JP2006108185A - Electrolytic capacitor - Google Patents
Electrolytic capacitor Download PDFInfo
- Publication number
- JP2006108185A JP2006108185A JP2004289299A JP2004289299A JP2006108185A JP 2006108185 A JP2006108185 A JP 2006108185A JP 2004289299 A JP2004289299 A JP 2004289299A JP 2004289299 A JP2004289299 A JP 2004289299A JP 2006108185 A JP2006108185 A JP 2006108185A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- rubber
- gas
- vent valve
- gas vent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、電解コンデンサに関し、特に内部ガス発生によるコンデンサ内圧上昇時に、内部ガスを所定量放出し、且つ急激な内圧上昇時には、確実に作動する防爆構造を備えた電解コンデンサに関するものである。 The present invention relates to an electrolytic capacitor, and more particularly, to an electrolytic capacitor having an explosion-proof structure that releases a predetermined amount of internal gas when the internal pressure of the capacitor is increased due to internal gas generation and that reliably operates when the internal pressure is suddenly increased.
電解コンデンサでは、その構造上、動作電流によって内部にガスが発生する場合があるが、大電流が流れると、そのガスの発生が顕著になり、そのガスの発生による外装ケースの内圧上昇によって、外装ケースが破れたり、封口体と外装ケースの封止部が破れて封口体が離脱したりする場合がある。 In an electrolytic capacitor, gas may be generated inside due to the operating current due to its structure. However, when a large current flows, the generation of the gas becomes significant, and the internal pressure of the outer case increases due to the generation of the gas. There are cases where the case is torn or the sealing part between the sealing body and the outer case is torn and the sealing body is detached.
このため、電解コンデンサでは、急激な内圧上昇による前記外装ケースの破損や封口体の離脱を防止するために、防爆構造がとられているが、この防爆構造として、外装ケースを封止する封口体に形成するものなどがある。コンデンサ素子を収納した外装ケースの封口体に貫通孔を設けゴムなどで覆った圧力弁を複数設けたものが開示されている(特許文献1)。
また、電解コンデンサは使用中にその内部で漏れ電流が流れることが知られている。そしてこの漏れ電流が流れることによって、電解コンデンサの内部では水素ガスが発生する。これにより電解コンデンサの内圧が上昇するため、封口体の一部に貫通孔を設け発泡シリコーンゴムで覆い、この水素ガスを外部に放出させるガス抜き弁が開示されている(特許文献2)。
For this reason, in an electrolytic capacitor, an explosion-proof structure is taken in order to prevent damage to the outer case and separation of the sealing body due to a sudden increase in internal pressure. As this explosion-proof structure, a sealing body that seals the outer case There is something to form. There has been disclosed one in which a plurality of pressure valves are provided in which a through-hole is provided in a sealing body of an outer case containing a capacitor element and covered with rubber or the like (Patent Document 1).
Further, it is known that a leakage current flows inside an electrolytic capacitor during use. Then, when this leakage current flows, hydrogen gas is generated inside the electrolytic capacitor. As a result, the internal pressure of the electrolytic capacitor rises, and therefore, a gas vent valve is disclosed in which a through hole is provided in a part of the sealing body, covered with foamed silicone rubber, and this hydrogen gas is released to the outside (Patent Document 2).
ところで、上記圧力弁とガス抜き弁とを封口体に設け、漏れ電流により発生する内部ガスをガス抜き弁にて透過させ、急激な内圧上昇時には、圧力弁を作動させて内部ガスを放出させることはできる。
しかしながら、大型の電解コンデンサでは、電極箔の面積が大きいため漏れ電流などにより発生するガス量が多い。この状態では、通常のガス抜き弁を透過するガス量より、発生するガス量が多くなる場合があり、この状態が継続すると、圧力弁が作動し、電解コンデンサの寿命が短くなってしまう。従って、電解コンデンサ内部におけるコンデンサ素子の占有率(収納効率)を下げ、所定空間を設けて内圧上昇時の緩衝としている。しかしながらこの所定空間を設けることで、電解コンデンサが大きくなり、基板における専有面積が増え、電子機器の小形化の阻害要因となってしまう。
By the way, the pressure valve and the gas vent valve are provided in the sealing body, the internal gas generated by the leakage current is permeated through the gas vent valve, and when the internal pressure is suddenly increased, the pressure valve is operated to release the internal gas. I can.
However, in a large electrolytic capacitor, since the area of the electrode foil is large, a large amount of gas is generated due to leakage current or the like. In this state, the amount of gas generated may be greater than the amount of gas that permeates the normal vent valve. If this state continues, the pressure valve operates and the life of the electrolytic capacitor is shortened. Therefore, the occupation ratio (storage efficiency) of the capacitor element inside the electrolytic capacitor is lowered, and a predetermined space is provided to serve as a buffer when the internal pressure increases. However, providing this predetermined space increases the electrolytic capacitor, increases the area occupied by the substrate, and hinders downsizing of electronic devices.
