JP2006108518A - Semiconductor light-emitting element, and epitaxial wafer therefor - Google Patents

Semiconductor light-emitting element, and epitaxial wafer therefor Download PDF

Info

Publication number
JP2006108518A
JP2006108518A JP2004295570A JP2004295570A JP2006108518A JP 2006108518 A JP2006108518 A JP 2006108518A JP 2004295570 A JP2004295570 A JP 2004295570A JP 2004295570 A JP2004295570 A JP 2004295570A JP 2006108518 A JP2006108518 A JP 2006108518A
Authority
JP
Japan
Prior art keywords
type
layer
doped
light emitting
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004295570A
Other languages
Japanese (ja)
Other versions
JP4483513B2 (en
Inventor
Manabu Kako
学 加古
Yosuke Komori
洋介 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004295570A priority Critical patent/JP4483513B2/en
Publication of JP2006108518A publication Critical patent/JP2006108518A/en
Application granted granted Critical
Publication of JP4483513B2 publication Critical patent/JP4483513B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting element that can obtain an LED and an LD and has a structure that is high in luminance, high in reliability and reduced in time deterioration caused by a reverse breakdown voltage by suppressing the dispersion of zinc into an active layer, even if zinc is used as a dopant in a p-type semiconductor layer in the vicinity of the active payer. <P>SOLUTION: The semiconductor light-emitting element forms a light-emitting part obtained by inserting the active layer between n-type and p-type clad layers on an n-type substrate. Between p-type semiconductor layers (an Mg-doped p-type current diffusion layer 8, an Mg-doped p-type contact layer 9, an Mg-doped p-type clad layer 11) which are doped with magnesium at least and the active layer, a p-type semiconductor layer (a Zn-doped p-type clad layer 5) at least doped with zinc is installed. Zinc is diffused to a side distant from the active layer 4 by the mutual diffusion of magnesium and zinc. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高輝度、高寿命の半導体発光素子(発光ダイオードLED、半導体レーザLD)及び半導体発光素子用エピタキシャルウェハの構造に係り、特にp型不純物として亜鉛(Zn)及びマグネシウム(Mg)を用いたAlGaInP系発光素子に適した構造に関するものである。   The present invention relates to a structure of a semiconductor light emitting device (light emitting diode LED, semiconductor laser LD) having a high brightness and a long life and an epitaxial wafer for a semiconductor light emitting device, and in particular, zinc (Zn) and magnesium (Mg) are used as p-type impurities. The present invention relates to a structure suitable for the AlGaInP light emitting element.

発光ダイオード(LED)は、産業用や民生用の表示素子として広く用いられている。高輝度のLEDとしてはAlGaAsの赤色LEDがあった。しかし、赤色より短波長のLEDとしてはGaAsPやGaPがあったが、低輝度しか得られなかった。しかし、最近AlGaInP系の結晶層をMOVPE法で成長できるようになったことから、橙色、黄色、緑色の高輝度LEDを製作できるようになってきた。   Light emitting diodes (LEDs) are widely used as industrial and consumer display elements. As a high-brightness LED, there was an AlGaAs red LED. However, although LEDs with shorter wavelengths than red were GaAsP and GaP, only low luminance was obtained. However, since it has recently become possible to grow AlGaInP-based crystal layers by the MOVPE method, it has become possible to produce orange, yellow, and green high-intensity LEDs.

従来、LED及びLDの高出力動作時や高温動作時には、活性層からp型クラッド層への電子のオーバーフローによるリーク電流が大きくなり、閾電流や動作電流が増大することが知られている。安定な高温・高出力動作を達成するためには、p型クラッド層を極力高キャリア濃度化することが望ましい。そこで、p型クラッド層のp型不純物としては亜鉛(Zn)を用いるのが一般的であった。   Conventionally, it is known that when a LED or LD operates at a high output or at a high temperature, a leakage current due to an overflow of electrons from the active layer to the p-type cladding layer increases, and a threshold current and an operating current increase. In order to achieve stable high temperature and high output operation, it is desirable to increase the carrier concentration of the p-type cladding layer as much as possible. Therefore, zinc (Zn) is generally used as the p-type impurity of the p-type cladding layer.

しかし、p型不純物としてZnを用いた場合、p型クラッド層の高キャリア濃度化とともにZnが活性層まで拡散してしまい、素子特性と信頼性の劣化を招くという問題が生じる。このためZnを低濃度ドーピングせざるを得なかった。p型不純物としてZnを用いた場合のp型クラッド層キャリア濃度としては、通常4×1017cm-3程度と比較的低濃度に設定されている。 However, when Zn is used as the p-type impurity, there is a problem that Zn is diffused to the active layer as the carrier concentration of the p-type cladding layer is increased, leading to deterioration of device characteristics and reliability. For this reason, Zn had to be doped at a low concentration. The carrier concentration of the p-type cladding layer when Zn is used as the p-type impurity is normally set to a relatively low concentration of about 4 × 10 17 cm −3 .

この問題の対策として、n型基板の上に活性層をn型とp型のクラッド層で挟んだ発光部を形成し、そのZnドープp型クラッド層上にZnドープp型電流分散層を形成した半導体発光素子の構造において、アンドープ活性層とp型クラッド層の間に、Zn拡散抑止層(アンドープAlGaInPスペーサ層)を500nm以上挿入することが提案されている(例えば、特許文献1参照)。この特許文献1では、活性層上に、Znドープp型クラッド層、Znドープp型電流分散層を順次積層した半導体発光素子の層構造であり、Znが活性層側に向かうことが前提となっている。   As a countermeasure against this problem, a light emitting part in which an active layer is sandwiched between an n-type and a p-type cladding layer is formed on an n-type substrate, and a Zn-doped p-type current spreading layer is formed on the Zn-doped p-type cladding layer. In the structure of the semiconductor light emitting device, it has been proposed to insert a Zn diffusion suppression layer (undoped AlGaInP spacer layer) of 500 nm or more between the undoped active layer and the p-type cladding layer (see, for example, Patent Document 1). This Patent Document 1 is a layer structure of a semiconductor light emitting device in which a Zn-doped p-type cladding layer and a Zn-doped p-type current distribution layer are sequentially laminated on an active layer, and it is assumed that Zn is directed to the active layer side. ing.

