JP2006106597A - Mask for formation of three-dimensional optical element form - Google Patents

Mask for formation of three-dimensional optical element form Download PDF

Info

Publication number
JP2006106597A
JP2006106597A JP2004296403A JP2004296403A JP2006106597A JP 2006106597 A JP2006106597 A JP 2006106597A JP 2004296403 A JP2004296403 A JP 2004296403A JP 2004296403 A JP2004296403 A JP 2004296403A JP 2006106597 A JP2006106597 A JP 2006106597A
Authority
JP
Japan
Prior art keywords
mask
optical element
exposure
dimensional optical
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004296403A
Other languages
Japanese (ja)
Inventor
Makoto Ogusu
誠 小楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004296403A priority Critical patent/JP2006106597A/en
Publication of JP2006106597A publication Critical patent/JP2006106597A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve surface roughness caused by a domain boundary portion even under conditions that the domain boundary portion after quantization is resolved when fabricating a three-dimensional form into a photosensitive material by modulating transmittance. <P>SOLUTION: In a transmittance control type mask for formation of a three-dimensional optical element form to fabricate the three-dimensional optical element form of the photosensitive material by distribution of the film thickness according to the exposure light quantity in the photosensitive material after development, a plurality of mask patterns having shifted boundaries of domains on the mask quantized by the gradation levels of transmittance are prepared and are subjected to multiple exposure to form a three-dimensional form. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、露光量に応じて感光性材料の残存する膜厚が変化する略線形な特性部分を利用して露光量の変化によって感光性材料の三次元形状を作製する工程に関するものである。   The present invention relates to a process for producing a three-dimensional shape of a photosensitive material by changing the exposure amount using a substantially linear characteristic portion in which the remaining film thickness of the photosensitive material changes in accordance with the exposure amount.

一般に、リソグラフィー技術を用いて作製される半導体素子の回路パターンは、マスクに形成された開口と遮光部の組合せにより設計され、感光性材料にマスクを透過した露光光を照射することによって転写される。感光性材料の代表例であるレジストにはポジ型とネガ型とがあり、工程毎の状況を見て適宜選択されるのが普通である。又、回路パターンは厚み方向を考慮しないのが一般的である。   In general, a circuit pattern of a semiconductor element manufactured using a lithography technique is designed by a combination of an opening formed in a mask and a light shielding portion, and is transferred by irradiating a photosensitive material with exposure light transmitted through the mask. . Resist, which is a typical example of the photosensitive material, includes a positive type and a negative type, and is usually selected appropriately in view of the situation of each process. The circuit pattern generally does not consider the thickness direction.

近年は更なる微細化の目的で部分的な露光量を調整することによって、より微細なパターンを形成する手法が検討されている。そして、高さ方向の形状も部分的な露光量の調整によって制御しようとする提案もなされており、例えば、特許文献1は、フォトレジストに三次元形状を形成する方法を開示している。以下、図6を参照してその方法について説明する。   In recent years, a technique for forming a finer pattern by adjusting a partial exposure amount for the purpose of further miniaturization has been studied. A proposal has also been made to control the shape in the height direction by partially adjusting the exposure amount. For example, Patent Document 1 discloses a method of forming a three-dimensional shape in a photoresist. The method will be described below with reference to FIG.

