercapacitors
JP5481748B2 (en) Carbon nanostructure, method for producing metal-encapsulated dendritic carbon nanostructure, and method for producing carbon nanostructure
US9721734B2 (en) Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
RU2469442C1 (en) System for highly efficient conversion and accumulation of energy using carbon nanostructured materials
Cui et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries
JP6872854B2 (en) Electrode materials, secondary batteries containing them, and methods for manufacturing them
US7826199B2 (en) Electrochemical capacitor with carbon nanotubes
Ning et al. Superior pseudocapacitive storage of a novel Ni 3 Si 2/NiOOH/graphene nanostructure for an all-solid-state supercapacitor
Reit et al. Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates
Azam et al. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review
US7813108B2 (en) Electrochemical capacitor with carbon nanotubes
Huang et al. TiC/NiO core/shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-ion battery
US20110149465A1 (en) Electric double layer capacitor and method for manufacturing the same
WO2007131217A2 (en) Engineered structure for charge storage and method of making
CN105393396A (en) Carbon nanotubes - graphene hybrid structures for separator free silicon - sulfur batteries
TW201135769A (en) High performance carbon nanotube energy storage device
JP2009078956A (en) Carbon nanotube composite body, energy device using the same, and method for producing carbon nanotube composite body
JP2007194354A (en) Polarizable electrode, and electric double layer capacitor comprising same
CN101471184A (en) Super capacitor
Polat et al. Silicon-copper helical arrays for new generation lithium ion batteries
JP2011249673A (en) Electric double layer capacitor
US20120134071A1 (en) Electrochemical double-layer capacitor using nanotube electrode structures
Lei et al. Novel Gram‐Scale Synthesis of Carbon Nano‐Onions from Heavy Oil for Supercapacitors