なお、p型不純物として、Znに比べ拡散定数が小さいマグネシウム(Mg)を用いて、p型クラッド層及びその上のp型コンタクト層を高キャリア濃度化することも知られている(例えば、特許文献2参照)。この特許文献2では、活性層上に、Mgドープp型クラッド層、Mgドープp型コンタクトを順次積層した半導体発光素子の層構造となっている。   It is also known to increase the carrier concentration of the p-type cladding layer and the p-type contact layer thereon using magnesium (Mg) having a smaller diffusion constant than Zn as the p-type impurity (for example, patents) Reference 2). In Patent Document 2, a layered structure of a semiconductor light emitting device is formed in which an Mg-doped p-type cladding layer and an Mg-doped p-type contact are sequentially laminated on an active layer.

また、活性層上に、Znドープp型クラッド層、Znドープp型電流拡散層を順次積層し、このZnドープp型電流拡散層中にMgドープの薄い高抵抗層を設けた半導体発光素子の構造が知られている(例えば、特許文献3参照)。このMgドープp型高抵抗層は、p側電極から注入された電流を断面横方向に拡散する目的で挿入される。この特許文献3では、活性層上に、Znドープp型クラッド層、Mgドープp型高抵抗層、Znドープp型クラッド層を順次積層した半導体発光素子の層構造となっている。
特開2003−179254号公報 特許第2778405号公報 特開平8−3211号公報
In addition, a Zn-doped p-type cladding layer and a Zn-doped p-type current diffusion layer are sequentially stacked on the active layer, and a thin high-resistance layer doped with Mg is provided in the Zn-doped p-type current diffusion layer. The structure is known (see, for example, Patent Document 3). This Mg-doped p-type high resistance layer is inserted for the purpose of diffusing the current injected from the p-side electrode in the cross-sectional lateral direction. In this Patent Document 3, a layer structure of a semiconductor light emitting device in which a Zn-doped p-type cladding layer, an Mg-doped p-type high-resistance layer, and a Zn-doped p-type cladding layer are sequentially laminated on an active layer.
JP 2003-179254 A Japanese Patent No. 2778405 JP-A-8-3211

上記のように、n型基板の上に活性層をn型とp型のクラッド層で挟んだ発光部を形成した構造の半導体発光素子において、従来、p型クラッド層のp型ドーパントとしてZnが用いられてきたが、Znは拡散し易いという特徴を持っているため、p型クラッド層にZnをドーピングすると、このZnが活性層まで拡散し、その結果、発光輝度の低下や、信頼性の低下や、逆耐圧の経時劣化などを引き起こすという問題があった。   As described above, in a semiconductor light emitting device having a structure in which an active layer is sandwiched between an n-type and a p-type cladding layer on an n-type substrate, Zn has conventionally been used as a p-type dopant for the p-type cladding layer. Although it has been used, since Zn has a feature of being easily diffused, when Zn is doped into the p-type cladding layer, this Zn diffuses to the active layer, resulting in a decrease in emission luminance and reliability. There has been a problem that it causes a decrease and a reverse breakdown with time.

一方、Znに代わるp型ドーパントとして、Znよりも拡散しにくいが故に高濃度に添加できるMgをp型クラッド層に用いる方法を採ることもできるが、例えば、電流拡散層にGaP層を用いたAlGaInP系LEDエピタキシャル構造の場合、p型AlGaInPクラッド層とp型GaP電流拡散層の間にはバンド不連続のためにエネルギ障壁があり、電流が流れにくいという性質がある。そこで高キャリア濃度のp型AlGaInP半導体層(バンド不連続解消層)を挿入しこのエネルギ障壁を緩和する方法を取ることとなる。しかし、Mgドーパントでは所望のキャリア濃度が得られないため、このエネルギ障壁が緩和できず、高Vfとなるという問題があった。   On the other hand, as a p-type dopant instead of Zn, Mg can be added to the p-type cladding layer because it is less diffusible than Zn. For example, a GaP layer is used for the current diffusion layer. In the case of an AlGaInP-based LED epitaxial structure, there is an energy barrier between the p-type AlGaInP cladding layer and the p-type GaP current diffusion layer due to the band discontinuity, and there is a property that current does not easily flow. Therefore, a p-type AlGaInP semiconductor layer (band discontinuity eliminating layer) with a high carrier concentration is inserted to reduce this energy barrier. However, since the desired carrier concentration cannot be obtained with Mg dopant, there is a problem that this energy barrier cannot be relaxed and the Vf becomes high.

要するに、従来においては、p型クラッド層のp型ドーパントとしてZnを用いるとZnが活性層まで拡散するという問題が生じ、他方Mgを用いると所望のキャリア濃度が得にくいという問題があった。   In short, conventionally, when Zn is used as the p-type dopant of the p-type cladding layer, there is a problem that Zn diffuses to the active layer, and when Mg is used, a desired carrier concentration is difficult to obtain.

従って、本発明の目的は、上記問題を解決し、活性層近傍のp型半導体層中にドーパントとしてZnを用いても、活性層中へのZn拡散を少なくし、高輝度、高信頼性、且つ逆耐圧の経時劣化の少ない構造のLED及びLDが得られる発光素子を提供することにある。   Therefore, the object of the present invention is to solve the above problems, and even if Zn is used as a dopant in the p-type semiconductor layer in the vicinity of the active layer, Zn diffusion into the active layer is reduced, resulting in high brightness, high reliability, Another object of the present invention is to provide a light-emitting element capable of obtaining an LED and an LD having a reverse breakdown voltage structure with little deterioration with time.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る半導体発光素子は、第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成した構造の半導体発光素子において、少なくともマグネシウム(Mg)がドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛(Zn)がドーピングされたp型半導体層を設置し、マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする。   The semiconductor light-emitting device according to the invention of claim 1 is a semiconductor light-emitting device having a structure in which a light-emitting portion is formed by sandwiching an active layer between a first conductive type and a second conductive type cladding layer on a first conductive type substrate. A p-type semiconductor layer doped with at least zinc (Zn) is disposed between the p-type semiconductor layer doped with at least magnesium (Mg) and the active layer, and zinc is diffused from the active layer by mutual diffusion of magnesium and zinc. It is characterized by a structure that diffuses to the far side.

この請求項1には、Mgドープp型電流拡散層と活性層との間にZnドープp型クラッド層を設置した構造(図1、図2)と、Mgドープp型クラッド層と活性層との間にZnドープp型クラッド層を設置した構造(図3)と、そしてMgドープp型コンタクト層と活性層との間にZnドープp型クラッド層を設置した構造が含まれる。ここで半導体発光素子には、発光ダイオード及びレーザダイオードの形態が含まれる。   The present invention includes a structure (FIGS. 1 and 2) in which a Zn-doped p-type cladding layer is disposed between an Mg-doped p-type current diffusion layer and an active layer, and an Mg-doped p-type cladding layer and an active layer. 3 includes a structure in which a Zn-doped p-type cladding layer is provided (FIG. 3), and a structure in which a Zn-doped p-type cladding layer is provided between the Mg-doped p-type contact layer and the active layer. Here, the semiconductor light emitting device includes a light emitting diode and a laser diode.

