JP2006110116A - Intraarticular optical probe - Google Patents

Intraarticular optical probe Download PDF

Info

Publication number
JP2006110116A
JP2006110116A JP2004301066A JP2004301066A JP2006110116A JP 2006110116 A JP2006110116 A JP 2006110116A JP 2004301066 A JP2004301066 A JP 2004301066A JP 2004301066 A JP2004301066 A JP 2004301066A JP 2006110116 A JP2006110116 A JP 2006110116A
Authority
JP
Japan
Prior art keywords
outer cylinder
prism
articular
distal end
optical probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004301066A
Other languages
Japanese (ja)
Other versions
JP4654430B2 (en
Inventor
Koji Mori
浩二 森
Takashi Saito
俊 斉藤
Yutaka Kawasaki
豊 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2004301066A priority Critical patent/JP4654430B2/en
Publication of JP2006110116A publication Critical patent/JP2006110116A/en
Application granted granted Critical
Publication of JP4654430B2 publication Critical patent/JP4654430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intraarticular optical probe for identifying components by irradiating the components with light in an infrared area where both of the components of collagen fiber and proteoglycan used as crucial components of cartilage can be measured in order to measure them. <P>SOLUTION: The probe consists of an outer cylinder in a state of a straight and cylindrical trunk; a bent part fixed at a position at a right angle or an optional obtuse angle at the distal end of the outer cylinder part; a prism mounted to the distal end of the outer cylinder part or the bent part; a grip part fixed at a prescribed position from the distal end of the outer cylinder part; a pressurizing force detection means for detecting force added to the distal end of the prism in a state of being stuck to a connection part for fixing the outer cylinder part and the grip part; and an optical fiber inserted to be positioned in the vicinity of a distal end on the inside of the outer cylinder part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、関節軟骨に含まれるコラーゲン線維とプロテオグリカンを測定するための関節内光プローブに関する。 The present invention relates to an intra-articular optical probe for measuring collagen fibers and proteoglycans contained in articular cartilage.

従来より、関節軟骨に対して超音波を照射し関節の力学構造特性を定量評価する診断システムが発明されてきた。関節腔内で関節軟膏に超音波を送信し関節軟骨からの反射エコーをウェーブレット交換することにより、定量的に関節腔内の軟骨下骨を評価することを特徴とする関節腔内の超音波解析システムであるが、このシステムは関節軟骨を構成するコラーゲン線維やプロテオグリカンなどの重要成分のうち、コラーゲン線維の変化に対して感度よく測定可能であるが、プロテオグリカンの変化を捉えることが困難なため、コラーゲン線維とプロテオグリカンの両成分の変化を捉える診断機器が必要である(例えば、特許文献1参照)。   Conventionally, a diagnostic system has been invented for quantitatively evaluating the mechanical structural characteristics of joints by irradiating articular cartilage with ultrasonic waves. Ultrasound analysis in the joint cavity characterized by quantitatively evaluating the subchondral bone in the joint cavity by transmitting ultrasound to the joint ointment in the joint cavity and wavelet exchange of the echo reflected from the articular cartilage Although it is a system, this system can measure with high sensitivity to changes in collagen fibers among important components such as collagen fibers and proteoglycans that make up articular cartilage, but it is difficult to capture changes in proteoglycans, There is a need for a diagnostic device that captures changes in both collagen fibers and proteoglycans (see, for example, Patent Document 1).

ところで、現在では、コラーゲン線維とプロテオグリカンの両成分を捉える方法として、P.A.Westらが“Fourier Transform Infrared Spectral Analysis of Degenerative Cartilage:An Infrared Fiber Optic Probe and Imaging Study”
(非特許文献1参照)の論文を発表している。本論文には、赤外線を通す光ファイバーを用いて関節軟骨表面に赤外線を照射し関節軟骨表面のコラーゲン線維を測定することで軟骨診断へ応用していくというものである。ところで、本論文に記載の光プローブはペン型を有する先端部にプリズムを備え、ロードセルによって関節軟骨との接触力を測定するというシステムであり、本システムのような形態のものは、関節腔内での診断には適していない。
By the way, as a method for capturing both collagen fibers and proteoglycan components, P.I. A. West et al. “Fourier Transform Infrared Spectral Analysis of Degenerative Cartridge: An Infrared Fiber Optic Probe and Imaging Study”
(See Non-Patent Document 1). In this paper, we apply infrared rays to the surface of articular cartilage using an optical fiber that transmits infrared rays and measure collagen fibers on the surface of articular cartilage to apply it to cartilage diagnosis. By the way, the optical probe described in this paper is a system in which a prism is provided at the tip portion having a pen shape and the contact force with the articular cartilage is measured by a load cell. Not suitable for diagnosis in Japan.