図6(a)はポジ型フォトレジストの特性曲線(感光曲線)を示す。図6(a)に示すように、ポジ型フォトレジストの特性曲線を予め実験的に得ることによって、入射する露光エネルギーと現像後の残留レジスト比との関係を求めることができる。図6(b)に示すように、微小面積を最小単位として、3×3の9個を一塊として考えてみる。図6(b)においては、52が遮光部で51が開口である。9個のうち遮光部52と開口51の個数比率を変化させ、図6(c)に示すように、開口部51のみから成る領域53、遮光部52が1個である領域54、遮光部52が2個である領域55、遮光部52が4個である領域56、遮光部52が5個である領域57、遮光部52のみから成る領域57を形成する。この開口密度分布、即ち、透過率分布によって発生する強度分布は、図6(d)に示すように、ポジ型レジストの感度特性によりレジストの膜厚変化に変換される。特許文献1は、斯かるマスクを利用してポジ型レジストに3次元形状を形成することを提案している。   FIG. 6A shows a characteristic curve (photosensitive curve) of a positive photoresist. As shown in FIG. 6A, the relationship between the incident exposure energy and the residual resist ratio after development can be obtained by experimentally obtaining a characteristic curve of a positive photoresist in advance. As shown in FIG. 6 (b), a small area is considered as a minimum unit, and 9 pieces of 3 × 3 are considered as one lump. In FIG. 6B, 52 is a light shielding part and 51 is an opening. Among the nine, the ratio of the number of the light shielding portions 52 and the openings 51 is changed, and as shown in FIG. 6C, the region 53 including only the opening portions 51, the region 54 having one light shielding portion 52, and the light shielding portions 52. Are two regions 55, four light-shielding portions 52 are regions 56, five light-shielding portions 52 are regions 57, and regions 57 are formed of only the light-shielding portions 52. The opening density distribution, that is, the intensity distribution generated by the transmittance distribution is converted into a change in resist film thickness due to the sensitivity characteristics of the positive resist, as shown in FIG. Patent Document 1 proposes to form a three-dimensional shape in a positive resist using such a mask.

又、形成すべき三次元形状のニーズもより難しい形状へと変化してきている。例えば特許文献2に開示された一部の境界が円弧状のレンズアレイでは形状が不連続になる部分があり、曲面と垂直側壁という感光性材料や露光条件にとって相反する形状を作製する必要がある。そのため、曲面表面の平滑化に向けた露光条件の設定には限界があり、僅かな光量差であっても量子化したマスク上の領域の境界が解像してしまうことが分かった。マスクの量子化領域の境界が解像する場合、量子化した階段上の形状に近くなってしまい、設計形状からの誤差を考えると量子化領域の境界でプラスマイナスに振れるような形状誤差となる。これを我々は量子化誤差と呼んでいる。マスクに対してより細かい階調、広い透過率調整幅が求められているものの、マスクの製造技術にも限界があってマスク製造技術以外の手段による解決が求められている。   In addition, the need for a three-dimensional shape to be formed is changing to a more difficult shape. For example, in a lens array having a partially bordered arc shape disclosed in Patent Document 2, there is a portion where the shape is discontinuous, and it is necessary to produce a shape that is opposite to the photosensitive material and exposure conditions such as a curved surface and a vertical sidewall. . For this reason, it has been found that there is a limit to the setting of exposure conditions for smoothing the curved surface, and the boundary of the quantized region on the mask is resolved even with a slight light amount difference. When the boundary of the quantization region of the mask is resolved, it becomes close to the shape on the quantized staircase, and considering the error from the design shape, it becomes a shape error that swings positively or negatively at the boundary of the quantization region . We call this quantization error. Although a finer gradation and a wider transmittance adjustment range are required for the mask, there is a limit to the mask manufacturing technique, and a solution by means other than the mask manufacturing technique is required.

曲面の表面粗さをより小さくする試みとしては、特許文献3に開示された方法がある。1度目の露光ではマスクを密着して露光させて、パターンのエッジをシャープに転写する。2度目の露光では感光性材料からマスクを離して解像力を落として露光する。2度目の露光によって解像力が落ちていることから滑らかな曲面を有する形状を感光性材料に転写することができている。   As an attempt to reduce the surface roughness of the curved surface, there is a method disclosed in Patent Document 3. In the first exposure, the mask is brought into close contact for exposure, and the edge of the pattern is transferred sharply. In the second exposure, the mask is removed from the photosensitive material and the exposure is performed with reduced resolution. Since the resolving power is reduced by the second exposure, a shape having a smooth curved surface can be transferred to the photosensitive material.

又、別にマスクの階調不足を補う方法として特許文献4に開示された方法がある。本方法によれば、合計でも量子化した領域の幅以下の量だけ横方向にマスクをずらして複数回の露光をしている。これにより、マスクの持っている階調数以上のステップ数で露光量の変化を付けることができる。   In addition, there is a method disclosed in Patent Document 4 as a method for compensating for the lack of gradation of the mask. According to this method, exposure is performed a plurality of times by shifting the mask in the horizontal direction by an amount equal to or less than the width of the quantized region in total. As a result, the amount of exposure can be changed with the number of steps equal to or greater than the number of gradations of the mask.