請求項2の発明に係る半導体発光素子は、第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成し、その上に第二導電型電流分散層を形成した構造の半導体発光素子において、少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする。これは、発光部の上に第二導電型電流分散層を有する構造(図1、図2)を特定したものであり、その点でのみ請求項1と相違する。   According to a second aspect of the present invention, there is provided a semiconductor light-emitting device comprising: a light-emitting portion in which an active layer is sandwiched between a first conductive type and a second conductive type cladding layer on a first conductive type substrate; In a semiconductor light emitting device having a structure in which a type current spreading layer is formed, a p-type semiconductor layer doped with at least zinc is disposed between a p-type semiconductor layer doped with at least magnesium and an active layer, and magnesium and zinc The structure is characterized in that zinc is diffused to the side farther from the active layer by interdiffusion. This specifies the structure (FIGS. 1 and 2) having the second conductivity type current spreading layer on the light emitting portion, and is different from claim 1 only in that respect.

請求項3の発明は、請求項1又は2記載の半導体発光素子において、少なくともマグネシウムがドーピングされたp型半導体層と少なくとも亜鉛がドーピングされたp型半導体層が隣接していることを特徴とする。   According to a third aspect of the present invention, in the semiconductor light emitting device according to the first or second aspect, the p-type semiconductor layer doped with at least magnesium and the p-type semiconductor layer doped with at least zinc are adjacent to each other. .

請求項4の発明は、請求項1〜3のいずれかに記載の半導体発光素子において、上記発光部を構成する第一導電型と第二導電型のクラッド層のうち、活性層に近い側のp型クラッド層に、少なくとも亜鉛がドーピングされていることを特徴とする。   According to a fourth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to third aspects, of the first conductive type and the second conductive type clad layer constituting the light emitting portion, the side closer to the active layer. The p-type cladding layer is characterized in that at least zinc is doped.

請求項5の発明は、請求項1〜4のいずれかに記載の半導体発光素子において、第一導電型基板がGaAsであり、発光部がAlGaInPまたはGaInPで形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to fourth aspects, the first conductivity type substrate is GaAs and the light emitting portion is formed of AlGaInP or GaInP.

請求項6の発明に係る半導体発光素子用エピタキシャルウェハは、第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成した構造の半導体発光素子用エピタキシャルウェハにおいて、少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、マグネシウムと亜鉛の相互拡散でZnを活性層より遠い側に拡散させる構造としたことを特徴とする。   An epitaxial wafer for a semiconductor light emitting device according to a sixth aspect of the present invention is a semiconductor light emitting device having a structure in which a light emitting portion is formed by sandwiching an active layer between a first conductive type and a second conductive type cladding layer on a first conductive type substrate. In an epitaxial wafer for devices, a p-type semiconductor layer doped with at least zinc is placed between a p-type semiconductor layer doped with at least magnesium and an active layer, and Zn is diffused from the active layer by mutual diffusion of magnesium and zinc. It is characterized by a structure that diffuses to the far side.

この請求項6には、Mgドープp型電流拡散層と活性層との間にZnドープp型クラッド層を設置した構造(図1、図2)と、Mgドープp型クラッド層と活性層との間にZnドープp型クラッド層を設置した構造(図3)と、そしてMgドープp型コンタクト層と活性層との間にZnドープp型クラッド層を設置した構造が含まれる。ここで半導体発光素子用エピタキシャルウェハには、発光ダイオード用エピタキシャルウェハ及びレーザダイオード用エピタキシャルウェハの形態が含まれる。   The present invention includes a structure (FIGS. 1 and 2) in which a Zn-doped p-type cladding layer is disposed between an Mg-doped p-type current diffusion layer and an active layer, and an Mg-doped p-type cladding layer and an active layer. 3 includes a structure in which a Zn-doped p-type cladding layer is provided (FIG. 3), and a structure in which a Zn-doped p-type cladding layer is provided between the Mg-doped p-type contact layer and the active layer. Here, the epitaxial wafer for a semiconductor light emitting device includes the forms of an epitaxial wafer for a light emitting diode and an epitaxial wafer for a laser diode.

請求項7の発明は、第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成し、その上に第二導電型電流分散層を形成した構造の半導体発光素子用エピタキシャルウェハにおいて、少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする。これは、発光部の上に第二導電型電流分散層を有する構造(図1、図2)を特定したものであり、その点でのみ請求項6と相違する。   According to a seventh aspect of the present invention, a light emitting portion is formed by sandwiching an active layer between a first conductive type and a second conductive type cladding layer on a first conductive type substrate, and a second conductive type current spreading layer is formed thereon. In the epitaxial wafer for a semiconductor light emitting device having the formed structure, a p-type semiconductor layer doped with at least zinc is disposed between the p-type semiconductor layer doped with at least magnesium and the active layer, and mutual diffusion of magnesium and zinc is performed. The structure is characterized in that zinc is diffused to the side farther from the active layer. This specifies the structure (FIGS. 1 and 2) having the second conductivity type current spreading layer on the light emitting portion, and is different from claim 6 only in that respect.

請求項8の発明は、請求項6又は7記載の半導体発光素子用エピタキシャルウェハにおいて、少なくともマグネシウムがドーピングされたp型半導体層と少なくとも亜鉛がドーピングされたp型半導体層が隣接していることを特徴とする。   The invention according to claim 8 is the epitaxial wafer for semiconductor light emitting device according to claim 6 or 7, wherein the p-type semiconductor layer doped with at least magnesium and the p-type semiconductor layer doped with at least zinc are adjacent to each other. Features.

請求項9の発明は、請求項6〜8のいずれかに記載の半導体発光素子用エピタキシャルウェハにおいて、上記発光部を構成する第一導電型と第二導電型のクラッド層のうち、活性層に近い側のp型クラッド層に、少なくとも亜鉛がドーピングされていることを特徴とする。   The invention of claim 9 is the epitaxial wafer for a semiconductor light emitting device according to any one of claims 6 to 8, wherein the active layer of the first conductivity type and the second conductivity type clad layer constituting the light emitting portion is used. The p-type cladding layer on the near side is doped with at least zinc.