そこで、本発明は、大型の電解コンデンサにおいて、電解コンデンサにおけるコンデンサ素子の収納効率を改善するとともに、通常使用時の発生するガスを好適に外部に放出させて電解コンデンサの長寿命化を図り、かつ急激な内圧上昇時には確実に動作する圧力弁を備えた電解コンデンサを提供することを目的としている。 Therefore, the present invention improves the storage efficiency of the capacitor element in a large electrolytic capacitor, and at the same time, extends the life of the electrolytic capacitor by suitably discharging the gas generated during normal use to the outside. It is an object of the present invention to provide an electrolytic capacitor having a pressure valve that operates reliably when the internal pressure is suddenly increased.
上記の課題を解決した本発明の電解コンデンサは、コンデンサ素子と、該コンデンサ素子を収納する有底筒状の外装ケースと、該外装ケースの開口部を封止する封口体と、前記弾性封口体に備えたゴムからなる圧力弁と、透過性ゴムからなるガス抜き弁とからなり、前記圧力弁とガス抜き弁のガス透過量が圧力弁を1した場合にガス抜き弁を8以上としたことを特徴としている。 The electrolytic capacitor of the present invention that has solved the above problems includes a capacitor element, a bottomed cylindrical outer case that houses the capacitor element, a sealing body that seals an opening of the outer case, and the elastic sealing body. A pressure valve made of rubber and a gas vent valve made of permeable rubber, and when the pressure permeation amount of the pressure valve and the gas vent valve is 1, the gas vent valve is set to 8 or more. It is characterized by.
通常、圧力弁は、外装ケースの封口板へのカーリング部の強度より弱く設定され、内圧上昇時に圧力弁を作動させて内部ガスを放出させている。前記カーリング部の強度は電解コンデンサの大きさによって異なり、電解コンデンサが大きくなれば所定の割合で前記カーリング部の強度は高められ、従って圧力弁の破断強度も前記電解コンデンサの大きさによって所定の割合で設定される。この圧力弁のゴムの厚みは、圧力弁の破断強度によって設定され、この厚みによってゴムのガス透過量は設定される。
従って、電解コンデンサの大きさによって圧力弁のガス透過量は一定の範囲に自ずと設定される。
本発明者らは、この圧力弁の透過量に対して、所定の割合の透過量を有するガス抜き弁を設けることで、電解コンデンサの内部で発生するガスを適宜放出し、電解コンデンサの長寿命化が得られることを見出した。つまり、圧力弁の透過量に対して、ガス抜き弁のガス透過量を8倍にすることで、通常使用による電解コンデンサの内部で発生するガスを適宜に放出し、急激な内圧上昇時には圧力弁を確実に動作でき、長寿命化を図ることができる。なお、ガス抜き弁のガス透過量が圧力弁のガス透過量に対して7倍以下になると、ガスの透過量が少なく、圧力弁が作動し、電解コンデンサが短命となってしまう。
Usually, the pressure valve is set to be weaker than the strength of the curling portion to the sealing plate of the outer case, and the internal gas is released by operating the pressure valve when the internal pressure rises. The strength of the curling part varies depending on the size of the electrolytic capacitor. If the electrolytic capacitor becomes larger, the strength of the curling part is increased by a predetermined ratio. Therefore, the breaking strength of the pressure valve is also a predetermined ratio by the size of the electrolytic capacitor. Set by. The rubber thickness of the pressure valve is set by the breaking strength of the pressure valve, and the gas permeation amount of the rubber is set by this thickness.
Therefore, the gas permeation amount of the pressure valve is naturally set within a certain range depending on the size of the electrolytic capacitor.
The present inventors provide a gas vent valve having a predetermined amount of permeation amount with respect to the permeation amount of the pressure valve, thereby appropriately releasing the gas generated inside the electrolytic capacitor, and thereby extending the life of the electrolytic capacitor. It was found that In other words, by increasing the gas permeation amount of the degassing valve to 8 times the permeation amount of the pressure valve, the gas generated inside the electrolytic capacitor by normal use is appropriately released, and when the internal pressure suddenly rises, the pressure valve Can be operated reliably, and the life can be extended. When the gas permeation amount of the gas vent valve is 7 times or less than the gas permeation amount of the pressure valve, the gas permeation amount is small, the pressure valve operates, and the electrolytic capacitor becomes short-lived.
また、前記ガス抜き弁の厚みを0.5mm以下としたことを特徴としている。この様にガス抜き弁の厚みを薄くすることで、内部ガスの透過性を高めることができる。 Further, the thickness of the gas vent valve is set to 0.5 mm or less. Thus, by reducing the thickness of the gas vent valve, the permeability of the internal gas can be increased.