又、別の方法としては特許文献5に開示された方法がある。本方法によれば2枚のマスクを同時に露光光の光路上に配置することで、2段階に光の強度分布を発生させている。本方法では1枚目のマスクで球面レンズ形状に対応する光量パターンを形成し、2枚目のマスクで非球面量に相当する光量分布を重ねることで非球面レンズ形状に相当する形状を形成している。   Another method is disclosed in Patent Document 5. According to this method, the light intensity distribution is generated in two stages by arranging two masks simultaneously on the optical path of the exposure light. In this method, a light amount pattern corresponding to the spherical lens shape is formed with the first mask, and a shape corresponding to the aspheric lens shape is formed by overlapping the light amount distribution corresponding to the aspheric amount with the second mask. ing.

特開昭63−289817号公報Japanese Unexamined Patent Publication No. 63-289817 特開昭62−115718号公報Japanese Patent Laid-Open No. 62-115718 特開平05−033164号公報JP 05-033164 A 特開2002−107942号公報JP 2002-107942 A 特開2002−278079号公報JP 2002-278079 A

しかしながら、上記従来技術では以下のような課題が残っていた。   However, the following problems remain in the prior art.

即ち、特許文献1においては、透過率の変化は9個のグループに限定されており、滑らかな曲面を得るためにはステップが少な過ぎる。又、9個をひとまとめにして面積比率を考えているが、投影露光方式で開口・遮光部を解像せずに透過率だけを変化させるには、本従来例のマスク設計手法では非常に困難である。   That is, in Patent Document 1, the change in transmittance is limited to nine groups, and there are too few steps to obtain a smooth curved surface. In addition, the area ratio is considered for 9 as a whole, but it is very difficult to change only the transmittance without resolving the aperture / shading part by the projection exposure method with the conventional mask design method. It is.

又、特許文献3においては、デフォーカスを利用して解像度を調整しているために平滑な曲面を得ているが、特許文献2に開示された一部の境界が円弧状のレンズアレイのように一部にシャープな形状を有する場合は作製することができない。   In Patent Document 3, a smooth curved surface is obtained because the resolution is adjusted using defocus. However, a part of the boundary disclosed in Patent Document 2 is an arc-shaped lens array. If it has a sharp shape, it cannot be produced.

又、特許文献4においては、マスクをずらしながら多重露光するためにやはりシャープな形状を転写、形成することが困難である。又、基本的に横ずらしのピッチが裾と頂上付近とで等しくなってしまうため、量子化の領域幅が変化していく球面レンズ面の形成が困難である。更に、マスクの移動は一方向が望ましく、球面レンズを形成するために二次元的にマスクを移動させた場合は周方向に変動する形状エラーが発生するためにレンズ性能を満たす形状を作製するのは困難である。   In Patent Document 4, it is difficult to transfer and form a sharp shape because multiple exposure is performed while shifting the mask. In addition, since the lateral displacement pitch is basically the same between the skirt and the vicinity of the top, it is difficult to form a spherical lens surface in which the quantization region width changes. Furthermore, it is desirable to move the mask in one direction, and when the mask is moved two-dimensionally to form a spherical lens, a shape error that varies in the circumferential direction occurs. It is difficult.

又、特許文献5においては、2枚のマスクを同時に光路上に配置する必要があり、一般的な縮小光学系を用いた露光装置に適用することができない。又、空間周波数が低く、振幅が小さい形状を狙った方法であり、空間周波数が高い表面粗さの改善は期待できない。   In Patent Document 5, two masks need to be simultaneously disposed on the optical path, and cannot be applied to an exposure apparatus using a general reduction optical system. Further, this method aims at a shape having a low spatial frequency and a small amplitude, and improvement of surface roughness having a high spatial frequency cannot be expected.

従って、本発明では従来技術で困難であった以下の課題を同時に解決するものであり、縮小投影方式の露光装置を用いて特別な改造を要することなくに三次元形状を形成し、シャープな形状の形成を同時に実現しながら量子化誤差に伴う曲面上の表面粗さを改善することを目的とする。   Accordingly, the present invention solves the following problems that have been difficult in the prior art at the same time, and uses a reduction projection type exposure apparatus to form a three-dimensional shape without requiring a special modification, thereby achieving a sharp shape. The object is to improve the surface roughness on the curved surface due to the quantization error while simultaneously realizing the formation of.