特開2002−345821号公報JP 2002-345821 A APPLIDE SPECTROSCOPY(volume 58,Number 4,2004)APPLEDE SPECTROCOPY (volume 58, Number 4, 2004)

しかし、上記したように、従来までの関節診断には、MRIを用いた形態学的診断(関節の外形を診断)、視覚的診断(医師が軟骨の状態を生で診て判断)、金属棒を用いた硬さ診断(正常部と非正常部の硬さを医師が金属棒で叩くことにより軟骨の硬さの状態を診断)が主に行われている。さらに、近年では、軟骨に対して力学的診断が重要視され、超音波内視鏡を用いて軟骨の「硬さ」、「暑さ」、「表面粗さ」の定量的評価が行われている。また、軟骨組織を評価する方法として、軟骨切片を取り出し切片を染色法により軟骨内の組織成分を染色する組織学的評価がある。   However, as described above, conventional joint diagnosis includes morphological diagnosis using MRI (diagnosis of joint external shape), visual diagnosis (physician determines the state of cartilage live), metal rod Is mainly used to diagnose the hardness of the cartilage when the doctor strikes the hardness of the normal part and the non-normal part with a metal rod. Furthermore, in recent years, mechanical diagnosis is important for cartilage, and quantitative evaluation of “hardness”, “heat”, and “surface roughness” of cartilage is performed using an ultrasonic endoscope. Yes. As a method for evaluating the cartilage tissue, there is a histological evaluation in which a cartilage section is taken out and the section is stained to stain tissue components in the cartilage.

軟骨は主に水(80%)、軟骨細胞(2%)、コラーゲン線維(12%)、プロテオグリカン(6%)で構成されている。この中でも、コラーゲン線維とプロテオグリカンの2成分は軟骨の力学的性質を支配する重要な要素となっている。軟骨疾患に代表される変形性膝関節症(O.A.)の初期変化において、軟骨表層のコラーゲン線維の断裂によるネットワークの消失やコラーゲン線維量の低下、プロテオグリカン合成低下が報告されている。このことからも軟骨の変性を診断するにはコラーゲン線維とプロテオグリカンの量成分からの評価が必要となるが、上述の軟骨に対する定量的評価法である超音波による診断ではコラーゲン線維の変化に対して感度よく測定することができるが、プロテオグリカンに関しては測定が困難なため、プロテオグリカンの変化も捉えることのできる診断機器が無いといった問題があった。   Cartilage is mainly composed of water (80%), chondrocytes (2%), collagen fibers (12%), and proteoglycans (6%). Among these, the two components, collagen fibers and proteoglycan, are important factors governing the mechanical properties of cartilage. In the initial change of osteoarthritis of the knee (OA) typified by cartilage disease, loss of network due to rupture of collagen fibers in the cartilage surface layer, decrease in the amount of collagen fibers, and decrease in proteoglycan synthesis have been reported. In view of this, it is necessary to evaluate collagen fiber and proteoglycan from the quantitative components in order to diagnose cartilage degeneration. However, in ultrasonic diagnosis, which is a quantitative evaluation method for cartilage as described above, Although it is possible to measure with high sensitivity, since proteoglycan is difficult to measure, there is a problem that there is no diagnostic device capable of capturing changes in proteoglycan.

本発明は、従来の問題点に鑑みてなされたものであり、軟骨の重要な成分となるコラーゲン線維とプロテオグリカンを測定するため、両成分が測定可能となる赤外線領域の光を照射して成分の同定を行うようにした関節内光プローブを提供することである。   The present invention has been made in view of the conventional problems, and in order to measure collagen fibers and proteoglycans that are important components of cartilage, both components can be measured by irradiating with light in the infrared region. It is to provide an intra-articular optical probe adapted for identification.