また、前記ガス抜き弁の内径をφ20以下としたことを特徴としている。ガス抜き弁の内径をφ20を超えると、封口体の強度が低くなり、また外部端子の配置位置に制限が生じるなどの問題がある。 The degassing valve has an inner diameter of φ20 or less. If the inner diameter of the gas vent valve exceeds φ20, the strength of the sealing body is lowered, and there is a problem that the arrangement position of the external terminal is restricted.
また前記外装ケース内でのコンデンサ素子の占有率が90%以上としたことを特徴としている。このように高い占有率であり、内圧上昇時の緩衝となる空間が少ない場合であっても、本発明では、長寿命を実現できる。 Further, the occupation ratio of the capacitor element in the outer case is set to 90% or more. Even when the occupation rate is high and the space for buffering when the internal pressure is increased is small, the present invention can achieve a long life.
また、前記ガス抜き弁は、封口体に設けられ、大径と小径からなる貫通孔と、前記貫通孔の大径とほぼ同寸法の薄膜状の透過性ゴムと、複数の貫通孔を有する板材及び該板材の外周縁部から連接した立壁を有し、前記貫通孔の大径とほぼ同寸法の固定手段とを備え、前記貫通孔の大径より透過性ゴム及び固定手段が挿入され、該固定手段により、透過性ゴムを貫通孔内に密着させたことを特徴としている。これによると、電解コンデンサの内部ガスを透過させる透過性ゴムを封口体に容易に取り付けられる。また、透過性ゴムを通過した内部ガスが、前記固定手段に設けられた複数の貫通孔より電解コンデンサの外部に放出されるとともに、薄く形成された透過性ゴムは、固定手段により覆われているため、輸送運搬中や、実装時に他の電子部品と接触するなどにより、薄く形成された透過性ゴムが損傷し、駆動用電解液が流出するなどの不具合がない。 The gas vent valve is provided in the sealing body, and includes a through hole having a large diameter and a small diameter, a thin film-like permeable rubber having substantially the same size as the large diameter of the through hole, and a plate material having a plurality of through holes. And a standing wall connected from the outer peripheral edge of the plate member, and a fixing means having substantially the same size as the large diameter of the through hole, and a permeable rubber and a fixing means are inserted from the large diameter of the through hole, The permeable rubber is brought into close contact with the inside of the through hole by the fixing means. According to this, the permeable rubber which permeate | transmits the internal gas of an electrolytic capacitor can be easily attached to a sealing body. In addition, the internal gas that has passed through the permeable rubber is discharged to the outside of the electrolytic capacitor through a plurality of through holes provided in the fixing means, and the thin permeable rubber is covered with the fixing means. For this reason, there is no problem that the thinly formed permeable rubber is damaged during transportation and transportation or when it comes into contact with other electronic components during mounting, and the driving electrolyte flows out.
本発明によれば、外装ケースへのコンデンサ素子の占有率を90%以上とした電解コンデンサであっても、通常使用時における内部ガスを適宜放出でき、電解コンデンサの長寿命化が達成できるとともに、急激な内圧上昇時には、圧力弁を確実に作動させることができ、信頼性の高い電解コンデンサを提供できる。 According to the present invention, even an electrolytic capacitor having an occupation ratio of the capacitor element to the outer case of 90% or more can appropriately release the internal gas during normal use, and the life of the electrolytic capacitor can be extended. When the internal pressure is suddenly increased, the pressure valve can be reliably operated, and a highly reliable electrolytic capacitor can be provided.
以下に図面に基づき本発明の実施の形態を説明する。
図1に示すように、コンデンサ素子2は、アルミニウム箔の表面を粗面化し、陽極酸化皮膜を形成した陽極箔と、同様に表面を粗面化した陰極箔との任意な箇所に、内部端子4を超音波溶接などの接続方法により接続し、この陽極箔と陰極箔の間に電気絶縁性のセパレータ(例えば、マニラ紙、クラフト紙など)を介在させて巻回又は積層して形成される。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the capacitor element 2 has an internal terminal at an arbitrary portion of an anode foil having a roughened surface of an aluminum foil to form an anodized film and a cathode foil having a similarly roughened surface. 4 is connected by a connecting method such as ultrasonic welding, and is wound or laminated by interposing an electrically insulating separator (for example, manila paper, kraft paper, etc.) between the anode foil and the cathode foil. .
このコンデンサ素子2に駆動用電解液を含浸し、コンデンサ素子2から導出された内部端子4を、所定厚みを有する合成樹脂 等の成形可能な絶縁材料で形成された封口板3に貫通して設けた外部端子5のリベットに加締め及び溶接により接続する。封口板3は、アルミニウムからなるリベット、このリベットと一体のネジ部からなる外部端子5と、圧力弁7及びガス抜き弁10が設けられている。図2に示すように、外部端子5は、封口板3の中心から点対称位置にそれぞれ離間して設けられ、また圧力弁7とガス抜き弁10も同じく、封口板3の中心から点対称位置にそれぞれ離間して設けられている。 The capacitor element 2 is impregnated with a driving electrolyte, and the internal terminal 4 led out from the capacitor element 2 is provided through the sealing plate 3 formed of a moldable insulating material such as a synthetic resin having a predetermined thickness. The external terminal 5 is connected to the rivet by caulking and welding. The sealing plate 3 is provided with a rivet made of aluminum, an external terminal 5 made of a screw part integrated with the rivet, a pressure valve 7 and a gas vent valve 10. As shown in FIG. 2, the external terminal 5 is provided at a point-symmetrical position from the center of the sealing plate 3, and the pressure valve 7 and the gas vent valve 10 are also point-symmetrical from the center of the sealing plate 3. Are spaced apart from each other.