請求項10の発明は、請求項6〜9のいずれかに記載の半導体発光素子用エピタキシャルウェハにおいて、第一導電型基板がGaAsであり、発光部がAlGaInPまたはGaInPで形成されていることを特徴とする。   A tenth aspect of the present invention is the epitaxial wafer for a semiconductor light emitting device according to any one of the sixth to ninth aspects, wherein the first conductivity type substrate is GaAs and the light emitting portion is formed of AlGaInP or GaInP. And

<発明の要点>
上記目的を達するために、本発明では、活性層近傍側のp型半導体層(例えばp型クラッド層)に亜鉛をドーピングし、この半導体層に隣接するようにマグネシウムをドーピングしたp型半導体層(例えば、p型電流拡散層、p型コンタクト層、p型クラッド層など)を設置する。こうすることにより、マグネシウムをドーピングしたp型半導体層中に亜鉛が拡散し、その結果、活性層より遠ざかる方向に亜鉛拡散が起こる。そのため、活性層中への亜鉛の拡散が少ない構造のLED及びLDが得られる発光素子を製作できるので、高輝度、高信頼性、且つ逆耐圧の経時劣化の少ない半導体発光素子を得ることができる。
<Key points of the invention>
In order to achieve the above object, according to the present invention, a p-type semiconductor layer (for example, a p-type cladding layer) near the active layer is doped with zinc and magnesium is doped adjacent to the semiconductor layer ( For example, a p-type current diffusion layer, a p-type contact layer, a p-type cladding layer, etc.) are provided. By doing so, zinc diffuses in the p-type semiconductor layer doped with magnesium, and as a result, zinc diffusion occurs in a direction away from the active layer. As a result, a light emitting device capable of obtaining an LED and an LD having a structure in which zinc is less diffused into the active layer can be manufactured. Thus, a semiconductor light emitting device with high luminance, high reliability, and low withstand voltage deterioration over time can be obtained. .

本発明は特許文献1〜3と次の点で相違する。   The present invention differs from Patent Documents 1 to 3 in the following points.

特許文献1は、活性層の上にアンドープスペーサ層、Znドープp型クラッド層、Znドープp型電流分散層のみが存在する構成、すなわち、活性層の上にMgドープ層が存在しない構成のものであり、本発明の相互拡散を利用する考え方の存しないものである。   Patent Document 1 discloses a configuration in which only an undoped spacer layer, a Zn-doped p-type cladding layer, and a Zn-doped p-type current spreading layer exist on the active layer, that is, a configuration in which no Mg-doped layer exists on the active layer. Therefore, the idea of utilizing the interdiffusion of the present invention does not exist.

特許文献2は、活性層の上に、Mgドープp型クラッド層、Mgドープp型コンタクト層のみが存在する構成、すなわち、活性層の上にZnドープ層が存在しない構成のものであり、同様に本発明の相互拡散を利用する考え方の存しないものである。   Patent Document 2 has a configuration in which only an Mg-doped p-type cladding layer and an Mg-doped p-type contact layer exist on the active layer, that is, a configuration in which no Zn-doped layer exists on the active layer. The idea of utilizing the interdiffusion of the present invention does not exist.

特許文献3は、活性層の上に、Znドープp型クラッド層、Znドープp型電流分散層、Mgドープp型高抵抗層、Znドープp型電流分散層が存在する構成を開示している。しかし、このMgドープp型高抵抗層は、p側電極から注入された電流を断面横方向に拡散する目的で挿入されたものである。すなわち、特許文献3は、相互拡散でZnを活性層より遠い側に拡散させるという本発明の技術思想を有しない、全く異なる技術に属するものである。   Patent Document 3 discloses a configuration in which a Zn-doped p-type cladding layer, a Zn-doped p-type current spreading layer, a Mg-doped p-type high resistance layer, and a Zn-doped p-type current spreading layer are present on the active layer. . However, this Mg-doped p-type high resistance layer is inserted for the purpose of diffusing the current injected from the p-side electrode in the lateral direction of the cross section. That is, Patent Document 3 belongs to a completely different technique that does not have the technical idea of the present invention that diffuses Zn to the side farther from the active layer by interdiffusion.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

本発明の半導体発光素子又は半導体発光素子用エピタキシャルウェハによれば、少なくともMgがドーピングされたp型半導体層と活性層との間に、少なくともZnがドーピングされたp型半導体層を設置し、マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたので、従来の亜鉛をドーピングした発光ダイオード又はレーザダイオードに比べ、活性層へ亜鉛が拡散しない。従って、本発明によれば、発光輝度の低下、信頼性の低下、逆耐圧の経時劣化のないLED又はLDを作製することができる。   According to the semiconductor light emitting device or the epitaxial wafer for a semiconductor light emitting device of the present invention, a p-type semiconductor layer doped with at least Zn is disposed between the p-type semiconductor layer doped with at least Mg and the active layer, and magnesium Since zinc is diffused to the side farther from the active layer by interdiffusion of zinc and zinc, zinc does not diffuse into the active layer compared to conventional light emitting diodes or laser diodes doped with zinc. Therefore, according to the present invention, it is possible to manufacture an LED or LD that does not have a decrease in light emission luminance, a decrease in reliability, and a reverse breakdown voltage with time.

また、本発明の半導体発光素子又は半導体発光素子用エピタキシャルウェハによれば、その構造上、Znがドーピングされたp型半導体層から活性層へ亜鉛が拡散しないので、従来必要とされていた、活性層とp型クラッド層の間に挿入するZn拡散防止のための半導体層(例えば特許文献1のアンドープスペーサ層)を無くすことができるので、製造コストを下げることができる。   In addition, according to the semiconductor light emitting device or the epitaxial wafer for semiconductor light emitting device of the present invention, zinc is not diffused from the p-type semiconductor layer doped with Zn into the active layer due to its structure. Since the semiconductor layer (for example, the undoped spacer layer of Patent Document 1) for preventing Zn diffusion inserted between the layer and the p-type cladding layer can be eliminated, the manufacturing cost can be reduced.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1に示す半導体発光素子を作成するエピタキシャルウェハは、GaAsからなるn型(第1導電型)基板2上に、n型クラッド層3、活性層4、Znドープp型(第2導電型)クラッド層5、Znドープp型バンド不連続解消層6、Znドープp型電流拡散層7、Mgドープp型電流拡散層8、Mgドープp型コンタクト層9を順次積層した構造となっている。この半導体発光素子用エピタキシャルウェハは、その裏面たるn型基板2側全面に裏面電極1が形成されると共に、Mgドープp型コンタクト層9の一部に表面電極10が形成された後、個々のチップに区分けされて図1に示す半導体発光素子に製造される。   1 is an n-type (first conductivity type) substrate 2 made of GaAs, an n-type cladding layer 3, an active layer 4, and a Zn-doped p-type (second conductivity type). The cladding layer 5, the Zn-doped p-type band discontinuity eliminating layer 6, the Zn-doped p-type current diffusion layer 7, the Mg-doped p-type current diffusion layer 8, and the Mg-doped p-type contact layer 9 are sequentially laminated. In this epitaxial wafer for semiconductor light emitting device, the back electrode 1 is formed on the entire back surface of the n-type substrate 2 side, and the surface electrode 10 is formed on a part of the Mg-doped p-type contact layer 9. The semiconductor light emitting device shown in FIG. 1 is manufactured by being divided into chips.