このような課題を解決するために、本発明に係る第1の発明では、直胴円筒状の外筒部と、該外筒部の先端部に直角または任意の鈍角になる位置に固着された屈折部と、該外筒部または該屈折部の先端部に装着されたプリズムと、該外筒部の先端部から所定の位置に固着された把持部と、該外筒部と該把持部を固定するための接続部に張着した状態でプリズムの先端部に付加する力を検出する押圧力検出手段と、該外筒部内部の先端部近傍に位置するように挿通された光ファイバーとで構成した。   In order to solve such a problem, in the first invention according to the present invention, the straight cylindrical outer cylinder part and the tip of the outer cylinder part are fixed at a right angle or any obtuse angle. A refracting portion, a prism attached to the outer cylindrical portion or the distal end portion of the refracting portion, a gripping portion fixed at a predetermined position from the distal end portion of the outer cylindrical portion, and the outer cylindrical portion and the gripping portion. Consists of a pressing force detection means for detecting the force applied to the tip of the prism in a state of being attached to the connecting portion for fixing, and an optical fiber inserted so as to be positioned in the vicinity of the tip inside the outer tube portion did.

第1の発明を主体とする第2の発明では、該外筒部と屈曲部とを適宜な鈍角となるように固着させるとともに、両接続部の管内の上方位置に反射用ミラーを配設した。また、第1の発明を主体とする第3の発明では、該外筒部の先端部に二段状の重畳形状を有するとともに、先端部に向かって漸減するプリズムを装着した。さらに、第1の発明を主体とする第4の発明では、該外筒部の先端部にプリズムの一方の面が該外筒部の中心軸より上方または下方に傾倒させた。第1の発明を主体とする第5の発明では、該外筒部の先端部に該外筒部と直角方向に屈折部を接続した。さらに、第1の発明を主体とする第6の発明では、該接続部に弾力性を有する材質や形状および構造のものを用いた。   In the second invention based on the first invention, the outer cylindrical portion and the bent portion are fixed so as to have an appropriate obtuse angle, and a reflecting mirror is disposed at an upper position in the pipe of both connecting portions. . In the third invention based on the first invention, a prism that has a two-stage overlapping shape at the distal end portion of the outer cylindrical portion and gradually decreases toward the distal end portion is mounted. Furthermore, in the fourth invention based on the first invention, one surface of the prism is tilted upward or downward from the central axis of the outer cylinder part at the tip of the outer cylinder part. In the fifth invention based on the first invention, the refracting portion is connected to the distal end portion of the outer cylinder portion in a direction perpendicular to the outer cylinder portion. Furthermore, in the sixth invention based on the first invention, a material, shape and structure having elasticity is used for the connecting portion.

本発明は、光プローブの先端部にプリズム部を有した関節内光プローブを用いて軟骨と接触させ軽く押さえ付けることで軟骨表面の成分が測定できるとともに、軟骨に赤外線領域の光を照射することで、軟骨内の重要成分であるコラーゲン線維とプロテオグリカンの両成分の変化から軟骨の変性具合を容易に診断することが可能である。さらに、軟骨を傷つけることなく軟骨内のコラーゲン線維やプロテオグリカンといった主要成分を測定することが可能なため、疾患軟骨と正常軟骨の差異を診ることができるとともに、軟骨の治療経過や軟骨に投与した薬がどのような効力を持っているかなど、組織成分の観点からの診断・評価が可能となり、応用範囲が広くなる。   The present invention can measure components of the cartilage surface by using an intra-articular optical probe having a prism part at the tip of the optical probe and pressing it lightly, and irradiating the cartilage with light in the infrared region. Thus, it is possible to easily diagnose the degree of cartilage degeneration based on changes in both collagen fibers and proteoglycans, which are important components in cartilage. In addition, since it is possible to measure the main components such as collagen fibers and proteoglycans in the cartilage without damaging the cartilage, the difference between diseased cartilage and normal cartilage can be diagnosed, and the course of treatment of cartilage and drugs administered to cartilage Diagnosis / evaluation from the viewpoint of tissue components, such as what kind of effect is available, widens the range of application.

次に、本発明に係る関節内光プローブの実施形態について、図1から図4を参照しながら説明する。   Next, an embodiment of an intra-articular optical probe according to the present invention will be described with reference to FIGS.

図1は本発明の実施に係る関節内光プローブの概要図、図2は図1に類似の他の関節内光プローブの概要図、図3は関節内光プローブを用いて関節軟骨を測定する際の説明図、図4は関節内光プローブの各種先端部形状の概要図である。   1 is a schematic diagram of an intra-articular optical probe according to the embodiment of the present invention, FIG. 2 is a schematic diagram of another intra-articular optical probe similar to FIG. 1, and FIG. 3 is a joint cartilage measured using the intra-articular optical probe. FIG. 4 is a schematic diagram of various tip shapes of the intra-articular optical probe.