圧力弁7は、電解コンデンサ1の内圧が急激に上昇した際にその一部が破断して内部のガスを電解コンデンサ1の外部へ放出する機能を有し、貫通孔9とこの貫通孔9を覆う薄膜のゴムからなる。ゴムはシリコンゴムなどが挙げられる。このゴムは、鍔部を有するキャップ8であり、封口板3のコンデンサ素子2側より挿入され、このキャップ8で貫通孔9を閉塞している。キャップ8に薄肉部を形成することで、電解コンデンサ1の内圧上昇時にキャップ8の破断性を高めても良い。 The pressure valve 7 has a function of partially breaking when the internal pressure of the electrolytic capacitor 1 suddenly rises and releasing the internal gas to the outside of the electrolytic capacitor 1. It consists of thin rubber covering. Examples of rubber include silicon rubber. This rubber is a cap 8 having a flange, and is inserted from the side of the capacitor element 2 of the sealing plate 3, and the cap 8 closes the through hole 9. By forming a thin portion in the cap 8, the breakability of the cap 8 may be increased when the internal pressure of the electrolytic capacitor 1 is increased.
この圧力弁7のゴムは、内径が4mm、厚さ1mmであり、内部ガスの透過量は、ケース内圧5kg/cm2で1260ccである。 The rubber of the pressure valve 7 has an inner diameter of 4 mm and a thickness of 1 mm, and the permeation amount of the internal gas is 1260 cc at a case internal pressure of 5 kg / cm 2 .
ガス抜き弁10は、電解コンデンサ1の内部ガスを随時、電解コンデンサ1の外部へ放出させる機能を有し、貫通孔11とこの貫通孔11を覆うガス透過性の薄膜ゴムからなる。ゴムはシリコンゴム、発泡シリコンゴム、フッ素ゴム、ブチルゴム、エチレン−プロピレン−ジエンゴムなどガス透過性の優れたゴムが挙げられる。図3(a)に示すように、この透過性ゴム12は、周囲が肉厚13で、中央付近が肉薄となっている。また、前記周囲の肉厚13より中心にて交差する十字の厚肉を形成し、透過性ゴム12の強度を維持している。 The gas vent valve 10 has a function of releasing the internal gas of the electrolytic capacitor 1 to the outside of the electrolytic capacitor 1 as needed, and is made of a through-hole 11 and a gas-permeable thin film rubber covering the through-hole 11. Examples of the rubber include rubber having excellent gas permeability such as silicon rubber, foamed silicon rubber, fluorine rubber, butyl rubber, and ethylene-propylene-diene rubber. As shown in FIG. 3A, the permeable rubber 12 has a wall thickness 13 around the center and a wall near the center. Further, a thick cross is formed that intersects at the center from the surrounding thickness 13 to maintain the strength of the permeable rubber 12.
このガス抜き弁10のガス透過性ゴム12は、内径が11mm、厚さ0.4mm、内部ガスの透過量は、ケース内圧5kg/cm2で11860ccである。ガス透過性ゴム12の厚さを0.5mmより大きくすると、ガス透過量を大きくするためには、透過性ゴム12の内径を大きくしなければならず、封口板3の強度が低下してしまう。 The gas permeable rubber 12 of the gas vent valve 10 has an inner diameter of 11 mm, a thickness of 0.4 mm, and an internal gas permeation amount of 11860 cc at a case internal pressure of 5 kg / cm 2 . If the thickness of the gas permeable rubber 12 is larger than 0.5 mm, the inner diameter of the permeable rubber 12 must be increased in order to increase the gas permeation amount, and the strength of the sealing plate 3 is reduced. .
図3の(b)に示すように、この固定手段14は、アルミニウムなどの金属材料からなり、円板材15とこの円板材15から連接された立壁16が複数外周を囲って断続的に形成されている。またこの固定手段14の円板部には、複数の孔17が設けられ、透過性ゴム12を通過したガスが該孔を通過して電解コンデンサ1の外部に放出される。 As shown in FIG. 3B, the fixing means 14 is made of a metal material such as aluminum, and a disk material 15 and standing walls 16 connected to the disk material 15 are intermittently formed around a plurality of outer circumferences. ing. The disk portion of the fixing means 14 is provided with a plurality of holes 17, and the gas that has passed through the permeable rubber 12 passes through the holes and is released to the outside of the electrolytic capacitor 1.