図2に示す半導体発光素子を作成するエピタキシャルウェハは、GaAsからなるn型(第1導電型)基板2上に、n型クラッド層3、活性層4、Znドープp型(第2導電型)クラッド層5、Mgドープp型電流拡散層8、Mgドープp型コンタクト層9を順次積層した構造となっている。この半導体発光素子用エピタキシャルウェハは、その裏面たるn型基板2側全面に裏面電極1が形成されると共に、Mgドープp型コンタクト層9の一部に表面電極10が形成された後、個々のチップに区分けされて図2に示す半導体発光素子に製造される。   An epitaxial wafer for producing the semiconductor light emitting device shown in FIG. 2 is formed on an n-type (first conductivity type) substrate 2 made of GaAs, an n-type cladding layer 3, an active layer 4, and a Zn-doped p-type (second conductivity type). The cladding layer 5, the Mg-doped p-type current diffusion layer 8, and the Mg-doped p-type contact layer 9 are sequentially laminated. In this epitaxial wafer for semiconductor light emitting device, the back electrode 1 is formed on the entire back surface of the n-type substrate 2 side, and the surface electrode 10 is formed on a part of the Mg-doped p-type contact layer 9. The semiconductor light emitting device shown in FIG. 2 is manufactured by being divided into chips.

図3に示す半導体発光素子を作成するエピタキシャルウェハは、GaAsからなるn型(第1導電型)基板2上に、n型クラッド層3、活性層4、Znドープp型(第2導電型)クラッド層5、Mgドープp型クラッド層11、Mgドープp型コンタクト層9を順次積層した構造となっている。この半導体発光素子用エピタキシャルウェハは、その裏面たるn型基板2側全面に裏面電極1が形成されると共に、Mgドープp型コンタクト層9の一部に表面電極10が形成された後、個々のチップに区分けされて図2に示す半導体発光素子に製造される。   An epitaxial wafer for producing the semiconductor light emitting device shown in FIG. 3 is formed on an n-type (first conductivity type) substrate 2 made of GaAs, an n-type cladding layer 3, an active layer 4, and a Zn-doped p-type (second conductivity type). The cladding layer 5, the Mg-doped p-type cladding layer 11, and the Mg-doped p-type contact layer 9 are sequentially stacked. In this epitaxial wafer for semiconductor light emitting device, the back electrode 1 is formed on the entire back surface of the n-type substrate 2 side, and the surface electrode 10 is formed on a part of the Mg-doped p-type contact layer 9. The semiconductor light emitting device shown in FIG. 2 is manufactured by being divided into chips.

図1〜図2の半導体発光素子は、n型基板2の上に活性層4をn型クラッド層3とp型クラッド層5で挟んだ発光部を形成し、その上にMgドープp型電流拡散層8及びMgドープp型コンタクト層9を形成した構造において、Mgドープp型電流拡散層8と活性層4との間にZnドープp型クラッド層5を設置した構造となっている。   In the semiconductor light emitting device of FIGS. 1 to 2, a light emitting part in which an active layer 4 is sandwiched between an n type cladding layer 3 and a p type cladding layer 5 is formed on an n type substrate 2, and an Mg doped p type current is formed thereon. In the structure in which the diffusion layer 8 and the Mg-doped p-type contact layer 9 are formed, a Zn-doped p-type cladding layer 5 is provided between the Mg-doped p-type current diffusion layer 8 and the active layer 4.

また図3の半導体発光素子は、n型基板2の上に活性層4をn型クラッド層3とp型クラッド層5で挟んだ発光部を形成し、その上にMgドープp型クラッド層11及びMgドープp型コンタクト層9を形成した構造において、Mgドープp型クラッド層11と活性層4との間にZnドープp型クラッド層5を設置した構造となっている。   In the semiconductor light emitting device of FIG. 3, a light emitting part is formed on an n type substrate 2 with an active layer 4 sandwiched between an n type clad layer 3 and a p type clad layer 5, and an Mg doped p type clad layer 11 is formed thereon. In the structure in which the Mg-doped p-type contact layer 9 is formed, a Zn-doped p-type cladding layer 5 is provided between the Mg-doped p-type cladding layer 11 and the active layer 4.

図1〜図3のいずれの形態の半導体発光素子においても、活性層4の上側に、Znドープ層(Znドープp型クラッド層5、Znドープp型バンド不連続解消層6、Znドープp型電流拡散層7)とMgドープ層(Mgドープp型電流拡散層8、Mgドープp型コンタクト層9、Mgドープp型クラッド層11)が順次設けられる。ただし、図1の形態では、Znドープp型クラッド層5とp型半導体層(Mgドープp型電流拡散層8)が、両者の間にZnドープp型バンド不連続解消層6及びZnドープp型電流拡散層7を介して設けられており、図2及び図3の形態では、Znドープp型クラッド層5とp型半導体層(Mgドープp型電流拡散層8、Mgドープp型クラッド層11)が互いに隣接して設けられている。   In any of the semiconductor light emitting devices of FIGS. 1 to 3, a Zn-doped layer (Zn-doped p-type cladding layer 5, Zn-doped p-type band discontinuity eliminating layer 6, Zn-doped p-type) is formed above the active layer 4. A current diffusion layer 7) and an Mg doped layer (Mg doped p-type current diffusion layer 8, Mg doped p-type contact layer 9, Mg-doped p-type cladding layer 11) are sequentially provided. However, in the form of FIG. 1, the Zn-doped p-type cladding layer 5 and the p-type semiconductor layer (Mg-doped p-type current diffusion layer 8) are sandwiched between the Zn-doped p-type band discontinuity eliminating layer 6 and the Zn-doped p-type. 2 and 3, the Zn-doped p-type cladding layer 5 and the p-type semiconductor layer (Mg-doped p-type current diffusion layer 8, Mg-doped p-type cladding layer) are provided. 11) are provided adjacent to each other.

