JP2006108015A - Static eliminator - Google Patents

Static eliminator Download PDF

Info

Publication number
JP2006108015A
JP2006108015A JP2004295897A JP2004295897A JP2006108015A JP 2006108015 A JP2006108015 A JP 2006108015A JP 2004295897 A JP2004295897 A JP 2004295897A JP 2004295897 A JP2004295897 A JP 2004295897A JP 2006108015 A JP2006108015 A JP 2006108015A
Authority
JP
Japan
Prior art keywords
discharge
electrode
static eliminator
low potential
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004295897A
Other languages
Japanese (ja)
Inventor
Kengo Hayashi
謙吾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004295897A priority Critical patent/JP2006108015A/en
Publication of JP2006108015A publication Critical patent/JP2006108015A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance static eliminating performance while suppressing an amount of ozone generation without increasing the air volume of a fan for blowing ions, in a voltage impressing type static eliminator. <P>SOLUTION: This static eliminator has a discharge electrode to generate positive and negative ions, a low potential electrode facing the discharge electrode, and an ac high voltage power supply to generate an ac high voltage, and generates corona discharge by impressing the ac high voltage generated from the ac high voltage power supply between the discharge electrode and the low potential electrode. The discharge electrode has a plurality of ion generating parts, and at least one discharge potential stabilizing part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、交流高電圧を放電電極に印加して正負イオンを発生させ、その正負イオンによって対象物の静電気を低減する交流高電圧印加式の除電器に関する発明である。   The present invention relates to an AC high voltage application type static eliminator that applies an AC high voltage to a discharge electrode to generate positive and negative ions and reduces the static electricity of the object by the positive and negative ions.

従来の電圧印加式の除電器で除電性能を簡単に向上させるために、一般的には第1の従来例のように、イオン送風用のファンの風量を大きくして、イオン発生電極で発生したイオンを強制的に製品から吹出す方法がとられている(例えば、特許文献1参照)。しかしながら、除電対象物が風に飛ばされやすい物体、例えば粉体などの場合は、大風量の送風用ファンを使用することはできない。   In order to easily improve the static elimination performance with the conventional voltage application type static eliminator, generally, as in the first conventional example, the air volume of the fan for ion blowing is increased and the ion generation electrode generates the static electricity. A method has been adopted in which ions are forcibly ejected from the product (for example, see Patent Document 1). However, in the case where the object to be neutralized is an object that is easily blown by the wind, such as powder, a large air volume fan cannot be used.

すなわち、風に飛ばされやすい物体を除電するには、イオン送風用のファンを使用しないか、もしくは風量の弱いファンを使用する必要がある。この場合、除電性能を向上させるためには、一般的にはイオン発生電極への印加電圧を高くしてイオンがより多く発生させる方法がとられている。しかしながら、通常、電圧印加式の除電器はイオンと共にオゾンも発生させており、印加電圧を高くするとオゾン発生量も増加させてしまう。   That is, in order to neutralize an object that is easily blown by the wind, it is necessary not to use a fan for blowing air or to use a fan having a low air volume. In this case, in order to improve the static elimination performance, generally, a method of increasing the voltage applied to the ion generating electrode and generating more ions is employed. However, normally, the voltage application type static eliminator generates ozone as well as ions, and if the applied voltage is increased, the amount of ozone generated is also increased.

オゾンは、濃度が高くなると人体に悪い影響を与えてしまう。したがって、イオン発生電極への印加電圧を高くして除電性能を向上させようとした場合、オゾン発生量も増加させてしまうので、人体へのオゾン影響の面から限界が生じてしまう。特に高周波数の高電圧を使用する場合は、オゾン発生量が元々多いため問題となる。   Ozone has a negative effect on the human body when the concentration is high. Therefore, when an attempt is made to improve the charge removal performance by increasing the voltage applied to the ion generation electrode, the amount of ozone generation is also increased, and thus there is a limit in terms of the influence of ozone on the human body. In particular, when a high frequency high voltage is used, there is a problem because the amount of ozone generated is originally large.

その対策として、第2の従来例のように、接地電極を絶縁体で被覆する等してイオン発生電極と接地電極間の絶縁距離を長くして、印加電圧を高くする方法があるが、この方法では構造が複雑になることに加え、樹脂を絶縁体として使用した場合、樹脂は耐放電性が弱いため、放電による絶縁破壊を起こす恐れがある(例えば、特許文献2参照)。   As a countermeasure, there is a method of increasing the applied voltage by increasing the insulation distance between the ion generating electrode and the ground electrode by covering the ground electrode with an insulator as in the second conventional example. In addition to the complicated structure of the method, when the resin is used as an insulator, the resin has a low discharge resistance, which may cause a dielectric breakdown due to discharge (see, for example, Patent Document 2).