次にこのガス抜き弁の封口板への取り付け状態について説明する。図4に示すように、封口板には、ガス抜き弁用の貫通孔11が設けられ、この貫通孔11は、封口板3の外部側を大径とし、内部側を小径として段部18が形成されている。前記貫通孔11の小径は、封口板の外部側に向けて暫時幅狭となっている。前記円形の薄膜の透過性ゴム12は、貫通孔11の大径側より挿入されて、この段部18に載置される。さらに、貫通孔11には、貫通孔11の大径側より、前記透過性ゴム12の外周の肉厚部13を押圧して貫通孔11の内部に前記透過性ゴム12を固定する円板状の固定手段14が挿入され、前記透過性ゴム12を固定するとともに、透過性ゴム12を封口板3に密着させて気密封止される。 Next, the attachment state of the gas vent valve to the sealing plate will be described. As shown in FIG. 4, the sealing plate is provided with a through hole 11 for a gas vent valve. The through hole 11 has a large diameter on the outer side of the sealing plate 3 and a small diameter on the inner side. Is formed. The small diameter of the through-hole 11 is narrowed for a while toward the outside of the sealing plate. The circular thin film permeable rubber 12 is inserted from the large diameter side of the through hole 11 and placed on the stepped portion 18. Further, the through-hole 11 has a disk shape that presses the thick portion 13 on the outer periphery of the permeable rubber 12 from the large-diameter side of the through-hole 11 to fix the permeable rubber 12 inside the through-hole 11. The fixing means 14 is inserted to fix the permeable rubber 12, and the permeable rubber 12 is brought into close contact with the sealing plate 3 to be hermetically sealed.
この固定手段14の立壁16の外径は、封口板3の貫通孔11の内径より若干小さく形成され、固定手段14を貫通孔11に挿入する際には、固定手段14の弾性により立壁16の外径が、前記貫通孔11の内径に沿って縮んで挿入され、固定手段14の反発力によって貫通孔11内に保持固定される。 The outer diameter of the standing wall 16 of the fixing means 14 is slightly smaller than the inner diameter of the through hole 11 of the sealing plate 3, and when the fixing means 14 is inserted into the through hole 11, the elasticity of the fixing means 14 makes the standing wall 16 elastic. The outer diameter is inserted with being contracted along the inner diameter of the through hole 11 and is held and fixed in the through hole 11 by the repulsive force of the fixing means 14.
このガス抜き弁10によると、電解コンデンサ1の内部で発生したガスは、封口板3のガス抜き用貫通孔11の小径側より侵入し、透過性ゴム12を押圧する。電解コンデンサの内部が所定圧力になると前記内部ガスは、前記透過性ゴム12を透過し、固定手段14の孔17を通過して外部に放出される。固定手段14の板材15によって透過性ゴム14が覆われているため、前記電解コンデンサ1の内圧による前記透過性ゴム14の膨れが防止される。 According to this gas vent valve 10, the gas generated inside the electrolytic capacitor 1 enters from the small diameter side of the gas vent through hole 11 of the sealing plate 3 and presses the permeable rubber 12. When the inside of the electrolytic capacitor reaches a predetermined pressure, the internal gas passes through the permeable rubber 12, passes through the holes 17 of the fixing means 14, and is released to the outside. Since the permeable rubber 14 is covered with the plate material 15 of the fixing means 14, swelling of the permeable rubber 14 due to the internal pressure of the electrolytic capacitor 1 is prevented.
そして封口板3とを一体化したコンデンサ素子2を、アルミニウムからなる有底筒所の外装ケース6に収納し、外装ケース6の開口端をカーリング処理にて前記封口板3により密封する。この外装ケース6に収納されるコンデンサ素子2は、外装ケース6の90%以上の占有率を有する。これは、外装ケース6に収納されるコンデンサ素子2を大きくすることで、コンデンサ素子2を構成する陽極箔の面積を増やし、静電容量を大きくできる。 The capacitor element 2 integrated with the sealing plate 3 is housed in an outer case 6 of a bottomed cylinder made of aluminum, and the opening end of the outer case 6 is sealed by the sealing plate 3 by a curling process. The capacitor element 2 housed in the outer case 6 has an occupation ratio of 90% or more of the outer case 6. This is because by increasing the capacitor element 2 accommodated in the outer case 6, the area of the anode foil constituting the capacitor element 2 can be increased and the capacitance can be increased.
この様に、電解コンデンサ1の外部に放出される内部ガスの透過量は、圧力弁7が1260cc、ガス抜き弁10が11860ccであり、ガス抜き弁10の透過量は、圧力弁7の透過量に対して9.5倍あるため、外装ケース6内へのコンデンサ素子2の占有率が高い場合であっても、圧力弁7が作動せずに、長寿命化が図れる。 Thus, the permeation amount of the internal gas discharged to the outside of the electrolytic capacitor 1 is 1260 cc for the pressure valve 7 and 11860 cc for the gas vent valve 10. The permeation amount of the gas vent valve 10 is the permeation amount of the pressure valve 7. Therefore, even if the occupation rate of the capacitor element 2 in the outer case 6 is high, the pressure valve 7 does not operate and the life can be extended.
以上のように構成した電解コンデンサ1では、封口板3に、圧力弁7とガス抜き弁10を設けているので、通常使用時における内部ガスを適宜放出でき、電解コンデンサ1の長寿命化が達成できるとともに、急激な内圧上昇時には、圧力弁7を確実に作動させることができ、信頼性の高い電解コンデンサ1を提供できる。 In the electrolytic capacitor 1 configured as described above, since the pressure valve 7 and the gas vent valve 10 are provided on the sealing plate 3, the internal gas during normal use can be discharged as appropriate, and the life of the electrolytic capacitor 1 can be extended. In addition, when the internal pressure is suddenly increased, the pressure valve 7 can be reliably operated, and the highly reliable electrolytic capacitor 1 can be provided.
次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(実施例)
実施例の電解コンデンサは、定格電圧400V、静電容量12000μF、大きさφ89×L180mmである。封口板に設けられた圧力弁のゴムは、シリコンゴムからなり、内径が4mm、厚さ1mmであり、内部ガスの透過量は、ケース内圧5kg/cm2で1260ccである。また封口板に設けられたガス抜き弁の透過性ゴムは、シリコンゴムからなり、内径が11mm、厚さ0.4mm、内部ガスの透過量は、内圧5kg/cm2で11860ccである。圧力弁とガス抜き弁の内部ガス透過量は1:8以上となる。この封口板にコンデンサ素子を取り付け外装ケースに収納し開口部をカーリング処理して密封した。コンデンサ素子の外装ケースへの占有率は、94%とした。
(Example)
The electrolytic capacitor of the example has a rated voltage of 400 V, a capacitance of 12000 μF, and a size of φ89 × L180 mm. The rubber of the pressure valve provided on the sealing plate is made of silicon rubber and has an inner diameter of 4 mm and a thickness of 1 mm. The permeation amount of the internal gas is 1260 cc at a case internal pressure of 5 kg / cm 2 . The permeable rubber of the gas vent valve provided on the sealing plate is made of silicon rubber, the inner diameter is 11 mm, the thickness is 0.4 mm, and the internal gas permeation amount is 11860 cc at an internal pressure of 5 kg / cm 2 . The internal gas permeation amount of the pressure valve and the gas vent valve is 1: 8 or more. A capacitor element was attached to the sealing plate and housed in an outer case, and the opening was curled and sealed. The occupation ratio of the capacitor element to the outer case was 94%.
(比較例)
実施例のガス抜き弁の透過性ゴムを、内径が8mm、厚さ1mmとし、圧力弁とガス抜き弁の内部ガス透過量比率を1:5とした。またコンデンサ素子の外装ケースへの占有率を、94%とした。
(Comparative example)
The permeable rubber of the degassing valve of the example had an inner diameter of 8 mm and a thickness of 1 mm, and the internal gas permeation ratio of the pressure valve and the degassing valve was 1: 5. The occupation ratio of the capacitor element to the outer case was set to 94%.
以上、2つの電解コンデンサを、85℃の温度において、定格電圧を一定にして寿命試験を行った。その際に一定時間で電解コンデンサを取り出し、経過時間毎における電解コンデンサの外観変化について観察した。 As described above, the life test was conducted on the two electrolytic capacitors at a temperature of 85 ° C. with a constant rated voltage. At that time, the electrolytic capacitor was taken out at a fixed time, and the appearance change of the electrolytic capacitor was observed every time elapsed.
試験結果は、比較例の電解コンデンサでは、1500時間にて圧力弁が動作してしまったのに対して、実施例の電解コンデンサは、5000時間経過後も圧力弁が動作することがなかった。また静電容量の減少も−2.0%と電解コンデンサの性能も維持され、長寿命化が成されている。
The test result showed that the pressure valve operated in 1500 hours in the electrolytic capacitor of the comparative example, whereas the pressure valve did not operate even after 5000 hours in the electrolytic capacitor in the example. Also, the decrease in capacitance is -2.0%, so that the performance of the electrolytic capacitor is maintained and the life is extended.
1 電解コンデンサ
2 コンデンサ素子
3 封口板
4 内部端子
5 外部端子
6 外装ケース
7 圧力弁
8 キャップ
9 圧力弁用貫通孔
10 ガス抜き弁
11 ガス抜き弁用貫通孔
12 透過性ゴム
13 肉厚部
14 固定手段
15 板材
16 立壁
17 孔
18 段部
DESCRIPTION OF SYMBOLS 1 Electrolytic capacitor 2 Capacitor element 3 Sealing plate 4 Internal terminal 5 External terminal 6 Exterior case 7 Pressure valve 8 Cap 9 Pressure valve through hole 10 Gas vent valve 11 Gas vent valve through hole 12 Permeable rubber 13 Thick portion 14 Fixed Means 15 Plate material 16 Standing wall 17 Hole 18 Step
Claims (5)
該外装ケースの開口部を封止する封口体と、
前記封口体に備えたゴムからなる圧力弁と、透過性ゴムからなるガス抜き弁とからなり、
前記圧力弁とガス抜き弁のガス透過量が圧力弁を1にした場合にガス抜き弁を8以上とした電解コンデンサ。 A capacitor element, and a bottomed cylindrical outer case for storing the capacitor element;
A sealing body for sealing the opening of the exterior case;
A pressure valve made of rubber provided in the sealing body, and a gas vent valve made of permeable rubber,
An electrolytic capacitor in which the gas vent amount of the pressure valve and the gas vent valve is 8 or more when the pressure valve is 1.
前記貫通孔の大径とほぼ同寸法の薄膜状の透過性ゴムと、
複数の貫通孔を有する板材及び該板材の外周縁部から連接した立壁を有し、前記貫通孔の大径とほぼ同寸法の固定手段とを備え、
前記貫通孔の大径より透過性ゴム及び固定手段が挿入され、該固定手段により、透過性ゴムを貫通孔内に密着させた請求項1乃至3のいずれかに記載の電解コンデンサ。
The gas vent valve is provided in the sealing body, and has a through hole having a large diameter and a small diameter,
A thin film-like transparent rubber having substantially the same size as the large diameter of the through hole;
A plate member having a plurality of through holes and a standing wall connected from the outer peripheral edge of the plate member, and comprising a fixing means having substantially the same size as the large diameter of the through hole,
The electrolytic capacitor according to claim 1, wherein a permeable rubber and fixing means are inserted from a large diameter of the through hole, and the permeable rubber is brought into close contact with the through hole by the fixing means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004289299A JP2006108185A (en) | 2004-09-30 | 2004-09-30 | Electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004289299A JP2006108185A (en) | 2004-09-30 | 2004-09-30 | Electrolytic capacitor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010135560A Division JP2010232675A (en) | 2010-06-14 | 2010-06-14 | Electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006108185A true JP2006108185A (en) | 2006-04-20 |
Family
ID=36377585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004289299A Pending JP2006108185A (en) | 2004-09-30 | 2004-09-30 | Electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006108185A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122038A1 (en) * | 2010-03-31 | 2011-10-06 | 日本ケミコン株式会社 | Electrolytic capacitor |
JP2012069644A (en) * | 2010-09-22 | 2012-04-05 | Nippon Chemicon Corp | Electrolytic capacitor |
JP2012222342A (en) * | 2011-04-07 | 2012-11-12 | Avx Corp | Manganese oxide capacitor for use in extreme environments |
JP2012222343A (en) * | 2011-04-07 | 2012-11-12 | Avx Corp | Hermetically sealed electrolytic capacitor having improved mechanical stability |
WO2014003038A1 (en) | 2012-06-28 | 2014-01-03 | ニチコン株式会社 | Pressure valve for electrolytic capacitor, and electrolytic capacitor using same |
JP2014157881A (en) * | 2013-02-14 | 2014-08-28 | Nippon Chemicon Corp | Electric double layer capacitor with vent valve, and sealing plate |
JP2015508232A (en) * | 2012-02-07 | 2015-03-16 | ブルー ソリューションズ | Cover for energy storage unit, energy storage unit provided with cover, and method for manufacturing energy storage unit |
EP3021337A1 (en) * | 2014-09-05 | 2016-05-18 | Krawczyk Zenon P.P.H.U. "ZENEX" | Power capacitor with a protective device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60200456A (en) * | 1984-03-24 | 1985-10-09 | Japan Storage Battery Co Ltd | Enclosed type cylindrical alkaline storage battery |
JPS63310554A (en) * | 1987-06-12 | 1988-12-19 | Matsushita Electric Ind Co Ltd | Sealed lead-acid battery |
JPH0270361U (en) * | 1988-11-17 | 1990-05-29 | ||
JPH03110828U (en) * | 1990-02-28 | 1991-11-13 | ||
JPH0845797A (en) * | 1994-07-29 | 1996-02-16 | Marcon Electron Co Ltd | Electrolytic capacitor |
JPH08321293A (en) * | 1995-05-26 | 1996-12-03 | Japan Storage Battery Co Ltd | Non-aqueous electrolyte battery |
JP2001015391A (en) * | 1999-06-30 | 2001-01-19 | Nippon Chemicon Corp | Electrolytic capacitor |
JP2001185113A (en) * | 1999-12-28 | 2001-07-06 | Shin Kobe Electric Mach Co Ltd | Sealed non-aqueous electrolyte secondary cell |
JP2001230161A (en) * | 2000-02-16 | 2001-08-24 | Nippon Chemicon Corp | Pressure regulating valve and capacitor |
-
2004
- 2004-09-30 JP JP2004289299A patent/JP2006108185A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60200456A (en) * | 1984-03-24 | 1985-10-09 | Japan Storage Battery Co Ltd | Enclosed type cylindrical alkaline storage battery |
JPS63310554A (en) * | 1987-06-12 | 1988-12-19 | Matsushita Electric Ind Co Ltd | Sealed lead-acid battery |
JPH0270361U (en) * | 1988-11-17 | 1990-05-29 | ||
JPH03110828U (en) * | 1990-02-28 | 1991-11-13 | ||
JPH0845797A (en) * | 1994-07-29 | 1996-02-16 | Marcon Electron Co Ltd | Electrolytic capacitor |
JPH08321293A (en) * | 1995-05-26 | 1996-12-03 | Japan Storage Battery Co Ltd | Non-aqueous electrolyte battery |
JP2001015391A (en) * | 1999-06-30 | 2001-01-19 | Nippon Chemicon Corp | Electrolytic capacitor |
JP2001185113A (en) * | 1999-12-28 | 2001-07-06 | Shin Kobe Electric Mach Co Ltd | Sealed non-aqueous electrolyte secondary cell |
JP2001230161A (en) * | 2000-02-16 | 2001-08-24 | Nippon Chemicon Corp | Pressure regulating valve and capacitor |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122038A1 (en) * | 2010-03-31 | 2011-10-06 | 日本ケミコン株式会社 | Electrolytic capacitor |
JPWO2011122038A1 (en) * | 2010-03-31 | 2013-07-04 | 日本ケミコン株式会社 | Electrolytic capacitor |
JP2012069644A (en) * | 2010-09-22 | 2012-04-05 | Nippon Chemicon Corp | Electrolytic capacitor |
JP2012222342A (en) * | 2011-04-07 | 2012-11-12 | Avx Corp | Manganese oxide capacitor for use in extreme environments |
JP2012222343A (en) * | 2011-04-07 | 2012-11-12 | Avx Corp | Hermetically sealed electrolytic capacitor having improved mechanical stability |
JP2015508232A (en) * | 2012-02-07 | 2015-03-16 | ブルー ソリューションズ | Cover for energy storage unit, energy storage unit provided with cover, and method for manufacturing energy storage unit |
WO2014003038A1 (en) | 2012-06-28 | 2014-01-03 | ニチコン株式会社 | Pressure valve for electrolytic capacitor, and electrolytic capacitor using same |
KR20150027734A (en) | 2012-06-28 | 2015-03-12 | 니치콘 가부시키가이샤 | Pressure valve for electrolytic capacitor, and electrolytic capacitor using same |
US9299502B2 (en) | 2012-06-28 | 2016-03-29 | Nichicon Corporation | Pressure valve for electrolytic capacitor, and electrolytic capacitor using same |
JP2014157881A (en) * | 2013-02-14 | 2014-08-28 | Nippon Chemicon Corp | Electric double layer capacitor with vent valve, and sealing plate |
EP3021337A1 (en) * | 2014-09-05 | 2016-05-18 | Krawczyk Zenon P.P.H.U. "ZENEX" | Power capacitor with a protective device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6016478B2 (en) | Pressure valve for electrolytic capacitor and electrolytic capacitor using the same | |
JP2006108185A (en) | Electrolytic capacitor | |
JP2024105497A (en) | Method for fixing a film to a capacitor element in an electrolytic capacitor | |
JP2014209526A (en) | Power storage device | |
JP6278176B2 (en) | Method for manufacturing power storage device provided with gas vent valve | |
JP2005116955A (en) | Capacitor | |
JP6406491B2 (en) | Power storage device | |
JP2010232675A (en) | Electrolytic capacitor | |
JP7283393B2 (en) | Sealing plate, capacitor, and method for manufacturing sealing plate | |
JP2001015391A (en) | Electrolytic capacitor | |
JP6489124B2 (en) | Capacitor | |
WO2017085065A1 (en) | Electrolytic capacitor with safety vent | |
JP6264526B2 (en) | Power storage device | |
JP2003243266A (en) | Electrolytic capacitor and package case for the same | |
JPH0845796A (en) | Electrolytic capacitor | |
JP2531596Y2 (en) | Electrolytic capacitor | |
JP2528339Y2 (en) | Electrolytic capacitor | |
JP2559923Y2 (en) | Electrolytic capacitor | |
JP2010087286A (en) | Electrolytic capacitor | |
JP2002075799A (en) | Alumina electrolytic capacitor | |
JP6722100B2 (en) | Capacitor | |
JP2005209822A (en) | Electrolytic capacitor | |
JP5165638B2 (en) | Electrolytic capacitor | |
JP2615455B2 (en) | Electrolytic capacitor | |
JP2005209823A (en) | Electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070912 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100414 Free format text: JAPANESE INTERMEDIATE CODE: A131 |