かかる構造のため、Znドープp型クラッド層5等とMgドープp型半導体層(Mgドープp型電流拡散層8、Mgドープp型コンタクト層9又はMgドープp型クラッド層11)の間において、ZnとMgの相互拡散が生じ、Znドープp型クラッド層5等のZnは活性層4より遠い側に拡散される。よって、Znの活性層4への拡散が抑制される。   Because of this structure, between the Zn-doped p-type cladding layer 5 and the like and the Mg-doped p-type semiconductor layer (Mg-doped p-type current diffusion layer 8, Mg-doped p-type contact layer 9 or Mg-doped p-type cladding layer 11), Interdiffusion between Zn and Mg occurs, and Zn such as the Zn-doped p-type cladding layer 5 is diffused farther from the active layer 4. Therefore, diffusion of Zn into the active layer 4 is suppressed.

本発明の実施例に係る発光ダイオード(LED)の構造を図1に示す。なお、以下の説明においては各層は特定の導電型を有するものとして説明するが、これらに限定されること無く、n型とp型が逆の半導体層であってもよい。   The structure of a light emitting diode (LED) according to an embodiment of the present invention is shown in FIG. In the following description, each layer is described as having a specific conductivity type, but the present invention is not limited to this, and the n-type and p-type semiconductor layers may be reversed.

MOVPE法により、GaAsからなるn型基板2上に、厚さが0.5μmでキャリア濃度が1×1018cm-3のSiドープAlGaInPからなるn型クラッド層3、厚さが0.5μmのアンドープAlGaInPからなる活性層4、厚さが0.5μmでキャリア濃度が5×1017cm-3のZnドープAlGaInPからなるZnドープp型クラッド層5、厚さが0.1μmでキャリア濃度が2×1018cm-3のZnドープAlGaInPからなるZnドープp型バンド不連続解消層6、厚さが0.5μmでキャリア濃度が1×1018cm-3のZnドープGaPからなるZnドープp型電流拡散層7、厚さが8μmでキャリア濃度が3×1018cm-3のMgドープGaPからなるMgドープp型電流拡散層8、厚さが0.2μmでキャリア濃度が1×1019cm-3のMgドープGaPからなるMgドープp型コンタクト層9を順次形成した。 On the n-type substrate 2 made of GaAs by the MOVPE method, the n-type cladding layer 3 made of Si-doped AlGaInP having a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 cm −3 has a thickness of 0.5 μm. An active layer 4 made of undoped AlGaInP, a Zn-doped p-type cladding layer 5 made of Zn-doped AlGaInP with a thickness of 0.5 μm and a carrier concentration of 5 × 10 17 cm −3 , a thickness of 0.1 μm and a carrier concentration of 2 Zn doped p-type band discontinuity eliminating layer 6 made of Zn doped AlGaInP with × 10 18 cm −3 , Zn doped p type made of Zn doped GaP with a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 cm −3 Current diffusion layer 7, Mg-doped p-type current diffusion layer 8 made of Mg-doped GaP with a thickness of 8 μm and a carrier concentration of 3 × 10 18 cm −3 , a thickness of 0.2 μm and a carrier concentration of 1 × 10 19 cm - Mg-doped p-type contact layers 9 made of 3 Mg-doped GaP were sequentially formed.

SIMS分析(二次イオン分析)により、p型半導体層にはZnとMgの両方が含まれているが、活性層にはどちらも拡散せずアンドープ層であることを確認した。   SIMS analysis (secondary ion analysis) confirmed that the p-type semiconductor layer contained both Zn and Mg, but the active layer did not diffuse and was an undoped layer.

そして、この半導体発光素子用エピタキシャルウェハのn型基板2側全面に裏面電極1を、またMgドープp型コンタクト層9の一部に表面電極10を形成した後、この半導体発光素子用エピタキシャルウェハよりLEDチップを製作し、その特性評価を行った。その結果、通常のZnドープLEDと比較して、当該LEDの出力、作動電圧Vfは変わらず約2.2mW、1.98Vであり、連続通電試験後の対初期出力は改善され20%アップの100.3%と高信頼性となった。   Then, after forming the back electrode 1 on the entire surface of the epitaxial wafer for semiconductor light emitting elements on the n-type substrate 2 side and the surface electrode 10 on a part of the Mg-doped p-type contact layer 9, the epitaxial wafer for semiconductor light emitting elements is used. An LED chip was manufactured and its characteristics were evaluated. As a result, compared with a normal Zn-doped LED, the output and operating voltage Vf of the LED remain unchanged at about 2.2 mW and 1.98 V, and the initial output after the continuous energization test is improved and increased by 20%. The reliability was as high as 100.3%.

上記のようにMgドープp型電流拡散層8にGaPを用いたLED構造においては、Znドープp型バンド不連続解消層6のZn拡散があるため、このZnドープp型バンド不連続解消層6に隣接する半導体層をZnドープとする(Znドープp型電流拡散層7)ことが望ましい。   In the LED structure using GaP for the Mg-doped p-type current diffusion layer 8 as described above, since there is Zn diffusion of the Zn-doped p-type band discontinuity eliminating layer 6, this Zn-doped p-type band discontinuity eliminating layer 6 It is desirable that the semiconductor layer adjacent to Zn is doped with Zn (Zn-doped p-type current diffusion layer 7).

本発明の第二の実施例に係る発光ダイオード(LED)の構造を図2に示す。なお、以下の説明においては各層は特定の導電型を有するものとして説明するが、これらに限定されること無く、n型とp型が逆の半導体層であってもよい。   The structure of a light emitting diode (LED) according to the second embodiment of the present invention is shown in FIG. In the following description, each layer is described as having a specific conductivity type, but the present invention is not limited to this, and the n-type and p-type semiconductor layers may be reversed.

MOVPE法によりGaAsからなるn型基板2上に、厚さが0.5μmでキャリア濃度が1×1018cm-3のSiドープAlGaInPからなるn型クラッド層3、厚さが0.5μmのアンドープAlGaInPからなる活性層4、厚さが0.5μmでキャリア濃度が5×1017cm-3のZnドープAlGaInPからなるZnドープp型クラッド層5、厚さが8μmでキャリア濃度が3×1018cm-3のMgドープAlGaAsからなるMgドープp型電流拡散層8、厚さが0.2μmでキャリア濃度が1×1019cm-3のMgドープGaAsからなるMgドープp型コンタクト層9を順次形成した。 On the n-type substrate 2 made of GaAs by the MOVPE method, the n-type cladding layer 3 made of Si-doped AlGaInP having a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 cm −3 , and undoped having a thickness of 0.5 μm An active layer 4 made of AlGaInP, a Zn-doped p-type cladding layer 5 made of Zn-doped AlGaInP with a thickness of 0.5 μm and a carrier concentration of 5 × 10 17 cm −3 , a thickness of 8 μm and a carrier concentration of 3 × 10 18 Mg doped p-type current diffusion layer 8 composed of Mg-doped AlGaAs of cm -3, a Mg-doped p-contact layer 9 of a carrier concentration in thickness 0.2μm is made of Mg-doped GaAs of 1 × 10 19 cm -3 sequentially Formed.