図1を用いて関節内光プローブの概要図を説明する。図1の関節内光プローブ1は、把持部3、外筒部5、プリズム7、光ファイバー9および歪みゲージ11から構成されている。関節内光プローブ1の根元部分に配設された把持部3を手で把持して関節内光プローブ1の先端部に取り付けられたプリズム7を適切な力を付加した状態で光ファイバー9から光を照射し、プリズム7と関節軟骨13の界面に微小量の光が漏れ、この光が関節軟骨13の表面に吸収されることで関節軟骨13の表面の情報を捉えることができる。このとき、プリズム7を関節軟骨13の表面に押圧することで、関節軟骨に含まれるコラーゲン線維とプロテオグリカンの分布量を測定するのである。この両者の成分変化から軟骨の変性具合が診断できるのである。   A schematic diagram of the intra-articular optical probe will be described with reference to FIG. The intra-articular optical probe 1 shown in FIG. 1 includes a grip part 3, an outer cylinder part 5, a prism 7, an optical fiber 9, and a strain gauge 11. Light is emitted from the optical fiber 9 with an appropriate force applied to the prism 7 attached to the distal end portion of the intra-articular optical probe 1 by grasping the grip portion 3 disposed at the base portion of the intra-articular optical probe 1 by hand. When irradiated, a minute amount of light leaks to the interface between the prism 7 and the articular cartilage 13, and this light is absorbed by the surface of the articular cartilage 13 so that information on the surface of the articular cartilage 13 can be captured. At this time, the amount of collagen fibers and proteoglycan contained in the articular cartilage is measured by pressing the prism 7 against the surface of the articular cartilage 13. It is possible to diagnose the degree of cartilage degeneration based on the change in both components.

把持部3は円筒形状を有しており、外径が3〜5cm、長さが7〜10cmのものが使用し易い。把持部3と外筒部5は、この両者が相対動を生じないように接続部17で固着されている。接続部17は弾力性を有する材質、形状、構造のものが好ましく、例えば樹脂やゴムなどで製作される。接続部17はプリズム7の先端部に付加する力を検出する押圧力検出手段が張着されている。押圧力検出手段としては、例えば接続部17の表面に張着したる歪みゲージ11を用いると、プリズム7の先端部を関節軟骨の表面部に押圧する付加力が測定できるようになっており、歪みゲージ11に接続された測定装置に表示される付加力を見ながら所望する付加力を調整しながら使用される。なお、押圧力検出手段については、本実施例では、歪みゲージ11を用いたがこれに限定されるものではなく、プリズム7の先端部に付加する力が判明できれば、他の手段にて当該付加力を測定できるようにしてもよい。外筒部5は、外径が円筒状を有し、2〜4mmのものである。また、材質は弾力性に富んだ曲げモーメントに耐え得るような樹脂製やステンレススチールのような不錆鋼が用いられる。この外筒部5の内部には光ファイバー9の先端部が外筒部5と屈折部15の接合部の近傍に位置させた状態で貫通されている。   The grip portion 3 has a cylindrical shape, and an outer diameter of 3 to 5 cm and a length of 7 to 10 cm are easy to use. The grip part 3 and the outer cylinder part 5 are fixed by a connection part 17 so that they do not cause relative movement. The connection part 17 is preferably made of a material, shape and structure having elasticity, and is made of, for example, resin or rubber. The connecting portion 17 is attached with pressing force detecting means for detecting a force applied to the tip portion of the prism 7. As the pressing force detection means, for example, when a strain gauge 11 stuck to the surface of the connection portion 17 is used, an additional force that presses the tip portion of the prism 7 against the surface portion of the articular cartilage can be measured. It is used while adjusting the desired additional force while observing the additional force displayed on the measuring device connected to the strain gauge 11. As for the pressing force detecting means, the strain gauge 11 is used in this embodiment, but the present invention is not limited to this. If the force applied to the tip of the prism 7 can be determined, the other means can be used. The force may be measured. The outer cylinder part 5 has a cylindrical outer diameter and is 2 to 4 mm. The material is made of resin or non-rusting steel such as stainless steel that can withstand bending moments rich in elasticity. The outer cylindrical portion 5 is penetrated with the distal end portion of the optical fiber 9 positioned in the vicinity of the joint between the outer cylindrical portion 5 and the refracting portion 15.

この光ファイバー9は非常に折れ易い性質を持っているため、折れた残骸が体内に残ったり、折れた部位によって体内を傷つける危険性を回避するため光ファイバー9の周囲に例えば、十分な硬さを有したステンレススチールのような不錆鋼を有する外筒部5で覆うのである。さらに、もう一つの目的として、光ファイバー9の周囲を外筒部5で覆うことで、関節腔内時の挿入時にかかる力が光ファイバー9に作用しないようになっている。   Since this optical fiber 9 is very easy to break, there is enough hardness around the optical fiber 9 to avoid the risk of broken debris remaining in the body or damaging the body due to the broken part. It is covered with an outer cylinder portion 5 having non-rust steel such as stainless steel. Further, as another object, the outer cylinder portion 5 covers the periphery of the optical fiber 9 so that the force applied during insertion in the joint cavity does not act on the optical fiber 9.

軟骨の変性具合を診断し易くするために、直胴状の外筒部5の先端部に屈曲した状態で屈折部15が接続されている。屈折部15と外筒部5との接合部は、θ=130〜150度の角度に屈曲した状態で固着されており、屈折部15の先端部に円弧状のプリズム7が装着されている。ATR測定法(減衰全反射法)ではプリズム7と関節軟骨13を接触させる際に、関節軟骨13が傷つかないようにするために、プリズム7の先端形状は丸みを帯びた形状となっている。   In order to make it easier to diagnose the degree of cartilage degeneration, the refracting portion 15 is connected in a bent state to the distal end portion of the straight cylindrical outer cylinder portion 5. The joint between the refracting portion 15 and the outer cylindrical portion 5 is fixed in a state where it is bent at an angle of θ = 130 to 150 degrees, and an arc-shaped prism 7 is attached to the tip of the refracting portion 15. In the ATR measurement method (attenuated total reflection method), when the prism 7 and the articular cartilage 13 are brought into contact with each other, the tip of the prism 7 has a rounded shape so that the articular cartilage 13 is not damaged.

図2は図1に類似の他の関節内光プローブの概要図であり、図2に示す光プローブ1の外筒部5の先端部と屈折部15が接合される管内の上方位置に反射用ミラー19が装着されている。光ファイバー9の先端部から照射された光は反射用ミラー19を介してプリズム7に導かれ、そのプリズム7から発せられた光が柔らかな性質を持つ関節軟骨13に到達できるようになっている(図3)。   FIG. 2 is a schematic view of another intra-articular optical probe similar to FIG. 1, and is used for reflection at an upper position in the tube where the distal end portion of the outer cylindrical portion 5 of the optical probe 1 shown in FIG. A mirror 19 is attached. The light emitted from the tip of the optical fiber 9 is guided to the prism 7 through the reflection mirror 19 so that the light emitted from the prism 7 can reach the articular cartilage 13 having a soft property ( FIG. 3).

図4の(a)〜(d)は関節内光プローブの各種先端部形状の概要図である。図4(a)は直胴状の外筒部5の先端部と屈折部15とがほぼ直角に接続された状態である。屈折部15の先端部にATR測定法を可能にする円弧状のプリズム7が装着されており、光ファイバー9の先端部が外筒部5の先端部と屈折部15との接続位置近傍に配設されている。   FIGS. 4A to 4D are schematic views of various tip shapes of the intra-articular optical probe. FIG. 4A shows a state in which the front end portion of the straight cylinder-shaped outer cylinder portion 5 and the refracting portion 15 are connected substantially at a right angle. An arc-shaped prism 7 that enables the ATR measurement method is attached to the tip of the refracting portion 15, and the tip of the optical fiber 9 is disposed in the vicinity of the connection position between the tip of the outer tube portion 5 and the refracting portion 15. Has been.

図4(b)は直胴状の外筒部5の先端部に重畳形状を有する二段形状のプリズム7(7a、7b)を固着した場合である。プリズム7bはプリズム7aと一体構成を成し重畳形状を有する二段形状となっており、外筒部5とプリズム7(7a、7b)は同一直線上に位置するように固着されている。プリズム7(7a、7b)は先端部に向かって大きさが漸減するように成形されるとともに、左右対称形状を有している。截頭円錐状のプリズム7aの底部とプリズム7bの底部の大きさは、プリズム7a>プリズム7bとなるように構成され、プリズム7aは外筒部5の先端部に固着されている。さらに、多段状になっている。   FIG. 4B shows a case where a two-stage prism 7 (7 a, 7 b) having a superposed shape is fixed to the distal end portion of the straight cylindrical outer cylinder portion 5. The prism 7b has a two-stage shape which is integrated with the prism 7a and has a superimposed shape, and the outer cylinder portion 5 and the prism 7 (7a, 7b) are fixed so as to be positioned on the same straight line. The prism 7 (7a, 7b) is shaped so as to gradually decrease in size toward the tip and has a symmetrical shape. The size of the bottom of the truncated cone prism 7a and the bottom of the prism 7b is such that prism 7a> prism 7b, and the prism 7a is fixed to the tip of the outer cylinder 5. Furthermore, it is multistage.

図4(c)は直胴状の外筒部5の先端部に斜め上方部に向けて傾斜したプリズム7が装着されている。プリズム7は、上面側が水平状で、下面側が先端に向かって登り傾斜を有するとともに、最先端部が小さな円弧状を有するプリズム7となっている。また、図4(d)は曲率半径Rが30〜40cmとなるように上方に向かって凸状を有する外筒部5の先端部に、プリズム7が図4(c)と逆傾斜を有する形状となっている。すなわち、プリズム7の下面側が水平状で、上面側が先端に向かって下り状の傾斜を有するとともに、最先端部が小さな円弧状を有するプリズム7が装着されている。なお、図4(a)〜図4(d)では、屈折部15の近傍か、あるいはプリズム7との接続部近傍まで光ファイバー9の先端部が位置する構造を有する。   In FIG. 4 (c), a prism 7 that is inclined toward a diagonally upper portion is attached to the front end portion of the straight cylindrical outer cylinder portion 5. The prism 7 is a prism 7 whose upper surface side is horizontal, whose lower surface side is inclined upward toward the tip, and whose most distal portion has a small arc shape. 4 (d) shows a shape in which the prism 7 has a reverse inclination to that of FIG. 4 (c) at the tip of the outer cylinder 5 having a convex shape upward so that the radius of curvature R is 30 to 40 cm. It has become. That is, the prism 7 is mounted such that the lower surface side of the prism 7 is horizontal, the upper surface side has a downward slope toward the tip, and the most distal portion has a small arc shape. 4A to 4D have a structure in which the tip of the optical fiber 9 is located near the refracting portion 15 or near the connecting portion with the prism 7.

本発明の関節内光プローブの作用について説明する。   The operation of the intra-articular optical probe of the present invention will be described.

関節の診断時には関節付近の皮膚を切開し、その切開部分から関節内光プローブ1を関節腔内に挿入する。長さが30〜40cmの関節内光プローブ1の先端部を所定の長さまで挿入した後、把持部3を手で把持したままプリズム7の先端部を関節軟骨13に0.01N〜10N、好ましくは0.1N〜10Nの力で押圧させると、図3に示すように柔らかな関節軟骨13がその押圧により窪み、プリズム7で覆われる。プリズム7の先端部を関節軟骨13に押圧力を付加する際に、把持部3の近傍の接続部17の表面に張着されている歪みゲージ11を見ながら行うのである。   When diagnosing a joint, the skin near the joint is incised, and the intra-articular optical probe 1 is inserted into the joint cavity from the incised portion. After inserting the distal end portion of the intra-articular optical probe 1 having a length of 30 to 40 cm to a predetermined length, the distal end portion of the prism 7 is placed in the articular cartilage 13 with the gripping portion 3 being gripped by hand, preferably 0.01N to 10N. Is pressed with a force of 0.1 N to 10 N, the soft articular cartilage 13 is depressed by the pressing and is covered with the prism 7 as shown in FIG. When a pressing force is applied to the articular cartilage 13 at the tip of the prism 7, it is performed while looking at the strain gauge 11 attached to the surface of the connecting portion 17 in the vicinity of the grasping portion 3.

プリズム7を関節軟骨13に押さえ付けることで、接続部17が若干撓み、この撓みを接続部17の表面に張着されている歪みゲージ11と接続されている計器に押圧力として表示される。この歪みゲージ11で測定することで関節軟骨13と関節内光プローブ1の先端部に固着されたプリズム7の接触力を測定することができるので、関節軟骨13の表面を傷つけることがなくなる。なお、ATR測定法では関節軟骨13と関節内光プローブ1の先端部に固着されたプリズム7の接触力を一定に保持することが再現性の高い測定に繋がるのである。   By pressing the prism 7 against the articular cartilage 13, the connecting portion 17 is slightly bent, and this bending is displayed as a pressing force on the instrument connected to the strain gauge 11 attached to the surface of the connecting portion 17. By measuring with this strain gauge 11, the contact force between the articular cartilage 13 and the prism 7 fixed to the tip of the intra-articular optical probe 1 can be measured, so that the surface of the articular cartilage 13 is not damaged. In the ATR measurement method, keeping the contact force between the articular cartilage 13 and the prism 7 fixed to the tip of the intra-articular optical probe 1 constant leads to highly reproducible measurement.

本発明の実施に係る関節内光プローブの概要図である。1 is a schematic diagram of an intra-articular optical probe according to an embodiment of the present invention. 図1に類似の他の関節内光プローブの概要図である。It is a schematic diagram of the other intra-articular optical probe similar to FIG. 関節内光プローブを用いて関節軟骨を測定する際の説明図である。It is explanatory drawing at the time of measuring articular cartilage using an intra-articular optical probe. 関節内光プローブの各種先端部形状の概要図である。It is a schematic diagram of various tip part shape of an intra-articular optical probe.

符号の説明Explanation of symbols

1 関節内光スコープ
3 把持部
5 外筒部
7(7a、7b) プリズム
9 光ファイバー
11 歪みゲージ
13 関節軟骨
15 屈折部15
17 接続部
19 反射用ミラー
DESCRIPTION OF SYMBOLS 1 Intra-joint light scope 3 Grasping part 5 Outer cylinder part 7 (7a, 7b) Prism 9 Optical fiber 11 Strain gauge 13 Articular cartilage 15 Refraction part 15
17 Connection 19 Reflecting mirror

Claims (6)

直胴円筒状の外筒部と、該外筒部の先端部に直角または任意の鈍角になる位置に固着された屈折部と、該外筒部または該屈折部の先端部に装着されたプリズムと、該外筒部の先端部から所定の位置に固着された把持部と、該外筒部と該把持部を固定するための接続部に張着した状態でプリズムの先端部に付加する力を検出する押圧力検出手段と、該外筒部内部の先端部近傍に位置するように挿通された光ファイバーとで構成したことを特徴とする関節内光プローブ。   A straight cylinder-shaped outer cylinder part, a refracting part fixed at a right angle or any obtuse angle to the tip part of the outer cylinder part, and a prism attached to the outer cylinder part or the tip part of the refracting part And a force applied to the tip of the prism in a state of being attached to the gripping portion fixed at a predetermined position from the tip of the outer tube and the connecting portion for fixing the outer tube and the grip An intra-articular optical probe comprising: a pressing force detecting means for detecting the pressure and an optical fiber inserted so as to be positioned in the vicinity of the distal end portion inside the outer cylinder portion. 該外筒部と屈曲部とを適宜な鈍角となるように固着させるとともに、両接続部の管内の上方位置に反射用ミラーを配設したことを特徴とする請求項1記載の関節内光プローブ。   2. The intra-articular optical probe according to claim 1, wherein the outer cylindrical portion and the bent portion are fixed so as to have an appropriate obtuse angle, and a reflecting mirror is disposed at an upper position in the tube of both connecting portions. . 該外筒部の先端部に二段状の重畳形状を有するとともに、先端部に向かって漸減するプリズムを装着したことを特徴とする請求項1記載の関節内光プローブ。   2. The intra-articular optical probe according to claim 1, wherein a prism having a two-stage overlapping shape is attached to the distal end portion of the outer cylinder portion and gradually decreases toward the distal end portion. 該外筒部の先端部にプリズムの一方の面が該外筒部の中心軸より上方または下方に傾倒させたことを特徴とする請求項1記載の関節内光プローブ。   2. The intra-articular optical probe according to claim 1, wherein one surface of the prism is tilted upward or downward from a central axis of the outer cylinder portion at a distal end portion of the outer cylinder portion. 該外筒部の先端部に該外筒部と直角方向に屈折部を接続したことを特徴とする請求項1記載の関節内光プローブ。   2. The intra-articular optical probe according to claim 1, wherein a refracting portion is connected to a distal end portion of the outer cylinder portion in a direction perpendicular to the outer cylinder portion. 該接続部に弾力性を有する材質や形状および構造のものを用いたことを特徴とする請求項1記載の関節内光プローブ。
2. The intra-articular optical probe according to claim 1, wherein the connecting portion is made of a material, shape and structure having elasticity.
JP2004301066A 2004-10-15 2004-10-15 Intra-articular optical probe Active JP4654430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301066A JP4654430B2 (en) 2004-10-15 2004-10-15 Intra-articular optical probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301066A JP4654430B2 (en) 2004-10-15 2004-10-15 Intra-articular optical probe

Publications (2)

Publication Number Publication Date
JP2006110116A true JP2006110116A (en) 2006-04-27
JP4654430B2 JP4654430B2 (en) 2011-03-23

Family

ID=36379122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301066A Active JP4654430B2 (en) 2004-10-15 2004-10-15 Intra-articular optical probe

Country Status (1)

Country Link
JP (1) JP4654430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031697A1 (en) * 2014-08-26 2016-03-03 公立大学法人大阪市立大学 Cartilage diagnosis device and diagnostic probe
JPWO2016174819A1 (en) * 2015-04-27 2017-07-27 学校法人大阪産業大学 Inspection / diagnosis equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510644A (en) * 1994-04-22 1997-10-28 ボード オブ リージェンツ ザ ユニバーシティ オブ テキサス システム Articular cartilage tissue evaluation device and method of use
JP2000517051A (en) * 1996-08-23 2000-12-19 オステオバイオロジックス,インコーポレイテッド Grasping material tester
JP2004024855A (en) * 2002-05-08 2004-01-29 Kuresuto Japan Kk Optically excited acoustic wave detector and optically excited fluorescein detector suitable for measuring physical property of cartilage tissue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510644A (en) * 1994-04-22 1997-10-28 ボード オブ リージェンツ ザ ユニバーシティ オブ テキサス システム Articular cartilage tissue evaluation device and method of use
JP2000517051A (en) * 1996-08-23 2000-12-19 オステオバイオロジックス,インコーポレイテッド Grasping material tester
JP2004024855A (en) * 2002-05-08 2004-01-29 Kuresuto Japan Kk Optically excited acoustic wave detector and optically excited fluorescein detector suitable for measuring physical property of cartilage tissue

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031697A1 (en) * 2014-08-26 2016-03-03 公立大学法人大阪市立大学 Cartilage diagnosis device and diagnostic probe
JPWO2016031697A1 (en) * 2014-08-26 2017-07-06 公立大学法人大阪市立大学 Cartilage diagnostic apparatus and diagnostic probe
JPWO2016174819A1 (en) * 2015-04-27 2017-07-27 学校法人大阪産業大学 Inspection / diagnosis equipment
US11147504B2 (en) 2015-04-27 2021-10-19 Osaka Sangyo University Examination diagnosis device

Also Published As

Publication number Publication date
JP4654430B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
ES2432560T3 (en) Optical sensor
EP3295988B1 (en) Endoscopic oct microprobe, oct imaging system, and use method
EP3224572B1 (en) A device and a method for evaluating a mechanical property of a material
WO2016180290A1 (en) Catheter applied in oct endoscopic image scan, application method and oct imaging system thereof
WO2007038682A3 (en) Paired angled rotation scanning probes and methods of use
JP2009512539A (en) System and method for non-endoscopic optical biopsy detection of diseased tissue
ATE556644T1 (en) FORWARD SCANING IMAGING LIGHT FIBER PROBE
WO2016180289A1 (en) Application of automatic inflation/deflation device in oct endoscopic scanning and imaging system
WO2016180287A1 (en) Method and system for processing oct signal using general-purpose graphics processing unit
CN103040429B (en) Optical image detection device for oral cavity and imaging method
JP2016027903A (en) Apparatus and method for imaging specific cell such as eosinophil
EP0600920B1 (en) Measuring device for assessing the stiffness of rigid tissue
KR20150095627A (en) Ultrasonic probe
DE602009000454D1 (en) Contactless ultrasonic tonometer
JPH11504537A (en) Retinal vascular manometer
CN102846302A (en) Optical coherence tomography (OCT) endoscope imaging device
CN202821284U (en) Optical coherence tomography (OCT) endoscope imaging device
JP4654430B2 (en) Intra-articular optical probe
CN109077698A (en) A kind of reversible preposition scanning optoacoustic microlaparoscopy
JP2002345821A (en) Ultrasonic analytic system built in articular cavity
CN203153692U (en) Optical image detecting device for mouth cavity
US6783503B1 (en) Method and device for testing the rigidity of biological tissue
US20220240782A1 (en) Devices, systems, and methods for imaging in certain endoscopic environments
KR200447267Y1 (en) Laryngoscope having measurement system
RU144659U1 (en) DEVICE FOR DETERMINING MECHANICAL CHARACTERISTICS OF SOFT MATERIALS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150