上記目的を達成するため、請求項1記載の発明は、露光量に応じた感光性材料の現像後の膜厚分布により感光性材料の三次元光学素子形状を作製する透過率制御型の三次元光学素子形状形成マスクにおいて、透過率の階調毎に量子化したマスク上の領域の境界をずらした複数のマスクパターンを用意し、多重露光して三次元形状を形成することを特徴とする。   In order to achieve the above object, the invention described in claim 1 is a transmittance-controlled three-dimensional method for producing a three-dimensional optical element shape of a photosensitive material by a film thickness distribution after development of the photosensitive material according to the exposure amount. An optical element shape formation mask is characterized in that a plurality of mask patterns are prepared by shifting boundaries of regions on the mask quantized for each gradation of transmittance, and multiple exposure is performed to form a three-dimensional shape.

請求項2記載の発明は、請求項1記載の発明において、量子化したマスク上の領域境界のずらし量は用意するパターンが(2N−1)種類のとき、サンプリング点の中点である量子化領域幅の1/(2−1)ずつ両方向にずらしたことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the shift amount of the region boundary on the quantized mask is a quantization point that is the midpoint of the sampling points when the prepared patterns are (2N-1) types. It is characterized by being shifted in both directions by 1 / (2-1) of the region width.

請求項3記載の発明は、請求項1記載の発明において、量子化したマスク上の領域境界のずらし量は用意するパターンが(2N)種類のとき、サンプリング点の中点である量子化領域幅の1/(2N)ずつの幅でずらしたことを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the shift amount of the region boundary on the quantized mask is the quantized region width which is the midpoint of the sampling points when the prepared patterns are (2N) types. It is characterized by being shifted by a width of 1 / (2N).

請求項4記載の発明は、請求項1記載の発明において、量子化したマスク上の領域境界をずらした複数のマスクパターンは、1枚のマスク上に形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, the plurality of mask patterns in which the region boundaries on the quantized mask are shifted are formed on one mask.

請求項5記載の発明は、請求項2又は3記載の発明において、量子化したマスク上のずらした新たな領域境界の数を素子の中で少なくとも1種類以上使っていることを特徴とする。   The invention described in claim 5 is characterized in that, in the invention described in claim 2 or 3, at least one kind of shifted new region boundary on the quantized mask is used in the element.

請求項1記載の発明によれば、多重露光によって領域境界がずれたパターンが露光されるため、各領域境界における露光量のステップが小さくなり、且つ、それぞれの位置がずれるためにたとえパターンの転写能力が高い露光条件においても表面粗さへの影響が小さくなる。   According to the first aspect of the present invention, since the pattern in which the region boundary is shifted by the multiple exposure is exposed, the exposure amount step in each region boundary is reduced, and each position is shifted. The influence on the surface roughness is reduced even under exposure conditions with high capability.

請求項2記載の発明によれば、請求項1記載の発明に加えて分割数を奇数としたことで、従来の設計手順でできたマスクを基準として新しい領域境界の位置を配置し易く設計手順が容易となる。   According to the invention described in claim 2, in addition to the invention described in claim 1, the number of divisions is an odd number, so that the position of the new region boundary can be easily placed on the basis of the mask formed by the conventional design procedure. Becomes easy.

請求項3記載の発明によれば、請求項1記載の発明に加えて多重露光の回数が偶数となり、作製する素子の形状や配置が偶数個で示される対称性を有する際に整合性が取れたマスクパターンを提供できる。   According to the invention described in claim 3, in addition to the invention described in claim 1, the number of times of multiple exposure becomes an even number, and when the shape and arrangement of the device to be produced are symmetrical, the consistency is obtained. Mask pattern can be provided.

請求項4記載の発明によれば、複数のパターンを用いて露光する請求項1記載の発明をマスク枚数を増やすことなく実施でき、コストをも抑えた三次元形状及び露光方法を提供できる。   According to the invention described in claim 4, the invention described in claim 1 for performing exposure using a plurality of patterns can be implemented without increasing the number of masks, and a three-dimensional shape and an exposure method with reduced costs can be provided.

請求項5記載の発明によれば、領域境界をずらす数を部分部分で変化させることで、不必要にマスクデータを増やすことなく最適化することで本発明の効果を最大限に発揮することができる。   According to the fifth aspect of the present invention, the effect of the present invention can be maximized by optimizing without unnecessarily increasing the mask data by changing the number by which the region boundary is shifted in partial portions. it can.