SIMS分析により、p型半導体層にはZnとMgの両方が含まれているが、活性層にはどちらも拡散せずアンドープ層であることを確認した。   SIMS analysis confirmed that the p-type semiconductor layer contained both Zn and Mg, but neither diffused into the active layer and was an undoped layer.

この半導体発光素子用エピタキシャルウェハよりLEDチップを製作し、その特性評価を行った。その結果、通常のZnドープLEDと比較して、当該LEDチップの出力、作動電圧Vfは変わらず約2.1mW、1.92Vであり、連続通電試験後の対初期出力は改善され、20%アップの100.3%と高信頼性となった。   An LED chip was manufactured from this epitaxial wafer for a semiconductor light emitting device, and its characteristics were evaluated. As a result, compared with a normal Zn-doped LED, the output of the LED chip and the operating voltage Vf remain unchanged at about 2.1 mW and 1.92 V, and the initial output after the continuous energization test is improved by 20%. High reliability with 100.3% of increase.

〔他の実施例、変形例〕
上記実施例では、発光ダイオードを例にして説明したが、レーザダイオード用エピタキシャル構造においても、p型クラッド層にZnドーピングし、その上にMgドープ層を設置すれば、相互拡散によりZnが活性層から遠い方向に拡散するため高信頼性となる。
[Other Examples, Modifications]
In the above embodiment, the light emitting diode has been described as an example. However, even in the epitaxial structure for a laser diode, if the p-type cladding layer is doped with Zn and an Mg-doped layer is provided thereon, Zn is activated by mutual diffusion. High reliability due to diffusion away from

本発明の第一の実施形態に係る半導体発光素子を示す断面図である。1 is a cross-sectional view showing a semiconductor light emitting element according to a first embodiment of the present invention. 本発明の第二の実施形態に係る半導体発光素子を示す断面図である。It is sectional drawing which shows the semiconductor light-emitting device concerning 2nd embodiment of this invention. 本発明の第三の実施形態に係る半導体発光素子を示す断面図である。It is sectional drawing which shows the semiconductor light-emitting device concerning 3rd embodiment of this invention.

符号の説明Explanation of symbols

1 裏面電極
2 n型基板
3 n型クラッド層
4 活性層
5 Znドープp型クラッド層
6 Znドープp型バンド不連続解消層
7 Znドープp型電流拡散層
8 Mgドープp型電流拡散層
9 Mgドープp型コンタクト層
10 表面電極
11 Mgドープp型クラッド層
1 Back electrode 2 n-type substrate 3 n-type cladding layer 4 active layer 5 Zn-doped p-type cladding layer 6 Zn-doped p-type band discontinuity eliminating layer 7 Zn-doped p-type current diffusion layer 8 Mg-doped p-type current diffusion layer 9 Mg Doped p-type contact layer 10 Surface electrode 11 Mg-doped p-type cladding layer

Claims (10)