また、第3の従来例のように、一般的にイオン発生器の用途においては、オゾンを発生させないために接地電極を使用しない。その場合、オゾン発生量増加に最も影響を与える接地電極への放電エネルギーがなくなるため、接地電極への放電を利用した場合と比較して、大幅にオゾン発生量が減少する。しかしながら、接地電極がない場合、正負イオンの発生量の割合が不均一になるため、除電器として使用すると対象物を正負どちらかの電位に帯電させてしまう恐れがある。   Further, as in the third conventional example, in general, in the use of an ion generator, a ground electrode is not used in order not to generate ozone. In this case, since the discharge energy to the ground electrode that most affects the increase in the amount of ozone generated is lost, the amount of ozone generated is greatly reduced as compared to the case of using the discharge to the ground electrode. However, when there is no ground electrode, the ratio of the amount of positive and negative ions generated is non-uniform, and there is a risk that the object will be charged to either positive or negative potential when used as a static eliminator.

特開2000−100596号公報(第3頁、第1図)Japanese Patent Laid-Open No. 2000-10056 (page 3, FIG. 1) 特開2000−123956号公報(第4頁、第1図)Japanese Patent Laid-Open No. 2000-123958 (page 4, FIG. 1) 特開2002−260822号公報(第5頁、第1図)JP 2002-260822 A (page 5, FIG. 1)

本発明は、上記問題を解決するためになされたもので、本発明の課題は、電圧印加式の除電器において、イオン送風用のファンの風量を大きくせずに、イオン発生を増加させ、オゾン発生量の増加を抑えつつ、除電性能を向上させることである。   The present invention has been made to solve the above-described problems. An object of the present invention is to increase the generation of ions in a voltage application type static eliminator without increasing the air volume of a fan for ion blowing, It is to improve the static elimination performance while suppressing an increase in the generation amount.

上記問題を解決する手段として、第1の従来例である「イオン送風用のファンの風量を大きくして、イオン発生電極で発生したイオンを強制的に製品から吹出す」方法については、除電性能は向上するが、除電対象物が風に飛ばされやすい物体の除電に使用すると、対象物を飛散させてしまうため不適切である。   As a means for solving the above-mentioned problem, the first conventional example of “a method of forcibly blowing ions generated from an ion generating electrode from a product by increasing the air flow rate of an ion blowing fan” However, if the object to be neutralized is used for neutralizing an object that is easily blown by the wind, it is inappropriate because the object is scattered.

また、第2の従来例である「接地電極を絶縁体で被覆する等してイオン発生電極と接地電極間の絶縁距離を長くして、印加電圧を高くする」方式については、構造が複雑となることに加え、樹脂を絶縁体として使用した場合、樹脂は耐放電性が低いため放電による絶縁破壊が発生する恐れがある。   In addition, the structure of the second conventional example “the ground electrode is covered with an insulator to increase the insulation distance between the ion generating electrode and the ground electrode to increase the applied voltage” has a complicated structure. In addition, when the resin is used as an insulator, since the resin has low discharge resistance, there is a risk of causing dielectric breakdown due to discharge.

また、第3の従来例である「接地電極を使用しない」方式については、接地電極がないために正負イオン発生量の割合が不均一になる。一般的に正イオンよりも負イオンの方が、粒子が小さく拡散しやすいので、この方式を除電器に使用すると、対象物を負電位に帯電させる恐れがある。また、第1、2の従来例のようにイオン発生電極の全ての先端部に接地電極を設けた場合、イオン発生電極の電位は安定するが、全ての先端部と接地電極の間でコロナ放電が起こるため、オゾン発生量が増加してしまう。   In addition, in the “conventional ground electrode not used” method as the third conventional example, since there is no ground electrode, the ratio of the positive and negative ion generation amounts becomes non-uniform. In general, negative ions are easier to diffuse than positive ions because particles are smaller and more easily diffused. If this method is used for a static eliminator, there is a risk of charging the object to a negative potential. In addition, when the ground electrode is provided at all the tip portions of the ion generating electrode as in the first and second conventional examples, the potential of the ion generating electrode is stabilized, but corona discharge is generated between all the tip portions and the ground electrode. As a result, the amount of ozone generated increases.

上記のような問題を解決し、尚且つ目的を達成するために、請求項1記載の発明によれば、正負のイオンを発生させる放電電極と、前記放電電極と対向する低電位電極と、交流高電圧を発生する交流高電圧電源とを有し、前記交流高電圧電源から発生させた交流高電圧を前記放電電極と低電位電極間に印加させてコロナ放電を発生させる除電器において、前記放電電極は複数のイオン発生部と、少なくとも一つの放電電位安定部を有することを特徴とするため、全ての前記イオン発生部を放電電位安定部として、低電位電極との間にコロナ放電を発生させる除電器と比較すると、オゾン発生量を抑えて、なおかつイオンを増加させることできる。   In order to solve the above problems and achieve the object, according to the invention of claim 1, a discharge electrode for generating positive and negative ions, a low potential electrode facing the discharge electrode, an alternating current A static eliminator that generates a corona discharge by applying an AC high voltage generated from the AC high voltage power source between the discharge electrode and a low potential electrode. Since the electrode has a plurality of ion generation units and at least one discharge potential stabilization unit, all the ion generation units are used as discharge potential stabilization units, and corona discharge is generated between the low potential electrodes. Compared with a static eliminator, the amount of ozone generation can be suppressed and ions can be increased.

また、請求項2記載の発明によれば、請求項1に記載の除電器において、前記放電電位安定部のみ、所定の空間距離にて前記低電位電極と対向し、コロナ放電を発生させることを特徴とするため、放電電極と低電位電極との間で電位を安定させることができ、その結果、オゾン発生量の増加を抑えつつ、除電性能を向上させることが可能となる。   According to a second aspect of the present invention, in the static eliminator according to the first aspect, only the discharge potential stabilizing portion faces the low potential electrode at a predetermined spatial distance to generate a corona discharge. Since it is characterized, the potential can be stabilized between the discharge electrode and the low potential electrode, and as a result, it is possible to improve the charge removal performance while suppressing an increase in the amount of ozone generated.

また、請求項3記載の発明によれば、請求項1又は請求項2に記載の除電器において、イオン発生部は鋭角状の略三角形形状で形成していることを特徴とするため、先端部に電界が集中しやすい形状であるため、イオン発生を安定して供給することが可能となる。   According to a third aspect of the present invention, in the static eliminator according to the first or second aspect, the ion generating portion is formed in an acute-angled substantially triangular shape, so that the tip portion Therefore, the generation of ions can be stably supplied.

また、請求項4記載の発明によれば、請求項1乃至3のいずれかに記載の除電器において、前記低電位電極は少なくとも1個以上の鋭角状の先端部を持つことを特徴とするため、両電極先端部同士の点と点での安定した強い電界が生じる。そのため、鋭角状の先端部を持たない形状に比べて、両電極間距離を離すことが可能となる。両電極間距離を離すことで、イオン発生電極から低電位電極への放電エネルギーを減少させることができ、その結果オゾン発生量も減少させることが可能となる。   According to a fourth aspect of the present invention, in the static eliminator according to any one of the first to third aspects, the low potential electrode has at least one acute-angled tip portion. A stable strong electric field is generated at the point between the two electrode tips. Therefore, it is possible to increase the distance between the two electrodes as compared with the shape having no sharp tip. By separating the distance between the two electrodes, the discharge energy from the ion generating electrode to the low potential electrode can be reduced, and as a result, the amount of ozone generated can also be reduced.

本発明によれば、正負のイオンを発生させる放電電極と、前記放電電極と対向する低電位電極と、交流高電圧を発生する交流高電圧電源とを有し、前記交流高電圧電源から発生させた交流高電圧を前記放電電極と低電位電極間に印加させてコロナ放電を発生させる除電器において、前記放電電極は複数のイオン発生部と、少なくとも一つの放電電位安定部を有することを特徴とするため、イオン送風用のファンの風量を大きくせずに、イオン発生を増加させ、オゾン発生量の増加を抑えつつ、除電性能を向上させることができる。   According to the present invention, a discharge electrode for generating positive and negative ions, a low potential electrode facing the discharge electrode, and an AC high voltage power source for generating an AC high voltage are generated from the AC high voltage power source. In the static eliminator for generating a corona discharge by applying an alternating high voltage between the discharge electrode and the low potential electrode, the discharge electrode has a plurality of ion generating portions and at least one discharge potential stabilizing portion. Therefore, without increasing the air volume of the fan for blowing ions, the ion generation performance can be improved while increasing the ion generation and suppressing the increase in the ozone generation volume.

正負のイオンを発生させる放電電極と、前記放電電極と対向する低電位電極と、交流高電圧を発生する交流高電圧電源とを有し、前記交流高電圧電源から発生させた交流高電圧を前記放電電極と低電位電極間に印加させてコロナ放電を発生させる除電器において、前記放電電極は複数のイオン発生部と、少なくとも一つの放電電位安定部を有する薄い板状であり、前記放電電位安定部のみ、所定の空間距離にて前記低電位電極と対向した構造を最良の形態とする。   A discharge electrode for generating positive and negative ions; a low-potential electrode facing the discharge electrode; and an AC high-voltage power source for generating an AC high voltage, wherein the AC high voltage generated from the AC high-voltage power source is In a static eliminator that generates a corona discharge by applying between a discharge electrode and a low potential electrode, the discharge electrode is a thin plate having a plurality of ion generating portions and at least one discharge potential stabilizing portion, and the discharge potential stabilization Only the portion has a structure facing the low potential electrode at a predetermined spatial distance as the best mode.

図1に、本発明の除電器の実施例1を示す。本除電器6は、高電圧発生器1収納部6a、イオン発生用風路6bとイオン吹出口6cから成り、高電圧発生器1から高電圧出力線5aを介して放電電極2aに交流の高電圧を印加し、高電圧発生器1のGND電位に接続されたGND出力線5bに接続された低電位電極2bと放電電極2aの放電電位安定部Aとの間にコロナ放電を発生させて、放電電極2aから正イオン及び負イオンを発生させる。発生した正イオン及び負イオンは、ファン7からの送風を利用してイオン吹出口6cから除電器6外部へ送出され、対象物の静電気を低減する。
また、放電電極2aと低電位電極2bの三次元的に配置して空間距離を稼いでいる。このようにして、コンパクトな大きさで、イオン送風用のファンの風量を大きくせずに、イオン発生を増加させ、なおかつオゾン発生量の増加を抑えることができる。
FIG. 1 shows a first embodiment of the static eliminator of the present invention. The static eliminator 6 includes a high voltage generator 1 housing 6a, an ion generation air passage 6b, and an ion outlet 6c. The high voltage generator 1 supplies a high AC current to the discharge electrode 2a through the high voltage output line 5a. A voltage is applied to generate a corona discharge between the low potential electrode 2b connected to the GND output line 5b connected to the GND potential of the high voltage generator 1 and the discharge potential stabilizing portion A of the discharge electrode 2a, Positive ions and negative ions are generated from the discharge electrode 2a. The generated positive ions and negative ions are sent from the ion outlet 6c to the outside of the static eliminator 6 by using the air blown from the fan 7 to reduce static electricity of the object.
Further, the discharge electrode 2a and the low potential electrode 2b are three-dimensionally arranged to increase the spatial distance. In this manner, the ion generation can be increased and the increase in the ozone generation amount can be suppressed without increasing the air volume of the fan for blowing ions with a compact size.

なお、本発明に使用する高電圧発生器1は、+入力リード線3と−入力リード線4間に印加された入力電圧を、高電圧発生器1内の圧電トランスで昇圧し、高電圧出力線5aから交流の高電圧を発生させるものである。   The high voltage generator 1 used in the present invention boosts the input voltage applied between the + input lead wire 3 and the − input lead wire 4 with a piezoelectric transformer in the high voltage generator 1 and outputs a high voltage. An alternating high voltage is generated from the line 5a.

また、高電圧発生器1は出力電圧調整手段を有しており、5kVp−p〜12kVp−pの範囲で放電電極2aへの印加電圧を可変することができ、それに応じて放電電極2aからの正負イオン発生量も変化する。本実施例1では印加電圧を6.6kVp−pに設定している。ここで、出力電圧測定には、岩通社製の高圧プローブHV−P30を使用した。   Moreover, the high voltage generator 1 has an output voltage adjusting means, and can change the applied voltage to the discharge electrode 2a in the range of 5 kVp-p to 12 kVp-p, and accordingly, the voltage from the discharge electrode 2a can be varied. The amount of positive and negative ions generated also changes. In the first embodiment, the applied voltage is set to 6.6 kVp-p. Here, for the output voltage measurement, a high voltage probe HV-P30 manufactured by Iwatatsu Corporation was used.

次に、本除電器に使用しているファン7は、大きさは25mm角で、風量は0.04m/分程度の小型のファンである。 Next, the fan 7 used in the static eliminator is a small fan having a size of 25 mm square and an air volume of about 0.04 m 3 / min.

また、イオン発生用風路6bのエアー吸込口には、25mm角の埃除去用フィルター8が設置されており、本フィルター8のメッシュサイズは1.5mm角であり、このメッシュを通過できない大きさの埃は6bへ進入しない。   Further, a dust removal filter 8 of 25 mm square is installed at the air suction port of the air passage 6b for ion generation, and the mesh size of the filter 8 is 1.5 mm square and cannot pass through this mesh. Dust does not enter 6b.

図2に、本実施例1に使用する放電電極2aの概略図を、図3に、本実施例1に使用する低電位電極2bを示す。電極2a、2bは、厚さ0.2mmのステンレスの板を加工したものであり、先端部は電界が集中し易いように鋭利にしてある。
また、複数の先端部A、B、Cを設けているので、イオン発生を増加することができる。
FIG. 2 shows a schematic diagram of the discharge electrode 2a used in the first embodiment, and FIG. 3 shows a low potential electrode 2b used in the first embodiment. The electrodes 2a and 2b are formed by processing a stainless steel plate having a thickness of 0.2 mm, and the tip is sharpened so that the electric field is easily concentrated.
In addition, since a plurality of tip portions A, B, and C are provided, ion generation can be increased.

図4に、実施例1の放電電極2aと低電位電極2bとの位置関係図を示す。放電電極2aは、尖った鋭角状の放電電位安定部Aとイオン発生部B、Cを有し、放電電位安定部Aと低電位電極2bの鋭角状の先端部とは対向するように配置され、両先端部の距離L1は10mmである。また、イオン発生部B及びCは、放電電位安定部Aよりも低電位電極2bから離れた位置に配置され、低電位電極2bとの距離はそれぞれ、L2=14mm、L3=18mmに設定している。
前述のように、放電電位安定部Aと低電位電極2bとで、安定的にコロナ放電が行われるような距離で設定されている。
FIG. 4 shows a positional relationship diagram between the discharge electrode 2a and the low potential electrode 2b of the first embodiment. The discharge electrode 2a has a sharp and sharp-angled discharge potential stabilizing portion A and ion generating portions B and C, and is disposed so that the discharge potential stabilizing portion A and the acute-angled tip portion of the low potential electrode 2b face each other. The distance L1 between the two tips is 10 mm. Further, the ion generating parts B and C are arranged at a position farther from the low potential electrode 2b than the discharge potential stabilizing part A, and the distances from the low potential electrode 2b are set to L2 = 14 mm and L3 = 18 mm, respectively. Yes.
As described above, the distance is set such that the corona discharge is stably performed between the discharge potential stabilizing portion A and the low potential electrode 2b.

ここで、放電電極2aの各先端部A、B、Cから低電位電極2bへ向かう放電エネルギーは、ほぼ距離の2乗に反比例するので、放電電位安定部Aからの放電エネルギーPが最も強く、イオン発生部Bからの放電エネルギーはP/(1.4×1.4)、イオン発生部Cからの放電エネルギーはP/(1.8×1.8)と、低電位電極2bからの距離が大きくなるほど放電エネルギーは小さくなる。   Here, since the discharge energy from the tip portions A, B, C of the discharge electrode 2a toward the low potential electrode 2b is almost inversely proportional to the square of the distance, the discharge energy P from the discharge potential stabilizing portion A is the strongest, The discharge energy from the ion generator B is P / (1.4 × 1.4), the discharge energy from the ion generator C is P / (1.8 × 1.8), and the distance from the low potential electrode 2b. The discharge energy decreases with increasing.

一般的に、放電電極2aの鋭角状のイオン発生部が多くなると、イオン発生量は多くなることが知られており、本実施例1の全ての先端部A、B、Cでの正負イオンの発生総量、つまり放電エネルギーが等しいと考えると、イオン発生部B及びCから低電位電極2bへ向かう放電エネルギーは放電電位安定部Aよりも小さいが、逆に除電器外部に向かう放電エネルギーの割合は放電安定部Aよりも大きくなっていると考えられる。   In general, it is known that the amount of ion generation increases as the number of acute-angled ion generation portions of the discharge electrode 2a increases, and the positive and negative ions at all the tip portions A, B, and C of Example 1 increase. Assuming that the total generated amount, that is, the discharge energy is equal, the discharge energy from the ion generating parts B and C to the low potential electrode 2b is smaller than the discharge potential stabilizing part A, but conversely, the ratio of the discharge energy going to the outside of the static eliminator is It is thought that it is larger than the discharge stable part A.

また、放電電極2aの先端部A、B、Cから低電位電極2bへ向かう放電エネルギーが大きくなればなるほど、オゾン発生量は多くなるため、低電位電極2bからの距離が小さいほどその放電エネルギーは大きくなり、オゾン発生量は多くなる。したがって、本実施例1では、低電位電極との距離が一番近い放電電位安定部Aとで安定的にコロナ放電が行われ、支配的にオゾンを発生する。しかし、低電位電極との距離が遠くなるイオン発生部B、Cの順にオゾン発生量が大きく減少する。その変化の割合は、前述した放電電極2aの先端部から低電位電極2bへの放電エネルギーと同様、ほぼ距離の2乗に反比例する。   Moreover, since the amount of ozone generation increases as the discharge energy from the tip portions A, B, C of the discharge electrode 2a toward the low potential electrode 2b increases, the discharge energy decreases as the distance from the low potential electrode 2b decreases. The amount of ozone generation increases. Therefore, in the first embodiment, corona discharge is stably performed with the discharge potential stabilizing portion A having the shortest distance from the low potential electrode, and ozone is predominantly generated. However, the amount of ozone generation is greatly reduced in the order of the ion generators B and C that become farther from the low potential electrode. The rate of the change is almost inversely proportional to the square of the distance, like the discharge energy from the tip of the discharge electrode 2a to the low potential electrode 2b.

以上のことから、イオン発生部C、B、放電電位安定部Aの順に、正負イオン発生量のオゾン発生量に対する割合が大きく、つまり正負イオンの発生効率が良いことが分かる。   From the above, it can be seen that the ratio of the positive / negative ion generation amount to the ozone generation amount is large in the order of the ion generation portions C and B and the discharge potential stabilization portion A, that is, the positive / negative ion generation efficiency is good.

図5に、本実施例1の除電時間及びオゾン濃度の測定結果を示す。本測定で除電時間を測定するための帯電プレートモニタには、ヒューグルエレクトロニクス社製のMODEL700Aを使用し、正電荷除電時間(+1,000Vを+100Vまで減少させる時間)、負電荷除去時間(−1,000Vを−100Vまで減少させる時間)をそれぞれ測定した。ここで、イオン吹出口6cから吹出されたイオンが帯電プレートの中央に当たり、イオン吹出口6cと帯電プレートモニタとの距離は10cmになるように設置した。   In FIG. 5, the measurement result of the static elimination time and ozone concentration of the present Example 1 is shown. For the charged plate monitor for measuring the static elimination time in this measurement, MODEL700A manufactured by Hugle Electronics Co., Ltd. is used, and the positive charge static elimination time (time to reduce + 1,000V to + 100V), negative charge elimination time (-1 , 000 V was reduced to -100 V). Here, the ions blown out from the ion outlet 6c hit the center of the charging plate, and the distance between the ion outlet 6c and the charged plate monitor was set to 10 cm.

また、オゾン発生量測定には、荏原実業社製オゾン濃度計EG−2001Eを使用し、イオン吹出口6cから送出されたエアーを漏斗状の筒で収集し、1.5L/分のエアーでオゾン濃度計に吸引して測定した。   In addition, the ozone generation amount was measured using an ozone concentration meter EG-2001E manufactured by Sugawara Jitsugyo Co., Ltd. The air sent from the ion outlet 6c was collected with a funnel-shaped tube, and ozone was collected with 1.5 L / min of air. Measurement was performed by sucking into a densitometer.

ここでは、比較用として図6に示す従来例1の除電器及び図7に示す従来例2の除電器でも同様に試験した。本従来例1の除電器は、放電電極の鋭角状の先端部全てに対向するように、低電位電極の鋭角状の先端部を配置し、対抗する両電極の先端間距離は全て約10mmとしてある。同様に本従来例2の除電器も、放電電極の鋭角状の先端部全てに対向するように低電位電極を配置し、全ての放電電極の先端部と低電位電極との最短距離は全て約10mmとしてある。   Here, for comparison, the static eliminator of Conventional Example 1 shown in FIG. 6 and the static eliminator of Conventional Example 2 shown in FIG. 7 were similarly tested. In the static eliminator of the conventional example 1, the sharp-angled tip of the low-potential electrode is disposed so as to face all the sharp-tips of the discharge electrode, and the distance between the tips of the opposing electrodes is about 10 mm. is there. Similarly, in the static eliminator of Conventional Example 2, the low potential electrodes are arranged so as to face all the acute-angled tips of the discharge electrodes, and the shortest distances between the tips of all the discharge electrodes and the low potential electrodes are all about 10 mm.

図5から分かるように、本実施例1の除電器は、従来例1の除電器及び従来例2の除電器と比較すると、正電荷及び負電荷の除電時間はほぼ等しいが、オゾン発生量は少ないことが分かる。   As can be seen from FIG. 5, the static eliminator of the first embodiment is almost equal in the charge elimination time of the positive charge and the negative charge compared with the static eliminator of the conventional example 1 and the static eliminator of the conventional example 2, but the ozone generation amount is I understand that there are few.

本実施例1の放電電位安定部Aにのみ低電位電極2bを対向させた構造は、従来例1、2のような全ての先端部と低電位電極2bとの距離が等しい構造と比較すると、除電時間、すなわち正負イオン発生量をほぼ等しく調整した場合、オゾン発生量が少なくなることが分かる。   The structure in which the low potential electrode 2b is opposed to only the discharge potential stabilizing portion A of the first embodiment is compared with the structure in which the distances between all the tip portions and the low potential electrode 2b are the same as in the conventional examples 1 and 2. It can be seen that the amount of ozone generation decreases when the static elimination time, that is, the amount of positive and negative ions generated is adjusted to be approximately equal.

低電位電極2bから10mmの距離での先端部から低電位電極2bへ向かう放電エネルギーをPとすると、従来例1、2の放電エネルギーは約P×3となるが、本実施例1の放電エネルギーは約P×1.96となり、3つの例のオゾン発生量の実測値の割合とほぼ等しいことが分かる。   Assuming that the discharge energy from the tip portion to the low potential electrode 2b at a distance of 10 mm from the low potential electrode 2b is P, the discharge energy of the conventional examples 1 and 2 is about P × 3. Is about P × 1.96, and it can be seen that the proportion of the measured values of the ozone generation amount in the three examples is substantially equal.

つまり、本実施例1と従来例1、2は、イオン吹出口6cから放出される正負イオンの量及び除電器外部に向かう放電エネルギーはほぼ等しいため、除電時間がほぼ等しいが、低電位電極2bに向かう放電エネルギーに差があるために、オゾン発生量に差が生じていると考えられる。   That is, in Example 1 and Conventional Examples 1 and 2, since the amount of positive and negative ions released from the ion outlet 6c and the discharge energy toward the outside of the static eliminator are substantially equal, the static elimination time is substantially equal, but the low potential electrode 2b It is considered that there is a difference in the amount of ozone generated because there is a difference in the discharge energy toward.

また、図8に示す放電電極2cを示す。ここでは先端部D、E、Fの長さを変えている。この長さを変えることにより低電位電極2bを先端部と対向するように配置してもイオン・オゾンの発生量も変えることができる。つまり本実施例1の放電電極2aの代わりに、図8に示す放電電極2cを用いて、前述したように放電電位安定部Dに低電位電極2bが対向するように配置しても実施例1と同様の結果が得られる。   Moreover, the discharge electrode 2c shown in FIG. 8 is shown. Here, the lengths of the tip portions D, E, and F are changed. By changing this length, the amount of ions and ozone generated can be changed even if the low potential electrode 2b is arranged to face the tip. That is, instead of the discharge electrode 2a of the first embodiment, the discharge electrode 2c shown in FIG. 8 may be used to arrange the low potential electrode 2b so as to face the discharge potential stabilizing portion D as described above. Similar results are obtained.

本発明の除電器により、イオン送風用のファンの風量を大きくせずに、オゾン発生量の増加を抑えつつ、除電性能を向上させることで、粉体等の風に飛ばされやすい物体の静電気を効率良く除去することができる。   With the static eliminator of the present invention, the static electricity of an object that is easily blown away by wind such as powder is improved by suppressing the increase in the amount of ozone generation without increasing the air volume of the fan for ion blowing. It can be removed efficiently.

本発明の除電器の実施例1である。It is Example 1 of the static eliminator of this invention. 本実施例1に使用する放電電極2aの概略図である。It is the schematic of the discharge electrode 2a used for the present Example 1. FIG. 本実施例1に使用する低電位電極2bの概略図である。3 is a schematic diagram of a low potential electrode 2b used in Example 1. FIG. 実施例1の放電電極2aと低電位電極2bとの位置関係図である。FIG. 3 is a positional relationship diagram between a discharge electrode 2a and a low potential electrode 2b in Example 1. 本実施例1の除電時間及びオゾン濃度の測定結果である。It is a measurement result of the static elimination time of this Example 1, and ozone concentration. 従来例1の除電器である。It is a static eliminator of Conventional Example 1. 従来例2の除電器である。It is a static eliminator of Conventional Example 2. 放電電極2cの概略図である。It is the schematic of the discharge electrode 2c.

符号の説明Explanation of symbols

1…高電圧発生器、2a…放電電極、2b…低電位電極、2c…放電電極
3…+入力リード線、4…−入力リード線、
5a…高電圧出力線、5b…GND出力線、6…除電器、
6a…高電圧発生器1収納部、6b…イオン発生用風路、6c…イオン吹出口、
7…ファン、8…埃除去用フィルター、
A…放電電位安定部、B,C…イオン発生部、
D…放電電位安定部、E,F…イオン発生部、
L1…放電電位安定部Aと低電位電極2b先端部との距離
L2…イオン発生部Bと低電位電極2b先端部との距離
L3…イオン発生部Cと低電位電極2b先端部との距離

DESCRIPTION OF SYMBOLS 1 ... High voltage generator, 2a ... Discharge electrode, 2b ... Low potential electrode, 2c ... Discharge electrode 3 ... + input lead wire, 4 ...-input lead wire,
5a ... high voltage output line, 5b ... GND output line, 6 ... static eliminator,
6a ... High voltage generator 1 housing, 6b ... Air path for ion generation, 6c ... Ion outlet,
7 ... Fan, 8 ... Dust removal filter,
A ... discharge potential stabilization part, B, C ... ion generation part,
D: Discharge potential stabilization part, E, F ... Ion generation part,
L1: Distance between discharge potential stabilizing part A and tip of low potential electrode 2b L2: Distance between ion generator B and tip of low potential electrode 2b L3: Distance between ion generator C and tip of low potential electrode 2b

Claims (4)

正負のイオンを発生させる放電電極と、前記放電電極と対向する低電位電極と、交流高電圧を発生する交流高電圧電源とを有し、前記交流高電圧電源から発生させた交流高電圧を前記放電電極と低電位電極間に印加させてコロナ放電を発生させる除電器において、前記放電電極は複数のイオン発生部と、少なくとも一つの放電電位安定部を有することを特徴とする除電器。 A discharge electrode for generating positive and negative ions; a low-potential electrode facing the discharge electrode; and an AC high-voltage power source for generating an AC high voltage, wherein the AC high voltage generated from the AC high-voltage power source is A static eliminator for applying corona discharge between a discharge electrode and a low potential electrode to generate a corona discharge, wherein the discharge electrode has a plurality of ion generating parts and at least one discharge potential stabilizing part. 請求項1に記載の除電器において、前記放電電位安定部のみ、所定の空間距離にて前記低電位電極と対向し、コロナ放電を発生させることを特徴とする除電器。 2. The static eliminator according to claim 1, wherein only the discharge potential stabilizing portion is opposed to the low potential electrode at a predetermined spatial distance to generate a corona discharge. 3. 請求項1又は請求項2に記載の除電器において、イオン発生部は鋭角状の略三角形形状で形成していることを特徴とする除電器。 3. The static eliminator according to claim 1 or 2, wherein the ion generation part is formed in an acute-angled substantially triangular shape. 請求項1乃至3のいずれか1に記載の除電器において、前記低電位電極は少なくとも1個以上の鋭角状の先端部を持つことを特徴とする除電器。





















The static eliminator according to any one of claims 1 to 3, wherein the low potential electrode has at least one sharp-angled tip portion.





















JP2004295897A 2004-10-08 2004-10-08 Static eliminator Pending JP2006108015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295897A JP2006108015A (en) 2004-10-08 2004-10-08 Static eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295897A JP2006108015A (en) 2004-10-08 2004-10-08 Static eliminator

Publications (1)

Publication Number Publication Date
JP2006108015A true JP2006108015A (en) 2006-04-20

Family

ID=36377461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295897A Pending JP2006108015A (en) 2004-10-08 2004-10-08 Static eliminator

Country Status (1)

Country Link
JP (1) JP2006108015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129917A1 (en) * 2007-04-17 2008-10-30 Shimadzu Corporation Neutralization apparatus set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129917A1 (en) * 2007-04-17 2008-10-30 Shimadzu Corporation Neutralization apparatus set
JP4775491B2 (en) * 2007-04-17 2011-09-21 株式会社島津製作所 Static eliminator set

Similar Documents

Publication Publication Date Title
US7199993B2 (en) Ion-generating component, ion-generating unit, and ion-generating apparatus
JP5937918B2 (en) Ion generator and static eliminator provided with the same
TW200537991A (en) Corona discharge type ionizer
JP2008515165A (en) Air ionization module and method
KR101984321B1 (en) Electrostatic precipitator
US20070217090A1 (en) Plasma discharged static eliminator
US7612981B2 (en) Ion generator and neutralizer
US7651548B2 (en) Discharge device and air purification device
JP2008262746A (en) Ion balance adjusting electrode and static eliminator provided with the same
JP2006196291A (en) Static eliminator with fine electrode ion generating element
JP5686508B2 (en) Static elimination device and static elimination method
JP4304342B2 (en) Atmospheric pressure corona discharge generator
JP5118241B1 (en) Ion generator and air purifier equipped with the same
JP2014107202A (en) Ion generator, and electric apparatus
JP2006108015A (en) Static eliminator
JP2004192993A (en) Negative ion generating device, manufacturing method and air cleaner thereof, air conditioning equipment
Said et al. Effect of wires number on corona discharge of an electrostatic precipitators
JP2001110590A (en) Direct current electricity removing apparatus
Kozlov et al. Limit current of a multipoint corona discharge.
JP2010055848A (en) Static eliminator
JP4002948B2 (en) Ion generator
JPH02215037A (en) Ion blower
JP2013165006A (en) Ion generating element and ion generator provided with same
JP2003163067A (en) Corona discharge negative ion generator
EP1848076B1 (en) Ion generator and method for controlling ozone amount