以下に、本発明の実施の形態を添付の図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

<実施の形態1>
図1及び図2は本発明の実施の形態1の実施結果を説明するための図で、干渉式の表面粗さ計での計測結果である。
<Embodiment 1>
1 and 2 are diagrams for explaining the results of the first embodiment of the present invention, and are the results of measurement with an interference type surface roughness meter.

シャープな形状と滑らかな曲面形状を両立させるために実験を繰り返したところ、以下のような知見を得た。実験はi線ステッパーを用い、レジストは主たる感光波長がg線に有るクラリアント社製AZ−P4000シリーズを用いた。   When experiments were repeated to achieve both a sharp shape and a smooth curved surface shape, the following findings were obtained. The experiment used an i-line stepper, and the resist used was AZ-P4000 series manufactured by Clariant Co., Ltd., whose main photosensitive wavelength is g-line.

実験ではシャープな形状を同時に形成するために種々の実験からフォーカスをレジスト表面近傍に設定した。この状態で従来の設計手法のままに量子化した透過率変調マスクで露光した結果が図1である。測定がやり易いようにパターンは一次元形状化(シリンドリカル形状)している。図1は干渉方式の表面粗さ計を用いて測定した結果で量子化誤差である縦の筋が幾本も走っている様子が理解できる。測定結果の中心が曲面の中心で、凹の形状をしているので、周辺にいくに従って量子化誤差の境界の間隔が狭くなっている様子も分かる。   In the experiment, the focus was set near the resist surface from various experiments to form a sharp shape at the same time. FIG. 1 shows the result of exposure with a transmittance modulation mask quantized in this state using the conventional design method. The pattern is formed in a one-dimensional shape (cylindrical shape) to facilitate measurement. FIG. 1 is a result of measurement using an interference type surface roughness meter, and it can be seen that a number of vertical stripes, which are quantization errors, are running. Since the center of the measurement result is the center of the curved surface and has a concave shape, it can be seen that the interval of the quantization error boundary becomes narrower toward the periphery.

次に、3種類のパターンを用いて順次重ねて露光した結果が図2である。パターンの設計形状、露光他の条件は同じである。3枚のマスクを設計してあり、露光量も1/3ずつである。量子化領域幅のそれぞれ1/3の幅だけ最も近似が良好な量子化領域境界を中心に左右にずらして設計した2枚の合計3枚である。図2から分かる通り、量子化誤差に起因する縦に走る凹凸(色の変化)が減少している。   Next, FIG. 2 shows a result obtained by sequentially superposing and exposing using three kinds of patterns. The pattern design shape, exposure, and other conditions are the same. Three masks are designed, and the exposure amount is 1/3 each. A total of three sheets, each of which is designed by shifting left and right around the quantization area boundary having the best approximation by the width of 1/3 of the quantization area width. As can be seen from FIG. 2, the unevenness (color change) running vertically due to the quantization error is reduced.

本実施の形態で用いたマスク境界を図3及び図4を用いて説明する。   The mask boundary used in this embodiment will be described with reference to FIGS.

両図とも一次元形状化したパターンの断面およびパターンのうち、中心からの半分だけ図示している。本実施の形態では、図3において、マスクパターンを設計するために設計形状1をサンプリングし、サンプリング点2の中点を領域境界3と定義する。領域境界3に挟まれた領域内はサンプリング点の形状高さになるようにマスクの透過率を設計している。   In both figures, only one half from the center of the cross section and the pattern of the one-dimensional shaped pattern is shown. In the present embodiment, in FIG. 3, the design shape 1 is sampled in order to design the mask pattern, and the midpoint of the sampling point 2 is defined as the region boundary 3. The transmittance of the mask is designed so that the region between the region boundaries 3 has the shape height of the sampling points.

更に、図4に示す通り、領域境界3の両側にシフト領域a6とシフト領域b7に領域境界をずらした3種類のパターンを用意した。ここで、領域境界を中心に両側に多重露光パターンの領域境界をずらしたが、手順はこれ1つではなく、領域境界を作成形状で露光量が少なくなる側で1/3ずつに区切っても良い。又、より厳密に作製形状(より正確には必要露光量)に合わせてそれぞれの境界位置を設計すれば目的の形状に近い結果が得られる。   Further, as shown in FIG. 4, three types of patterns in which the region boundaries are shifted to the shift region a6 and the shift region b7 on both sides of the region boundary 3 were prepared. Here, the region boundary of the multiple exposure pattern is shifted on both sides around the region boundary. However, the procedure is not one, and the region boundary may be divided into 1/3 each on the side where the exposure amount is reduced in the created shape. good. Further, if each boundary position is designed more precisely in accordance with the production shape (more precisely, the required exposure amount), a result close to the target shape can be obtained.

又、本実施の形態では、領域境界を変化させた3つのパターンについて、横又は縦方向に並べてその並びを繰り返した。そして、露光する際には1枚のマスクを素子ピッチで左右にずらして3種類のパターンを重ねて露光した。そうすることで、マスクを1枚に抑えながら3種類の露光に成功した。又、パターンの端には必要な露光回数だけ露光されていない無駄なパターンが存在するが、無駄になるのはマイクロレンズアレイの素子ピッチの幅だけである。マスクの有効領域を最大限に利用することができた。   In the present embodiment, the three patterns in which the region boundaries are changed are arranged in the horizontal or vertical direction and the arrangement is repeated. Then, when exposing, one mask was shifted left and right at the element pitch, and three types of patterns were overlaid for exposure. By doing so, we succeeded in three types of exposure while limiting the number of masks to one. Further, there is a useless pattern that is not exposed as many times as necessary at the edge of the pattern, but only the width of the element pitch of the microlens array is wasted. The effective area of the mask could be used to the maximum.

又、1枚のマスクに納めるにしても有効領域を例えば4分割してそれぞれに領域境界が異なるパターンを配置する、或は横方向に分割ラインを定義して3分割して、露光時には1種類だけ露光パターンとして抜き出して順次露光しても構わない。本実施の形態で示した露光手順に比べてショット数が増えるものの、目的の形状を作製できる。   In addition, even if it is stored in one mask, the effective area is divided into, for example, four patterns, each having a pattern with different area boundaries, or divided into three by defining a dividing line in the horizontal direction, and one type is used during exposure. Only the exposure pattern may be extracted and sequentially exposed. Although the number of shots is increased as compared with the exposure procedure shown in this embodiment mode, a target shape can be manufactured.

<実施の形態2>
次に、本発明の実施の形態2について説明する。
<Embodiment 2>
Next, a second embodiment of the present invention will be described.

本実施の形態では、分割数を4と偶数にした。当初設計の領域境界を中心に両側に均等に領域境界をずらしたパターンを多重露光したところ、表面粗さが低減された形状を得た。又、本実施の形態では、両側に均等に領域境界をずらしたが、露光量が少ない側で細かく4分割しても良い。その際、均等分割でなく、作製形状に合わせて細かくそれぞれの領域境界位置をその都度設計しても良い。より厳密なマスク設計をすることで所望の形状に近い形状が得られるからである。注意しなければならない点は、余りに細かい手順を設定してしまうとマスク設計の手間のみならず、マスク製造用のデータ量が膨大となってしまい、現実的な範囲では処理できなくなる場合もあることである。従って、処理としては横方向の変化に対する形状の高さの変化量、即ち傾きが急峻なところでは比較的粗い内容の設計にして、傾きが緩い部分では細かく設計する等、形状の中でも領域を分けて設計手順を使い分けても良い。   In this embodiment, the number of divisions is an even number of four. Multiple exposure was performed on a pattern in which the region boundaries were evenly shifted on both sides around the originally designed region boundary, and a shape with reduced surface roughness was obtained. Further, in the present embodiment, the region boundaries are equally shifted on both sides, but may be finely divided into four on the side where the exposure amount is small. At that time, each region boundary position may be designed finely in accordance with the production shape instead of the equal division. This is because a shape close to a desired shape can be obtained by designing a stricter mask. It is important to note that if too detailed procedures are set, not only will mask design work be carried out, but the amount of data for mask production will become enormous, and processing may not be possible within a realistic range. It is. Therefore, as the processing, the amount of change in the height of the shape with respect to the change in the horizontal direction, that is, the design of a relatively coarse content where the inclination is steep, and the fine design in the portion where the inclination is loose, etc. You can use different design procedures.

本実施の形態では、六角形の輪郭を有するレンズアレイを製作した。六角形のレンズはレンズ密度を高めるためにその輪郭はハニカム状に並んでいる。実施の形態1と同様にして一方向に各領域境界をずらしたパターンを並べて、やはり一方向にずらして露光してもパターニングは可能である。ここでは、素子のサイズが少々大きめだったこともあり、図5に示す通り、4つで1組と考えて、その中で4種類のパターンを並べた。その際、横方向と縦方向に1素子分ずつずらして露光することで全種類のパターンを露光することができる。このときのずらし量は、図中シフト量として示した素子ピッチである。又、単純に一方向に並べる場合と比較して周辺部で無駄になる素子数が少なくなるのも本手法の効果である。本実施の形態のレンズアレイ形状、パターン配置であれば、マスクを180度回転して露光することでも効果的に多重露光ができる。   In the present embodiment, a lens array having a hexagonal outline is manufactured. The hexagonal lens has a honeycomb-shaped outline to increase the lens density. Similar to the first embodiment, patterning is possible even if patterns in which the boundaries of the regions are shifted in one direction are arranged and exposed by shifting in one direction. Here, since the size of the element was slightly larger, as shown in FIG. 5, four sets of four patterns were arranged as one set. In this case, all types of patterns can be exposed by shifting the exposure by one element in the horizontal direction and the vertical direction. The shift amount at this time is the element pitch shown as the shift amount in the figure. In addition, the effect of this method is that the number of elements that are wasted in the peripheral portion is reduced as compared with the case where they are simply arranged in one direction. With the lens array shape and pattern arrangement of the present embodiment, multiple exposure can be effectively performed by rotating the mask 180 degrees for exposure.

以上、本発明の好ましい実施の形態について説明したが、本発明はこれらの実施の形態に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

本発明の実施の形態1を説明するための図で、従来法で作製した場合の表面粗さ状態を示す図である。It is a figure for demonstrating Embodiment 1 of this invention, and is a figure which shows the surface roughness state at the time of producing by the conventional method. 本発明の実施の形態1を説明するための図で、本発明で作製した場合の表面粗さの状態を示す図である。It is a figure for demonstrating Embodiment 1 of this invention, and is a figure which shows the state of the surface roughness at the time of producing by this invention. 領域境界の位置設定の手順を説明する図である。It is a figure explaining the procedure of the position setting of a region boundary. 領域境界の位置設定の手順を説明する図である。It is a figure explaining the procedure of the position setting of a region boundary. パターン配置を説明するための図である。It is a figure for demonstrating pattern arrangement | positioning. ポジ型フォトレジストの特性曲線(感光曲線)を示す図であるIt is a figure which shows the characteristic curve (photosensitive curve) of a positive type photoresist.

符号の説明Explanation of symbols

1 設計形状
2 サンプリング点
3 領域境界
4 マスクパターン
1 Design Shape 2 Sampling Point 3 Area Boundary 4 Mask Pattern

Claims (5)

露光量に応じた感光性材料の現像後の膜厚分布により感光性材料の三次元光学素子形状を作製する透過率制御型の三次元光学素子形状形成マスクにおいて、
透過率の階調毎に量子化したマスク上の領域の境界をずらした複数のマスクパターンを用意し、多重露光して三次元形状を形成することを特徴とする三次元光学素子形状形成マスク。
In the transmittance control type three-dimensional optical element shape forming mask for producing the three-dimensional optical element shape of the photosensitive material by the film thickness distribution after development of the photosensitive material according to the exposure amount,
A three-dimensional optical element shape forming mask characterized by preparing a plurality of mask patterns in which boundaries of regions on a mask quantized for each gradation of transmittance are shifted, and forming a three-dimensional shape by multiple exposure.
量子化したマスク上の領域境界のずらし量は用意するパターンが(2N−1)種類のとき、サンプリング点の中点である量子化領域幅の1/(2−1)ずつ両方向にずらしたことを特徴とする請求項1記載の三次元光学素子形状形成マスク。   The shift amount of the region boundary on the quantized mask is shifted in both directions by 1 / (2-1) of the quantization region width which is the midpoint of the sampling point when the prepared patterns are (2N-1) types. The three-dimensional optical element shape forming mask according to claim 1. 量子化したマスク上の領域境界のずらし量は用意するパターンが(2N)種類のとき、サンプリング点の中点である量子化領域幅の1/(2N)ずつの幅でずらしたことを特徴とする請求項1記載の三次元光学素子形状形成マスク。   The shift amount of the region boundary on the quantized mask is characterized in that when the prepared pattern is (2N) types, it is shifted by 1 / (2N) each of the quantization region width which is the midpoint of the sampling point. The three-dimensional optical element shape forming mask according to claim 1. 量子化したマスク上の領域境界をずらした複数のマスクパターンは、1枚のマスク上に形成されていることを特徴とする請求項1記載の三次元光学素子形状形成マスク。   2. The three-dimensional optical element shape forming mask according to claim 1, wherein the plurality of mask patterns in which the region boundaries on the quantized mask are shifted are formed on one mask. 量子化したマスク上のずらした新たな領域境界の数を素子の中で少なくとも1種類以上使っていることを特徴とする請求項2又は3記載の三次元光学素子形状形成マスク。   4. The three-dimensional optical element shape forming mask according to claim 2, wherein at least one type of shifted new region boundary on the quantized mask is used in the element.
JP2004296403A 2004-10-08 2004-10-08 Mask for formation of three-dimensional optical element form Withdrawn JP2006106597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296403A JP2006106597A (en) 2004-10-08 2004-10-08 Mask for formation of three-dimensional optical element form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296403A JP2006106597A (en) 2004-10-08 2004-10-08 Mask for formation of three-dimensional optical element form

Publications (1)

Publication Number Publication Date
JP2006106597A true JP2006106597A (en) 2006-04-20

Family

ID=36376386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296403A Withdrawn JP2006106597A (en) 2004-10-08 2004-10-08 Mask for formation of three-dimensional optical element form

Country Status (1)

Country Link
JP (1) JP2006106597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509194A (en) * 2008-11-21 2012-04-19 スリーエム イノベイティブ プロパティズ カンパニー Laser ablation tool through mask with sparse pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509194A (en) * 2008-11-21 2012-04-19 スリーエム イノベイティブ プロパティズ カンパニー Laser ablation tool through mask with sparse pattern
JP2015231638A (en) * 2008-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー Laser ablation tooling via sparsely patterned mask

Similar Documents

Publication Publication Date Title
US5723235A (en) Method of producing photomask and exposing
KR100613461B1 (en) Double exposure method using double exposure technique and photomask for the exposure method
KR19980071829A (en) Photomasks Used for Projection Exposure Equipment
KR0153221B1 (en) Spatial filter used for reduction type projection printing apparatus
KR20020080745A (en) Mask for modifing optical proximity effect and method of manufacturing thereof
JP2009276717A (en) Distributed density mask and method of manufacturing the same, and method of manufacturing microlens array
JP4817907B2 (en) Photomask for forming resist pattern, method for manufacturing the same, and method for forming resist pattern using the photomask
JP4760198B2 (en) Exposure mask, exposure mask design method, and exposure mask design program
JP5402316B2 (en) Photomask and optical element manufacturing method
US7655388B2 (en) Mask and method to pattern chromeless phase lithography contact hole
KR20120073117A (en) Method of manufacturing substrate pattern and exposure apparatus therefor
JP3303077B2 (en) Mask and pattern forming method
JP5391701B2 (en) Density distribution mask, design apparatus therefor, and manufacturing method of micro three-dimensional array
TWI454830B (en) A diffractive optical element and an exposure device provided with the element
JP4366121B2 (en) Device manufacturing method
US6811933B2 (en) Vortex phase shift mask for optical lithography
JP2006106597A (en) Mask for formation of three-dimensional optical element form
US7056628B2 (en) Mask for projecting a structure pattern onto a semiconductor substrate
JP2010049068A (en) Density distributed mask and method for manufacturing the same
JP2010002677A (en) Density distributed mask and method for manufacturing the same, and method for manufacturing microlens array
JP2011118344A (en) Method for forming three-dimensional pattern
JP2011028233A (en) Photomask
JPH0635172A (en) Dummy diffraction mask
JP2002139824A (en) Distributed density mask and method for producing the same by multistage exposure method
JP4437366B2 (en) Manufacturing method of density distribution mask by power modulation method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060201

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108