第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成した構造の半導体発光素子において、
少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、
マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする半導体発光素子。
In a semiconductor light emitting device having a structure in which a light emitting portion is formed by sandwiching an active layer between a first conductive type and a second conductive type cladding layer on a first conductive type substrate,
A p-type semiconductor layer doped with at least zinc is disposed between the p-type semiconductor layer doped with at least magnesium and the active layer;
A semiconductor light emitting device characterized by having a structure in which zinc is diffused farther from the active layer by mutual diffusion of magnesium and zinc.
第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成し、その上に第二導電型電流分散層を形成した構造の半導体発光素子において、
少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、
マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする半導体発光素子。
A semiconductor light emitting device having a structure in which a light emitting portion in which an active layer is sandwiched between a first conductive type and a second conductive type cladding layer is formed on a first conductive type substrate, and a second conductive type current spreading layer is formed thereon. In
A p-type semiconductor layer doped with at least zinc is disposed between the p-type semiconductor layer doped with at least magnesium and the active layer;
A semiconductor light emitting device characterized by having a structure in which zinc is diffused farther from the active layer by mutual diffusion of magnesium and zinc.
請求項1又は2記載の半導体発光素子において、
少なくともマグネシウムがドーピングされたp型半導体層と少なくとも亜鉛がドーピングされたp型半導体層が隣接していることを特徴とする半導体発光素子。
The semiconductor light emitting device according to claim 1 or 2,
A semiconductor light emitting device comprising a p-type semiconductor layer doped with at least magnesium and a p-type semiconductor layer doped with at least zinc.
請求項1〜3のいずれかに記載の半導体発光素子において、
上記発光部を構成する第一導電型と第二導電型のクラッド層のうち、活性層に近い側のp型クラッド層に、少なくとも亜鉛がドーピングされていることを特徴とする半導体発光素子。
The semiconductor light-emitting device according to claim 1,
A semiconductor light-emitting device, wherein at least zinc is doped in a p-type cladding layer on the side close to the active layer of the first conductivity type and second conductivity type cladding layers constituting the light emitting portion.
請求項1〜4のいずれかに記載の半導体発光素子において、
第一導電型基板がGaAsであり、発光部がAlGaInPまたはGaInPで形成されていることを特徴とする半導体発光素子。
In the semiconductor light-emitting device according to claim 1,
A semiconductor light emitting element, wherein the first conductivity type substrate is GaAs and the light emitting part is formed of AlGaInP or GaInP.
第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成した構造の半導体発光素子用エピタキシャルウェハにおいて、
少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、
マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする半導体発光素子用エピタキシャルウェハ。
In an epitaxial wafer for a semiconductor light emitting device having a structure in which a light emitting portion is formed by sandwiching an active layer between a first conductive type and a second conductive type cladding layer on a first conductive type substrate,
A p-type semiconductor layer doped with at least zinc is disposed between the p-type semiconductor layer doped with at least magnesium and the active layer;
An epitaxial wafer for a semiconductor light-emitting device, characterized in that zinc is diffused to the side farther from the active layer by mutual diffusion of magnesium and zinc.
第一導電型基板の上に活性層を第一導電型と第二導電型のクラッド層で挟んだ発光部を形成し、その上に第二導電型電流分散層を形成した構造の半導体発光素子用エピタキシャルウェハにおいて、
少なくともマグネシウムがドーピングされたp型半導体層と活性層との間に、少なくとも亜鉛がドーピングされたp型半導体層を設置し、
マグネシウムと亜鉛の相互拡散で亜鉛を活性層より遠い側に拡散させる構造としたことを特徴とする半導体発光素子用エピタキシャルウェハ。
A semiconductor light emitting device having a structure in which a light emitting portion in which an active layer is sandwiched between a first conductive type and a second conductive type cladding layer is formed on a first conductive type substrate, and a second conductive type current spreading layer is formed thereon. For epitaxial wafers,
A p-type semiconductor layer doped with at least zinc is disposed between the p-type semiconductor layer doped with at least magnesium and the active layer;
An epitaxial wafer for a semiconductor light emitting device, characterized in that zinc is diffused to the side farther from the active layer by mutual diffusion of magnesium and zinc.
請求項6又は7記載の半導体発光素子用エピタキシャルウェハにおいて、
少なくともマグネシウムがドーピングされたp型半導体層と少なくとも亜鉛がドーピングされたp型半導体層が隣接していることを特徴とする半導体発光素子用エピタキシャルウェハ。
In the epitaxial wafer for semiconductor light-emitting devices according to claim 6 or 7,
An epitaxial wafer for a semiconductor light emitting device, wherein a p-type semiconductor layer doped with at least magnesium and a p-type semiconductor layer doped with at least zinc are adjacent to each other.
請求項6〜8のいずれかに記載の半導体発光素子用エピタキシャルウェハにおいて、
上記発光部を構成する第一導電型と第二導電型のクラッド層のうち、活性層に近い側のp型クラッド層に、少なくとも亜鉛がドーピングされていることを特徴とする半導体発光素子用エピタキシャルウェハ。
In the epitaxial wafer for semiconductor light emitting elements in any one of Claims 6-8,
An epitaxial for a semiconductor light emitting device, wherein at least zinc is doped in a p-type clad layer on the side close to an active layer of the first conductivity type and second conductivity type clad layers constituting the light emitting portion. Wafer.
請求項6〜9のいずれかに記載の半導体発光素子用エピタキシャルウェハにおいて、
第一導電型基板がGaAsであり、発光部がAlGaInPまたはGaInPで形成されていることを特徴とする半導体発光素子用エピタキシャルウェハ。
In the epitaxial wafer for semiconductor light emitting elements in any one of Claims 6-9,
An epitaxial wafer for a semiconductor light emitting device, wherein the first conductivity type substrate is GaAs and the light emitting portion is formed of AlGaInP or GaInP.
JP2004295570A 2004-10-08 2004-10-08 Semiconductor light emitting device and epitaxial wafer for semiconductor light emitting device Expired - Fee Related JP4483513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295570A JP4483513B2 (en) 2004-10-08 2004-10-08 Semiconductor light emitting device and epitaxial wafer for semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295570A JP4483513B2 (en) 2004-10-08 2004-10-08 Semiconductor light emitting device and epitaxial wafer for semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2006108518A true JP2006108518A (en) 2006-04-20
JP4483513B2 JP4483513B2 (en) 2010-06-16

Family

ID=36377856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295570A Expired - Fee Related JP4483513B2 (en) 2004-10-08 2004-10-08 Semiconductor light emitting device and epitaxial wafer for semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4483513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066514A (en) * 2006-09-07 2008-03-21 Hitachi Cable Ltd Epitaxial wafer for semiconductor luminescent device and semiconductor luminescent device
WO2017082622A1 (en) * 2015-11-09 2017-05-18 엘지이노텍 주식회사 Ultraviolet light-emitting element and light-emitting element package
CN113782600A (en) * 2021-08-27 2021-12-10 聚能晶源(青岛)半导体材料有限公司 Enhanced GaN-based HEMT device, device epitaxy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066514A (en) * 2006-09-07 2008-03-21 Hitachi Cable Ltd Epitaxial wafer for semiconductor luminescent device and semiconductor luminescent device
WO2017082622A1 (en) * 2015-11-09 2017-05-18 엘지이노텍 주식회사 Ultraviolet light-emitting element and light-emitting element package
US10971648B2 (en) 2015-11-09 2021-04-06 Lg Innotek Co., Ltd. Ultraviolet light-emitting element and light-emitting element package
CN113782600A (en) * 2021-08-27 2021-12-10 聚能晶源(青岛)半导体材料有限公司 Enhanced GaN-based HEMT device, device epitaxy and preparation method thereof
CN113782600B (en) * 2021-08-27 2023-07-28 聚能晶源(青岛)半导体材料有限公司 Enhancement type GaN-based HEMT device, device epitaxy and preparation method thereof

Also Published As

Publication number Publication date
JP4483513B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP3698402B2 (en) Light emitting diode
JP4483615B2 (en) Epitaxial wafer for semiconductor light emitting device and semiconductor light emitting device
US20110037049A1 (en) Nitride semiconductor light-emitting device
KR101712049B1 (en) Light emitting device
US20040155248A1 (en) Nitride semiconductor device
TWI403002B (en) Semiconductor light-emitting device
JP5648475B2 (en) Light emitting element
JP2007096267A (en) Epitaxial wafer for semiconductor light emitting device led, its manufacturing method, and semiconductor led
JP2007066981A (en) Semiconductor device
KR100826422B1 (en) Nitride semiconductor light emitting device
JP2006245532A (en) Nitride semiconductor light-emitting device
US8115192B2 (en) Light emitting device
KR100295241B1 (en) Semiconductor light emitting device and its manufacturing method
JPH08321633A (en) Semiconductor light-emitting element and manufacture thereof
JP2010263085A (en) Light-emitting element
KR20000011917A (en) Algainp light emitting devices with thin active layers
JP2008192790A (en) Light-emitting diode
JP4150909B2 (en) Light emitting diode
JP4483513B2 (en) Semiconductor light emitting device and epitaxial wafer for semiconductor light emitting device
JP4980041B2 (en) Semiconductor light emitting device
JP3903988B2 (en) Nitride semiconductor device
JP2004241462A (en) Light emitting element and epitaxial wafer therefor
JP2011205148A (en) Semiconductor device
JP4278437B2 (en) Light emitting diode and manufacturing method thereof
JP2003115610A (en) Nitride semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees