JP2006106236A - Method for manufacturing toner - Google Patents
Method for manufacturing toner Download PDFInfo
- Publication number
- JP2006106236A JP2006106236A JP2004290954A JP2004290954A JP2006106236A JP 2006106236 A JP2006106236 A JP 2006106236A JP 2004290954 A JP2004290954 A JP 2004290954A JP 2004290954 A JP2004290954 A JP 2004290954A JP 2006106236 A JP2006106236 A JP 2006106236A
- Authority
- JP
- Japan
- Prior art keywords
- toner
- particles
- columnar
- external
- external addition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
Abstract
Description
本発明は、外形が柱状(シリンダ状)の柱状トナー粒子を製造するトナーの製造方法に関する。 The present invention relates to a toner manufacturing method for manufacturing columnar toner particles having a columnar (cylindrical) outer shape.
トナーの製造方法として、従来、バインダ樹脂、着色剤(顔料)、帯電制御剤、離型剤(ワックス)等からなるトナー原料を混合して溶融混練した後、ノズルから押し出し延伸してトナー径相当の断面の繊維状に形成したものをトナー相当の長さに切断して微粉体(柱状粒子に相当)を作製し、さらに攪拌型のミキサー等を用いて当該柱状粒子にシリカを混合して、トナー粒子とする方法が提案されている(特許文献1参照)。
また、トナー原料の溶融混練物の代わりに、溶剤に溶かしたバインダ樹脂等について、上記と同様にノズルから押し出し延伸し、切断して作製した柱状粒子にシリカを添加してトナー粒子とする方法も提案されている(特許文献2参照)。
Conventionally, as a toner manufacturing method, a toner material composed of a binder resin, a colorant (pigment), a charge control agent, a release agent (wax), etc. is mixed and melt-kneaded, and then extruded from a nozzle and stretched to correspond to the toner diameter. The fiber formed in the cross section of the above is cut into a length corresponding to the toner to produce a fine powder (corresponding to a columnar particle), and further, silica is mixed into the columnar particle using a stirring type mixer or the like, A method of using toner particles has been proposed (see Patent Document 1).
In addition, instead of the melt kneaded material of the toner raw material, a binder resin or the like dissolved in a solvent is extruded from a nozzle in the same manner as described above, and a method of adding silica to columnar particles produced by cutting is used to form toner particles. It has been proposed (see Patent Document 2).
上記特許文献1,2に記載のトナー製造方法では、繊維状に形成したトナー原料の溶融混練物又は溶解物を切断して作製した柱状粒子にシリカ(外添剤の1種である流動性添加剤)を単に混合させてトナー粒子としているため、切断面の角部が尖った形状や角張った形状の柱状トナー粒子が製造される可能性がある。しかし、このような角部形状の柱状トナー粒子は、流動性が低いため、取扱いに不便であり、また、図5に模式的に示すように、カートリッジ内に収容して現像剤として使用する場合に角部が欠け易く、その結果、微粉が発生し、トナーの耐久性も低下するおそれがあった。 In the toner production methods described in Patent Documents 1 and 2, silica (fluid addition, which is a kind of external additive) is added to columnar particles prepared by cutting a melt-kneaded product or dissolved product of a toner material formed into a fiber. Since the toner particles are simply mixed to form toner particles, there is a possibility that columnar toner particles having a sharp cut-off corner or an angular shape may be produced. However, such corner-shaped columnar toner particles are inconvenient to handle because of their low fluidity, and when they are contained in a cartridge and used as a developer as schematically shown in FIG. As a result, fine particles are generated and the durability of the toner may be reduced.
本発明は、上記実情に鑑みてなされたものであり、その目的は、角部の欠けによる耐久性の低下及び流動性の低下が改善された柱状トナー粒子を簡単かつ確実に製造することができるトナーの製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to easily and reliably produce columnar toner particles with improved durability and fluidity due to corner chipping. The object is to provide a method for producing toner.
上記目的を達成するための本発明に係るトナーの製造方法の第一特徴構成は、繊維状に形成されたトナー原料を切断して柱状粒子を作製する粒子化工程と、前記粒子化工程で得られた柱状粒子に外添剤を混合した状態で機械的な力を与えて、前記柱状粒子の表面に外添剤を結合させる外添処理及び前記柱状粒子の角部を丸くする角取り処理を行う外添角取工程とにより、柱状トナー粒子を製造する点にある。 In order to achieve the above object, the first characteristic configuration of the toner production method according to the present invention includes a particle forming step of cutting a toner raw material formed in a fibrous shape to produce columnar particles, and the particle forming step. An external addition process for binding the external additive to the surface of the columnar particles and a rounding process for rounding the corners of the columnar particles by applying a mechanical force in a state where the external additives are mixed with the columnar particles. The columnar toner particles are produced by an external additive cornering step.
すなわち、繊維状に形成されたトナー原料を切断して作製された柱状粒子に外添剤を混合した状態で機械的な力を与えると、その機械的な力によって柱状粒子の表面に外添剤が結合されるとともに、柱状粒子の角部が削られて丸くなった柱状トナー粒子が得られる。ここで、機械的な力として、例えば、押圧力、剪断力、衝撃力、摩擦力等を単独で、あるいはこれらを任意に組み合わせた力を与えることができる。その結果、切断により柱状粒子の角部が尖った形状や角張った形状に形成されても、上記角取り処理によって角部が丸くなるので、流動性が向上し、また、現像剤として使用する場合に角部が欠けて耐久性が低下するおそれもなくなる。しかも、外添処理と角取り処理を一つの工程によって行うので、製造工程が簡素化される。
従って、角部の欠けによる耐久性の低下及び流動性の低下が改善された柱状トナー粒子を簡単かつ確実に製造することができるトナーの製造方法が提供される。
That is, when a mechanical force is applied in a state where external additives are mixed with the columnar particles produced by cutting the toner raw material formed in a fibrous shape, the external additives are applied to the surface of the columnar particles by the mechanical force. Are combined, and the columnar toner particles are obtained by rounding off the corners of the columnar particles. Here, as the mechanical force, for example, a pressing force, a shearing force, an impact force, a frictional force, or the like can be applied alone or in any combination thereof. As a result, even when the corners of the columnar particles are formed into a sharp shape or an angular shape by cutting, the corners are rounded by the above-mentioned chamfering treatment, so that the fluidity is improved and the developer is used as a developer. Therefore, there is no possibility that the corners are missing and the durability is lowered. In addition, since the external addition process and the chamfering process are performed in one process, the manufacturing process is simplified.
Accordingly, there is provided a toner manufacturing method capable of easily and reliably manufacturing columnar toner particles with improved durability and fluidity due to corner chipping.
同第二特徴構成は、前記外添角取工程では、攪拌部材を外周部に設けた回転軸と、前記攪拌部材に対して微小間隙を隔てて位置する内周部を有したケーシングとを備え、前記回転軸の回転に伴い移動する前記攪拌部材によってケーシング内の処理物を攪拌処理する攪拌処理装置を用いて、前記外添処理と前記角取り処理を行う点にある。 The second characteristic configuration includes a rotating shaft provided with a stirring member on an outer peripheral portion and a casing having an inner peripheral portion located at a small gap with respect to the stirring member in the external addition chamfering step. The external addition processing and the chamfering processing are performed using a stirring processing device that stirs the processed material in the casing by the stirring member that moves as the rotating shaft rotates.
すなわち、上記攪拌処理装置のケーシング内に前記外添剤と共に前記柱状粒子を投入すると、ケーシングの内周部と微小間隙を隔てた状態で相対移動する攪拌部材によって、ケーシングの内周部側に押し出された柱状粒子と外添剤が内周部で受け止められるので、攪拌部材からの機械的な力を柱状粒子と外添剤に有効に与えることができ、外添処理と角取り処理が効率良く行われる。
従って、外添処理と角取り処理を効率良く行うことができる本発明に係るトナーの製造方法の好適な実施形態が提供される。
That is, when the columnar particles are put together with the external additive into the casing of the stirring processing device, the stirring particles are pushed toward the inner peripheral portion of the casing by the stirring member that moves relative to the inner peripheral portion of the casing with a small gap therebetween. Since the columnar particles and the external additive are received at the inner periphery, the mechanical force from the stirring member can be effectively applied to the columnar particles and the external additive, and the external addition treatment and the chamfering treatment are efficiently performed. Done.
Therefore, a preferred embodiment of the toner manufacturing method according to the present invention, which can efficiently perform the external addition process and the chamfering process, is provided.
同第三特徴構成は、前記外添角取工程では、前記外添剤として、流動性添加剤、帯電制御剤、離型剤及び研磨剤のうちの1種以上を混合させる点にある。
すなわち、流動性添加剤を外添させることにより、柱状トナー粒子の流動性を高くして凝集等の発生を防止することができ、帯電制御剤を外添させることにより、柱状トナー粒子の帯電性を安定化させることができ、離型剤を外添させることにより、柱状トナー粒子の定着時における定着ローラ等へのオフセットを防止することができ、研磨剤を外添させることにより、感光体上に蓄積した付着物を除去させることができる。
従って、柱状トナー粒子に各種の機能を外添処理によって付加できるトナーの製造方法の好適な実施形態が提供される。
The third characteristic configuration is that in the external addition chamfering step, at least one of a fluidity additive, a charge control agent, a release agent, and an abrasive is mixed as the external additive.
That is, by adding a fluidity additive externally, it is possible to increase the fluidity of the columnar toner particles to prevent the occurrence of aggregation and the like, and by adding a charge control agent, the chargeability of the columnar toner particles is increased. By adding a release agent externally, it is possible to prevent offset of the columnar toner particles to the fixing roller at the time of fixing, and by adding an abrasive to the photosensitive member. It is possible to remove deposits accumulated on the surface.
Therefore, a preferred embodiment of a toner manufacturing method that can add various functions to columnar toner particles by external addition processing is provided.
同第四特徴構成は、前記トナー原料が所定極性の主帯電制御剤を含有し、前記外添角取工程では、極性が前記主帯電制御剤とは反対の副帯電制御剤を用いて前記外添処理を行う点にある。
すなわち、トナー原料に含有させた主帯電制御剤によってトナー粒子を帯電させたときに、電荷はトナー粒子の表面に現れるが、柱状トナー粒子は球状トナー粒子に比べて、質量(粒子体積)の増加に対して表面積の増加割合が大きいので、各柱状トナー粒子の質量ばらつきに起因する帯電のばらつき幅が大きくなりやすい。一方、副帯電制御剤を柱状トナー粒子に対して外添させると、表面積が広いトナー粒子(即ち、帯電量が大きいトナー粒子)ほど副帯電制御剤が多く外添されるので、主帯電制御剤と反対極性の副帯電制御剤が主帯電制御剤による帯電のばらつきを打ち消すように作用し、結果として、柱状トナー粒子における帯電のばらつき幅が小さくなる。
従って、柱状トナー粒子における帯電のばらつきを小さくすることができるトナーの製造方法の好適な実施形態が提供される。
In the fourth characteristic configuration, the toner raw material contains a main charge control agent having a predetermined polarity, and in the external addition chamfering step, the external charge control agent having a polarity opposite to the main charge control agent is used. It is in the point which performs attachment processing.
That is, when the toner particles are charged by the main charge control agent contained in the toner material, the charge appears on the surface of the toner particles, but the columnar toner particles have an increased mass (particle volume) compared to the spherical toner particles. On the other hand, since the increase rate of the surface area is large, the variation width of charging due to the mass variation of each columnar toner particle tends to be large. On the other hand, when the auxiliary charge control agent is externally added to the columnar toner particles, the toner particles having a larger surface area (that is, toner particles having a larger charge amount) add more external charge control agent. The secondary charge control agent having a polarity opposite to that of the main charge control agent acts so as to cancel the charge variation due to the main charge control agent, and as a result, the variation width of the charge in the columnar toner particles is reduced.
Therefore, a preferred embodiment of a toner manufacturing method capable of reducing the variation in charging in the columnar toner particles is provided.
同第五特徴構成は、前記粒子化工程の前に、溶融状態又は溶解状態の前記トナー原料をノズルから押出して繊維状に形成する繊維化工程を有する点にある。
すなわち、溶融状態又は溶解状態のトナー原料をノズルから押出すことで、トナー原料を連続的に効率良く繊維状に形成することができ、本発明に係るトナーの製造方法の好適な実施形態が提供される。
The fifth characteristic configuration is that, before the particle forming step, there is a fiberizing step in which the toner raw material in a molten state or a dissolved state is extruded from a nozzle to form a fiber.
That is, by extruding a molten or dissolved toner material from a nozzle, the toner material can be continuously and efficiently formed into a fiber, and a preferred embodiment of the toner production method according to the present invention is provided. Is done.
本発明に係るトナーの製造方法の実施形態について、図面に基づいて説明する。 An embodiment of a toner manufacturing method according to the present invention will be described with reference to the drawings.
本発明のトナーの製造方法は、図1に示すように、バインダ樹脂、着色剤、離型剤等の複数の成分からなるトナー原料を溶融混合する溶融混合工程と、溶融混合工程で得られた溶融状態のトナー原料をノズルから押出して繊維状に形成する繊維化工程と、繊維状に形成されたトナー原料を切断して柱状粒子を作製する粒子化工程と、前記粒子化工程で得られた柱状粒子に外添剤を混合した状態で機械的な力を与えて、前記柱状粒子の表面に外添剤を結合させる外添処理及び前記柱状粒子の角部を丸くする角取り処理を行う外添角取工程とにより、柱状トナー粒子を製造する。尚、上記粒子化工程において切断長さを制御して、トナーに要求される粒度分布の柱状粒子を作製するようにしているが、必要により、粒子化工程の後や、外添角取工程の後に、分級工程を設けてもよい。 As shown in FIG. 1, the toner manufacturing method of the present invention was obtained by a melt mixing step of melting and mixing toner raw materials composed of a plurality of components such as a binder resin, a colorant, and a release agent, and a melt mixing step. Obtained by a fiberizing step of extruding a molten toner raw material from a nozzle to form a fiber, a particle forming step of cutting the toner raw material formed into a fiber to produce columnar particles, and the particle forming step An external addition process for binding the external additive to the surface of the columnar particles and a chamfering process for rounding the corners of the columnar particles by applying a mechanical force in a state where the external additives are mixed with the columnar particles. Columnar toner particles are produced by the cornering step. In addition, although the cutting length is controlled in the above-mentioned particle forming process, columnar particles having a particle size distribution required for the toner are produced. If necessary, after the particle forming process or in the external addition chamfering process. A classification step may be provided later.
次に、上記各工程について、具体的な装置構成に基づいて説明する。
〔溶融混合工程と繊維化工程〕
溶融混合工程及び繊維化工程には、図2に示すように、予備混合装置(例えば、ホソカワミクロン(株)製:サイクロミックス)7、ホッパ1A付で内部に混練部材としての回転スクリュー15を有する一軸型エクストルーダー1、静止型ミキサ2、及び、静止型ミキサ2の出口から分岐した多段の分配流路3Aを有する流路構造体3などが設けられ、一軸型エクストルーダー1の出口と静止型ミキサ2の入口の間にはモータ5で駆動されるギアポンプ4が配置されている。なお、分配流路3Aの最終段の各流路出口には、押出し用のノズル6が設けられている。また、一軸型エクストルーダー1、静止型ミキサ2、流路構造体3、ギアポンプ4には、図示は省略するが、トナー原料をバインダ樹脂の融点以上の高温、例えば130℃〜240℃程度に加熱して低粘度にするためのヒータを備えている。
Next, each process will be described based on a specific apparatus configuration.
[Melt mixing process and fiberizing process]
As shown in FIG. 2, the melt-mixing step and the fiberizing step include a premixing device (for example, Hosokawa Micron Co., Ltd .: Cyclomix) 7, a hopper 1A and a rotating screw 15 as a kneading member inside. Type extruder 1, static mixer 2, flow channel structure 3 having multi-stage distribution flow channel 3 </ b> A branched from the outlet of static mixer 2, and the like, the outlet of uniaxial extruder 1 and the static mixer A gear pump 4 driven by a motor 5 is disposed between the two inlets. Note that an extrusion nozzle 6 is provided at each channel outlet of the final stage of the distribution channel 3A. Although not shown in the uniaxial extruder 1, the static mixer 2, the flow path structure 3, and the gear pump 4, the toner raw material is heated to a temperature higher than the melting point of the binder resin, for example, about 130 ° C to 240 ° C. And a heater for reducing the viscosity.
上記装置構成において、前記トナー原料は、ホッパ1Aから一軸型エクストルーダー1内に投入されると、ヒータによって加熱されて溶融状態となり混合されながら出口側に送られる。一軸型エクストルーダー1から送り出されたトナー原料の溶融混合物は、ギアポンプ4で圧力及び押し出し量を調整された後、静止型ミキサ2内の流路と多段の分配流路3Aを通流する間に混合が促進され、トナー原料の各成分が均一に細かく分散した状態になり、溶融状態のトナー原料は、複数のノズル6から下向きに繊維状に押し出される。尚、各ノズル6から押し出された複数の繊維状体12は、図示しない延伸用エアー吹き出し装置から吹き出す熱風によって延伸された後、送風ファンからの冷風によって急冷される。 In the above apparatus configuration, when the toner raw material is put into the uniaxial extruder 1 from the hopper 1A, it is heated by a heater to be in a molten state and fed to the outlet side while being mixed. The molten mixture of toner raw materials fed from the uniaxial extruder 1 is adjusted in pressure and extrusion amount by the gear pump 4 and then flows through the flow path in the static mixer 2 and the multistage distribution flow path 3A. Mixing is promoted, each component of the toner material is uniformly and finely dispersed, and the molten toner material is extruded downward from the plurality of nozzles 6 into a fiber shape. The plurality of fibrous bodies 12 pushed out from the nozzles 6 are stretched by hot air blown from a drawing air blowing device (not shown) and then rapidly cooled by cold air from a blower fan.
尚、上記静止型ミキサ2は、公知の静止型ミキサを使用することができ、具体的には、図2に示すように、螺旋状の流路を形成するように捩られた曲面を有する羽根体14が、トナー原料の流れ方向に沿って隣接するもの同士で螺旋の捩れ角度を反転させながら複数個(図2の例では3個)設けられた構造である。 As the static mixer 2, a known static mixer can be used. Specifically, as shown in FIG. 2, a blade having a curved surface twisted so as to form a spiral flow path. A plurality of bodies 14 (three in the example shown in FIG. 2) are provided while adjacent to each other along the flow direction of the toner material while reversing the twist angle of the spiral.
次に、図3に示すように、ノズル6から押し出された多数の繊維状体12はベルトコンベア11上に載置されて横向きに搬送され、搬送途中において室温下に放冷され、適度な粘度を持った略直線状の繊維状体12が横方向に整然と並んだ一層の集合体となって、次工程の繊維切断装置8に到達する。尚、繊維状体12を搬送する手段としては、ベルトコンベア11の他に、一定の流速と流れ方向を持った空気流などによる気体搬送手段を用いてもよい。 Next, as shown in FIG. 3, a large number of fibrous bodies 12 pushed out from the nozzles 6 are placed on the belt conveyor 11 and conveyed laterally, and are allowed to cool to room temperature in the middle of conveyance, to have an appropriate viscosity. The substantially linear fibrous body 12 having the shape becomes a one-layer assembly in which the fibers are arranged in the horizontal direction, and reaches the fiber cutting device 8 in the next step. As a means for conveying the fibrous body 12, in addition to the belt conveyor 11, a gas conveying means by an air flow having a constant flow velocity and a flow direction may be used.
〔粒子化工程〕
粒子化工程では、図3に示すように、繊維状体12を切断する繊維切断装置8が、ベルトコンベア11上を搬送される繊維状体12の搬送方向と直交する方向に延びた固定刃9と、複数の切断刃10aが回転軸に取り付けられた回転刃10を有し、図示しないモータによって回転駆動される回転刃10の切断刃10aと固定刃9のエッジ9aとの間に繊維状体12が連続的に供給され、切断刃10aと固定刃エッジ9aとの間で生じる剪断作用によって繊維状体12が順次切断されて、柱状粒子13が連続的に作製される。ここで、繊維状体12の切断長(柱状粒子13の大きさ)は、繊維状体12の搬送速度と回転刃10の回転速度の比によって調節することができる。
[Particulation process]
In the particle forming step, as shown in FIG. 3, the fiber cutting device 8 for cutting the fibrous body 12 extends in a direction perpendicular to the conveying direction of the fibrous body 12 conveyed on the belt conveyor 11. And a fibrous body between the cutting blade 10a of the rotary blade 10 and the edge 9a of the fixed blade 9 which have a rotary blade 10 having a plurality of cutting blades 10a attached to the rotary shaft and are driven to rotate by a motor (not shown). 12 is continuously supplied, and the fibrous body 12 is sequentially cut by a shearing action generated between the cutting blade 10a and the fixed blade edge 9a, and the columnar particles 13 are continuously produced. Here, the cutting length of the fibrous body 12 (the size of the columnar particles 13) can be adjusted by the ratio of the conveying speed of the fibrous body 12 and the rotational speed of the rotary blade 10.
〔外添角取工程〕
外添角取工程では、図4に示すような高速処理型の攪拌処理装置20を用いて、前記外添処理と前記角取り処理を行う。本攪拌処理装置20は、複数の攪拌部材21を外周部に設けた回転軸22と、攪拌部材21に対して微小間隙を隔てて位置する内周部を有した円筒形のケーシング23とを備え、回転軸22の回転に伴い移動する攪拌部材21によってケーシング23内の処理物を攪拌処理する。回転軸22は軸受部24によって片側で支持され、回転用の駆動部25に連結している。処理物投入口26はケーシング23の端部側の上部に、製品排出口27は処理物投入口26に対し反対の端部にあたるケーシング23の下部に設けられている。また、ケーシング23は冷却用媒体の流路であるジャケット28で包まれている。
[External cornering process]
In the external addition chamfering process, the external addition process and the chamfering process are performed using a high-speed processing type stirring processing apparatus 20 as shown in FIG. The stirring processing apparatus 20 includes a rotating shaft 22 having a plurality of stirring members 21 provided on the outer peripheral portion, and a cylindrical casing 23 having an inner peripheral portion that is positioned with a small gap with respect to the stirring member 21. The processed material in the casing 23 is stirred by the stirring member 21 that moves as the rotary shaft 22 rotates. The rotating shaft 22 is supported on one side by a bearing portion 24 and is connected to a driving portion 25 for rotation. The processed product inlet 26 is provided in the upper part on the end side of the casing 23, and the product outlet 27 is provided in the lower part of the casing 23 corresponding to the opposite end to the processed product input port 26. The casing 23 is wrapped with a jacket 28 which is a flow path for the cooling medium.
そして、上記回転軸22を軸方向と直交する位置(図4の位置)から見た場合、各攪拌部材21は、回転軸22の軸方向と平行な方向における端部位置が、隣接する他の攪拌部材21の端部位置よりも当該他の攪拌部材21の内側に位置している(端部同士が重なっている)ため、処理物が各攪拌部材21で攪拌されたときに各攪拌部材21の端部から隣接する他の攪拌部材21の内側へ深く入り、攪拌部材21の力(衝撃力など)が強く処理物に伝わる。さらに、複数の攪拌部材21の一部が、回転軸22の回転に伴って処理物を回転軸22の軸方向の一方向に送る送り用攪拌部材21aに形成され、複数の攪拌部材21の他の一部が、回転軸22の回転に伴って処理物を回転軸22の軸方向の他方向に戻す戻し用攪拌部材21bに形成されている。具体的には、送り用攪拌部材21aと戻し用攪拌部材21bは回転軸22の軸方向に沿って交互に各3組、合計6組設けられているため、処理物は「送り→戻り→送り→戻り→送り→戻り」という力を交互に受け、一方向の力のみを受ける場合と比べて、ケーシング23内における処理物の移動経路が複雑かつ長くなり、処理物は攪拌部材21の力をさらに強く受けることとなる。上記のように構成した結果、外添処理及び角取り処理を迅速に行うことができる。 And when the said rotating shaft 22 is seen from the position (position of FIG. 4) orthogonal to an axial direction, each stirring member 21 has the edge part position in the direction parallel to the axial direction of the rotating shaft 22 of other adjacent. Since each of the stirring members 21 is positioned inside the other stirring member 21 with respect to the position of the other stirring member 21 (the ends overlap each other), each stirring member 21 is stirred when the processed material is stirred by each stirring member 21. Deeply enters the inside of the other adjacent stirring member 21 from the end of this, and the force (impact force, etc.) of the stirring member 21 is strongly transmitted to the processing object. Further, a part of the plurality of stirring members 21 is formed on the feeding stirring member 21 a that feeds the processed material in one axial direction of the rotating shaft 22 as the rotating shaft 22 rotates. Is formed on the return stirring member 21 b that returns the processed material in the other direction of the axial direction of the rotating shaft 22 as the rotating shaft 22 rotates. Specifically, since the feed stirring member 21a and the return stirring member 21b are alternately provided along the axial direction of the rotating shaft 22, three sets are provided in total, so that the processed material is “feed → return → feed”. Compared with a case where force of “→ return → feed → return” is alternately received and only a force in one direction is received, the moving path of the processed material in the casing 23 becomes complicated and long, and the processed material receives the force of the stirring member 21. It will be even stronger. As a result of the above configuration, the external addition process and the chamfering process can be performed quickly.
図6に、上記外添角取工程において、柱状粒子13(例えば円柱状粒子)に対して外添処理と角取り処理を行い、柱状トナー粒子13Aが作製される状態を模式的に示す。角取り処理では柱状粒子13の尖った角部が削れて微粉が発生するが、外添処理と同じ過程によってこの微粉も柱状粒子13の表面に結合するので、微粉トナー粒子の発生が抑制される。外添処理では、外添剤Gは柱状粒子13の表面(外周面と端面)に付着するが、特に柱状粒子13の長さが長い場合には端面よりも外周面に多く付着する。なお、図6には、判り易くするために、角取り処理がされた柱状粒子13の表面に外添剤Gを結合させる場合を示すが、外添剤Gが結合した柱状粒子13に対して角取り処理を行う場合(この場合、角取り処理によって生じた外添剤G付きの微粉は外添処理によって柱状粒子13に再結合させることができる)、角取り処理と外添処理を同時平行的に行う場合など、種々の処理状態が考えられる。 FIG. 6 schematically shows a state in which the columnar toner particles 13A are produced by performing the external addition process and the chamfering process on the columnar particles 13 (for example, columnar particles) in the external addition chamfering step. In the chamfering process, the sharp corners of the columnar particles 13 are scraped to generate fine powder. However, since the fine powder is also bonded to the surface of the columnar particles 13 in the same process as the external addition process, generation of fine toner particles is suppressed. . In the external addition process, the external additive G adheres to the surface (outer peripheral surface and end surface) of the columnar particles 13, but particularly adheres more to the outer peripheral surface than the end surface when the columnar particles 13 are long. FIG. 6 shows the case where the external additive G is bound to the surface of the columnar particle 13 that has been subjected to the chamfering process for the sake of clarity, but the columnar particle 13 to which the external additive G is bound is shown. When the chamfering process is performed (in this case, the fine powder with the external additive G generated by the chamfering process can be recombined with the columnar particles 13 by the external addition process), the chamfering process and the external addition process are performed simultaneously in parallel. Various processing states are conceivable, for example, when performing automatically.
上記外添角取工程では、外添剤Gとして、流動性添加剤、帯電制御剤、離型剤及び研磨剤のうちの1種以上を混合させる。具体的な材料を以下、例示すると、流動性添加剤には、粒径7nm〜50nm程度のシリカ、アルミナ、チタニア等を用いる。帯電制御剤は、ブラック用トナーには、有色のサリチル酸亜鉛塩を用い、カラー用トナーには、無色のレシチンを用いる。離型剤は、定着ロール等へのオフセットを防止するためのもので、粒径50nm〜500nm程度のフッ素微粒子、乳化重合微粒子、各種のワックス類(例えば、カルナウバワックス)を用いる。研磨剤は、感光体上の付着物を除去するためのもので、アルミナ、酸化セリウム、チタン酸ストロンチウム等を用いる。 In the external addition chamfering step, as the external additive G, one or more of a fluidity additive, a charge control agent, a release agent, and an abrasive are mixed. Specific examples of the material are as follows. As the fluidity additive, silica, alumina, titania or the like having a particle size of about 7 nm to 50 nm is used. As the charge control agent, colored zinc salicylate is used for black toner, and colorless lecithin is used for color toner. The release agent is for preventing an offset to a fixing roll and the like, and fluorine fine particles having a particle diameter of about 50 nm to 500 nm, emulsion polymerization fine particles, and various waxes (for example, carnauba wax) are used. The abrasive is for removing deposits on the photoreceptor, and alumina, cerium oxide, strontium titanate, or the like is used.
ところで、トナー原料に帯電制御剤を含有させる場合、外添角取工程で、極性がトナー原料中に含まれる主帯電制御剤の極性とは反対の副帯電制御剤を用いて外添処理を行うことが、柱状トナー粒子の帯電ばらつきを小さくするために有効である。以下具体的に説明する。
トナー原料に含有させた主帯電制御剤によって柱状トナー粒子13Aを帯電させたときに、電荷は柱状トナー粒子の表面に現れるが、柱状トナー粒子は球状トナー粒子に比べて、質量の増加に対して表面積の増加割合が大きいので、柱状トナー粒子の質量ばらつきに起因する帯電のばらつき幅が大きくなりやすい。例えば、球状トナーでは、質量が2倍になると表面積は22/3倍(約1.59倍)になるのに対し、柱状トナー粒子では、同じ径の繊維体を切断したとすれば質量が2倍になると粒子長さが2倍になり、表面積は約2倍になる(但し、粒子の切断面の面積は無視した)。
By the way, when a charge control agent is included in the toner raw material, an external addition process is performed in the external addition chamfering step using a sub-charge control agent whose polarity is opposite to that of the main charge control agent contained in the toner raw material. This is effective for reducing the variation in charging of the columnar toner particles. This will be specifically described below.
When the columnar toner particles 13A are charged by the main charge control agent contained in the toner raw material, the charge appears on the surface of the columnar toner particles. However, the columnar toner particles are more sensitive to the increase in mass than the spherical toner particles. Since the increase rate of the surface area is large, the variation width of the charge due to the mass variation of the columnar toner particles tends to be large. For example, in the case of a spherical toner, when the mass is doubled, the surface area is 2 2/3 times (about 1.59 times), whereas in the case of columnar toner particles, if a fibrous body having the same diameter is cut, the mass is increased. When it is doubled, the particle length is doubled and the surface area is doubled (however, the area of the cut surface of the particle is ignored).
図7(イ)に負極性の主帯電制御剤による柱状トナー粒子の帯電量の分布状態の一例を示す。ここで、正極性の副帯電制御剤を柱状トナー粒子に外添させると、正極性の帯電量が大きい柱状トナー粒子(即ち、質量が大きくて表面積が広い柱状トナー粒子)ほど副帯電制御剤が多く外添されるので、主帯電制御剤とは反対極性の副帯電制御剤が主帯電制御剤による帯電のばらつきを打ち消すように作用し、結果として、図7(ロ)に示すように、柱状トナー粒子における帯電(負極性の)のばらつき幅が小さくなる。尚、図7において、横軸は粒子直径に対する電荷量の比(フェムトクーロン/10μm)を表し、縦軸は粒子の個数を表す。また本帯電特性は、ホソカワミクロン(株)製:イースパートアナライザによって測定することができる。 FIG. 7A shows an example of the distribution of the charge amount of the columnar toner particles by the negative main charge control agent. Here, when the positive charge control agent is externally added to the columnar toner particles, the column charge toner particles having a larger positive charge amount (that is, the columnar toner particles having a larger mass and a larger surface area) have a smaller charge amount. Since many external additives are added, the sub-charge control agent having a polarity opposite to that of the main charge control agent acts so as to cancel the variation in charge due to the main charge control agent. As a result, as shown in FIG. The variation range of charge (negative polarity) in the toner particles is reduced. In FIG. 7, the horizontal axis represents the ratio of the charge amount to the particle diameter (femtocoulomb / 10 μm), and the vertical axis represents the number of particles. Further, this charging characteristic can be measured by Hosokawa Micron Co., Ltd .: Espert Analyzer.
〔別実施形態〕
上記実施形態では、微細化工程において、溶融状態のトナー原料を繊維状に形成したが、これ以外に、バインダ樹脂等が溶剤に溶けた溶解状態のトナー原料をノズルから押出して繊維状に形成してもよい。
[Another embodiment]
In the above embodiment, the toner material in the molten state is formed in a fiber shape in the miniaturization step, but in addition to this, the toner material in a dissolved state in which a binder resin or the like is dissolved in a solvent is extruded from the nozzle to form a fiber shape. May be.
上記実施形態では、外添角取工程において、図4に示すような攪拌処理装置20を用いて外添処理と角取り処理を同時に行うようにしたが、これ以外の各種高速攪拌型、表面改質型の混合機、例えば、ホソカワミクロン(株)製のメカノフュージョンシステム(本装置は主として押圧力や剪断力を与える)、サイクロミックスなどを用いてもよい。 In the above embodiment, in the external addition chamfering process, the external addition process and the chamfering process are simultaneously performed using the agitation processing apparatus 20 as shown in FIG. A quality type mixer, for example, a mechanofusion system manufactured by Hosokawa Micron Co., Ltd. (this apparatus mainly applies a pressing force or a shearing force), a cyclomix, or the like may be used.
上記実施形態では、粒子化工程において、回転刃式の繊維切断装置8を用いたが、これ以外の各種切断装置や各種粉砕装置(例えば、ピン型ミル等)を用いることができる。 In the above embodiment, the rotary blade type fiber cutting device 8 is used in the particle forming step, but various other cutting devices and various grinding devices (for example, a pin mill) can be used.
次に、本発明に係るトナーの製造方法の実施例について説明する。 Next, examples of the toner manufacturing method according to the present invention will be described.
(ブラックトナーの例)
ポリエステル樹脂(Tg:64℃、流出開始温度(島津製作所製フローテスタにより測定):119℃)100重量部、カーボンブラック10重量部、負極性の主帯電制御剤としてサリチル酸亜鉛塩3重量部、及び、離型剤としてカルナウバワックス5重量部を、前記予備混合装置7で予備混合した後、一軸型エクストルーダー1に供給して溶融し、ギアポンプ4で圧力調整した後(ギアポンプ後段で約4.2MPa)、温度150℃の溶融状態で静止型ミキサ2に押し出し供給した。そして、静止型ミキサ2での溶融混合を経て、孔径300μmのノズル6から押し出しつつ熱風により線径5.0μmとなるように延伸した後冷却して、微粒子前駆体繊維を得た。尚、このときの繊維の生成速度は、押し出し量と繊維径から約40m/secと算出された。
(Example of black toner)
100 parts by weight of a polyester resin (Tg: 64 ° C., starting temperature (measured by a flow tester manufactured by Shimadzu Corporation): 119 ° C.), 10 parts by weight of carbon black, 3 parts by weight of zinc salicylate as a negative main charge control agent, and Then, 5 parts by weight of carnauba wax as a release agent is premixed by the premixing device 7, and then supplied to the uniaxial extruder 1 to be melted and pressure-adjusted by the gear pump 4 (about 4. in the latter stage of the gear pump). 2 MPa) at a temperature of 150 ° C. and extruded to the stationary mixer 2. Then, after being melt-mixed in the static mixer 2, it was stretched to a wire diameter of 5.0 μm with hot air while being extruded from a nozzle 6 having a pore diameter of 300 μm, and then cooled to obtain fine particle precursor fibers. The fiber generation rate at this time was calculated to be about 40 m / sec from the extrusion amount and the fiber diameter.
次に、上記微粒子前駆体繊維を、分級機内蔵型粉砕機(例えば、ホソカワミクロン(株)製ACMパルペライザ)で粉砕処理し、その結果、体積平均径6.4μm、個数平均径5.3μmで、体積基準における12μm以上の粒子の割合が1.4%、16μm以上の粒子の割合が0%、個数基準における5μm未満の微粉粒子の割合が11.2%の粒度分布の柱状粒子を得た。 Next, the fine particle precursor fiber was pulverized by a classifier built-in type pulverizer (for example, ACM pulverizer manufactured by Hosokawa Micron Corporation). Columnar particles having a particle size distribution in which the ratio of particles of 12 μm or more on the volume basis was 1.4%, the ratio of particles of 16 μm or more was 0%, and the ratio of fine particles of less than 5 μm on the number basis was 11.2% were obtained.
上記柱状粒子のSEMによる観察結果を図8に示すが、柱状粒子の角部に、切断により突起やバリが形成されていることが確認できる。また、本柱状粒子の帯電特性は、負極性の帯電電荷のばらつき幅が大きく、図7(イ)と同様の傾向を示すことを確認した。 An observation result of the columnar particles by SEM is shown in FIG. 8, and it can be confirmed that protrusions and burrs are formed at the corners of the columnar particles by cutting. In addition, it was confirmed that the charging characteristics of the columnar particles showed a tendency similar to that shown in FIG.
次いで、上記トナー用粒子100重量部、負極性の帯電制御剤としてステアリン酸亜鉛(平均粒子径0.3μm)0.01重量部、正極性の帯電制御剤としてステアリン酸マグネシウム(平均粒子径1.2μm)0.01重量部、流動性添加剤としてシリカ1(比表面積から算出した粒子径20nm)0.75重量部とシリカ2(比表面積から算出した粒子径50nm)0.75重量部、及び研磨剤としてアルミナ(平均粒子径0.97μm)1.20重量部を、前記高速処理型の攪拌処理装置20により、単位重量当たりの原料粒子に与える動力を0.28kw/hとして攪拌混合し、現像剤を得た。尚、上記ステアリン酸亜鉛とステアリン酸マグネシウムは同量添加しているが、両者のうち正極性のステアリン酸マグネシウムの方が単位重量当たりの帯電能力が高いので、外添する副帯電制御剤の極性としては正極性になる。また、上記ステアリン酸亜鉛とステアリン酸マグネシウムは、帯電制御剤の機能とともに滑沢剤としての機能も有する。 Next, 100 parts by weight of the toner particles, 0.01 parts by weight of zinc stearate (average particle size 0.3 μm) as a negative charge control agent, and magnesium stearate (average particle size of 1. .mu.m) as a positive charge control agent. 2 μm) 0.01 parts by weight, 0.75 parts by weight of silica 1 (particle diameter 20 nm calculated from specific surface area) and 0.75 parts by weight of silica 2 (particle diameter 50 nm calculated from specific surface area) as fluid additives, and 1.20 parts by weight of alumina (average particle size: 0.97 μm) as an abrasive is stirred and mixed by the high-speed processing type stirring device 20 with a power applied to the raw material particles per unit weight of 0.28 kw / h, A developer was obtained. The same amount of zinc stearate and magnesium stearate is added, but positive polarity magnesium stearate has a higher charging capacity per unit weight, so the polarity of the external charge control agent added externally is higher. As a positive polarity. Further, the zinc stearate and magnesium stearate have a function as a lubricant as well as a charge control agent.
本柱状トナー粒子のSEMによる観察結果を図9に示すが、切断後の柱状粒子の角部に形成されていた突起やバリが除去されるとともに、シリカ等の外添剤が柱状粒子の表面に結合していることが確認できる。また、本柱状トナー粒子の帯電特性は、外添処理によって帯電電荷のばらつき幅が減少し、図7(ロ)と同様の傾向を示すことを確認した。 FIG. 9 shows the result of SEM observation of the columnar toner particles. The protrusions and burrs formed at the corners of the columnar particles after cutting are removed, and external additives such as silica are added to the surface of the columnar particles. It can be confirmed that they are combined. In addition, it was confirmed that the charging characteristics of the present columnar toner particles showed the same tendency as in FIG.
そして、上記のようにして得た柱状トナー粒子からなる現像剤について、画像装置(セイコーエプソン株式会社製プリンタLP−2500)を用いて画像評価を行った。その結果、得られた画像は、画像濃度が高く安定しており、濃淡コントロール(階調)も良好で、かつ、解像度が高くシャープであった。また、地汚れや転写時のちり(飛点)等もなかった。また、1万枚印刷試験後も、現像ロールや感光体表面へのトナー粒子のフィルミングなどは認められなかった。 Then, the developer composed of the columnar toner particles obtained as described above was subjected to image evaluation using an image device (printer LP-2500 manufactured by Seiko Epson Corporation). As a result, the obtained image had a high and stable image density, a good density control (gradation), a high resolution, and a sharp image. Moreover, there were no background stains or dust at the time of transfer. Further, no filming of toner particles on the developing roll or the photoreceptor surface was observed after the 10,000 sheet printing test.
本発明に係るトナーの製造方法は、通常の球形トナー粒子に比べて特異な特性を有する柱状トナー粒子の製造に好適に使用できる。 The method for producing a toner according to the present invention can be suitably used for producing columnar toner particles having unique characteristics as compared with ordinary spherical toner particles.
1 一軸型エクストルーダー
2 静止型ミキサー
3 流路構造体
3A 流路
4 ギアポンプ
5 モータ
6 ノズル
7 予備混合装置
8 繊維切断装置
9 固定刃
9a 固定刃エッジ
10 回転刃
10a 切断刃
11 ベルトコンベア
12 繊維状体
13 柱状粒子
13A 柱状トナー粒子
14 羽根体
15 混練部材
20 攪拌処理装置
21 攪拌部材
22 回転軸
23 ケーシング
24 軸受部
25 駆動部
26 処理物投入口
27 製品排出口
28 ジャケット
G 外添剤
DESCRIPTION OF SYMBOLS 1 Single axis | shaft type extruder 2 Static mixer 3 Flow path structure 3A Flow path 4 Gear pump 5 Motor 6 Nozzle 7 Preliminary mixing device 8 Fiber cutting device 9 Fixed blade 9a Fixed blade edge 10 Rotary blade 10a Cutting blade 11 Belt conveyor 12 Fibrous Body 13 Columnar particle 13A Columnar toner particle 14 Blade body 15 Kneading member 20 Stirring treatment device 21 Stirring member 22 Rotating shaft 23 Casing 24 Bearing portion 25 Drive portion 26 Processed material inlet 27 Product outlet 28 Jacket G External additive
Claims (5)
前記粒子化工程で得られた柱状粒子に外添剤を混合した状態で機械的な力を与えて、前記柱状粒子の表面に外添剤を結合させる外添処理及び前記柱状粒子の角部を丸くする角取り処理を行う外添角取工程とにより、柱状トナー粒子を製造するトナーの製造方法。 A particle forming step of cutting columnar particles by cutting a fiber raw material,
A mechanical force is applied in a state where an external additive is mixed with the columnar particles obtained in the particle forming step, and an external treatment for binding the external additive to the surface of the columnar particles and corners of the columnar particles are performed. A toner production method for producing columnar toner particles by an external addition chamfering process for rounding a chamfer.
前記外添角取工程では、極性が前記主帯電制御剤とは反対の副帯電制御剤を用いて前記外添処理を行う請求項3記載のトナーの製造方法。 The toner material contains a main charge control agent having a predetermined polarity;
The toner manufacturing method according to claim 3, wherein, in the external addition chamfering step, the external addition process is performed using a sub-charge control agent having a polarity opposite to that of the main charge control agent.
5. The method for producing a toner according to claim 1, further comprising a fiberizing step in which the toner raw material in a molten state or a dissolved state is extruded from a nozzle to form a fiber before the particle forming step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290954A JP4363298B2 (en) | 2004-10-04 | 2004-10-04 | Toner production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004290954A JP4363298B2 (en) | 2004-10-04 | 2004-10-04 | Toner production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006106236A true JP2006106236A (en) | 2006-04-20 |
JP4363298B2 JP4363298B2 (en) | 2009-11-11 |
Family
ID=36376070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004290954A Expired - Fee Related JP4363298B2 (en) | 2004-10-04 | 2004-10-04 | Toner production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4363298B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1920825A1 (en) * | 2006-11-10 | 2008-05-14 | Ricoh Company, Ltd. | Apparatus and method for manufacturing particulate resin |
JP2008139469A (en) * | 2006-11-30 | 2008-06-19 | Kyocera Mita Corp | Toner for magnetic two-component developer |
JP2008158450A (en) * | 2006-12-26 | 2008-07-10 | Kyocera Mita Corp | Nonmagnetic monocomponent toner |
JP2009069640A (en) * | 2007-09-14 | 2009-04-02 | Ricoh Co Ltd | Method for manufacturing electrophotographic toner |
US7662534B2 (en) | 2006-09-11 | 2010-02-16 | Ricoh Company Ltd. | Apparatus for producing toner precursor, and method for the same, fibrous toner precursor, apparatus for producing toner, and method for producing electrophotographic toner and fine resin particles |
US7761020B2 (en) | 2006-12-13 | 2010-07-20 | Sharp Kabushiki Kaisha | Image forming apparatus utilizing cylindrical toner particles |
JP2017146537A (en) * | 2016-02-19 | 2017-08-24 | 富士ゼロックス株式会社 | Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
JP2017146538A (en) * | 2016-02-19 | 2017-08-24 | 富士ゼロックス株式会社 | Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
EP3482900A1 (en) * | 2017-11-09 | 2019-05-15 | Ricoh Company Ltd. | Particle for solid freeform fabrication |
WO2019093490A1 (en) * | 2017-11-13 | 2019-05-16 | Ricoh Company, Ltd. | Resin particle producing method |
JP2019084820A (en) * | 2017-11-09 | 2019-06-06 | 株式会社リコー | Particle for solid molding, powder for solid molding, manufacturing device of solid molded article, manufacturing method of solid molded article, manufacturing method of powder for solid molding, and particle |
-
2004
- 2004-10-04 JP JP2004290954A patent/JP4363298B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662534B2 (en) | 2006-09-11 | 2010-02-16 | Ricoh Company Ltd. | Apparatus for producing toner precursor, and method for the same, fibrous toner precursor, apparatus for producing toner, and method for producing electrophotographic toner and fine resin particles |
EP1920825A1 (en) * | 2006-11-10 | 2008-05-14 | Ricoh Company, Ltd. | Apparatus and method for manufacturing particulate resin |
US7879268B2 (en) | 2006-11-10 | 2011-02-01 | Ricoh Company Limited | Apparatus and method for manufacturing particulate resin |
JP2008139469A (en) * | 2006-11-30 | 2008-06-19 | Kyocera Mita Corp | Toner for magnetic two-component developer |
US7761020B2 (en) | 2006-12-13 | 2010-07-20 | Sharp Kabushiki Kaisha | Image forming apparatus utilizing cylindrical toner particles |
JP2008158450A (en) * | 2006-12-26 | 2008-07-10 | Kyocera Mita Corp | Nonmagnetic monocomponent toner |
JP2009069640A (en) * | 2007-09-14 | 2009-04-02 | Ricoh Co Ltd | Method for manufacturing electrophotographic toner |
JP2017146537A (en) * | 2016-02-19 | 2017-08-24 | 富士ゼロックス株式会社 | Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
JP2017146538A (en) * | 2016-02-19 | 2017-08-24 | 富士ゼロックス株式会社 | Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
CN107102520A (en) * | 2016-02-19 | 2017-08-29 | 富士施乐株式会社 | Tone agent for developing electrostatic charge image, electrostatic charge image developer and toner cartridge |
EP3482900A1 (en) * | 2017-11-09 | 2019-05-15 | Ricoh Company Ltd. | Particle for solid freeform fabrication |
JP2019084820A (en) * | 2017-11-09 | 2019-06-06 | 株式会社リコー | Particle for solid molding, powder for solid molding, manufacturing device of solid molded article, manufacturing method of solid molded article, manufacturing method of powder for solid molding, and particle |
US11045978B2 (en) | 2017-11-09 | 2021-06-29 | Ricoh Company, Ltd. | Particle for solid freeform fabrication, powder for solid freeform fabrication, device for manufacturing solid freeform fabrication object, method of manufacturing solid freeform fabrication object, and particle |
JP7183641B2 (en) | 2017-11-09 | 2022-12-06 | 株式会社リコー | Particles for three-dimensional modeling, powder for three-dimensional modeling, apparatus for producing three-dimensional article, method for producing three-dimensional article, method for producing powder for three-dimensional modeling, and particles |
WO2019093490A1 (en) * | 2017-11-13 | 2019-05-16 | Ricoh Company, Ltd. | Resin particle producing method |
JP2020037665A (en) * | 2017-11-13 | 2020-03-12 | 株式会社リコー | Manufacturing method of resin particles |
EP3710516A4 (en) * | 2017-11-13 | 2020-12-16 | Ricoh Company, Ltd. | Resin particle producing method |
US20200398458A1 (en) * | 2017-11-13 | 2020-12-24 | Nozomu Tamoto | Resin particle producing method |
US11504883B2 (en) | 2017-11-13 | 2022-11-22 | Ricoh Company, Ltd. | Resin particle producing method |
JP7331348B2 (en) | 2017-11-13 | 2023-08-23 | 株式会社リコー | Method for producing resin particles |
Also Published As
Publication number | Publication date |
---|---|
JP4363298B2 (en) | 2009-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4363298B2 (en) | Toner production method | |
EP2096497B1 (en) | Toner production method and toner granulating apparatus | |
JP2006126587A (en) | Process for producing toner | |
JP2006178195A (en) | Method for manufacturing deformed toner | |
JP2009157221A (en) | Resin composition for electrophotographic toner and method for manufacturing the same, and electrophotographic toner | |
JP2007271820A (en) | Method for manufacturing electrophotographic toner | |
JP4438724B2 (en) | Method for producing toner for electrophotography | |
JP2993624B2 (en) | Method for manufacturing color toner | |
JP4363297B2 (en) | Toner manufacturing method and manufacturing apparatus | |
JP2002253983A (en) | Production process of powder product | |
JP5282517B2 (en) | Method for producing toner for developing electrostatic image and toner for developing electrostatic image | |
JP4143485B2 (en) | DEVELOPMENT CARRIER MANUFACTURING METHOD, DEVELOPING DEVICE, IMAGE FORMING DEVICE, AND PROCESS CARTRIDGE HAVING DEVELOPER CARRIER PRODUCED BY THIS MANUFACTURING METHOD | |
JP2006285198A (en) | Toner particle, apparatus for manufacturing toner particle, and method for manufacturing toner particle | |
JP2005013780A (en) | Method and apparatus for manufacturing kneaded matter for use in manufacturing toner | |
JP4955453B2 (en) | Toner production method | |
JP2002229256A (en) | Apparatus and method for manufacturing kneaded material for manufacture of toner | |
JPH07287420A (en) | Production of toner | |
JP4441473B2 (en) | Masterbatch production equipment and production method | |
JPH0749583A (en) | Production of electrophotographic toner | |
JP2002244347A (en) | Method of manufacturing kneaded matter for manufacturing toner | |
JP2004138967A (en) | Toner manufacturing method | |
JP2002333734A (en) | Method for producing toner | |
JPH0985741A (en) | Method and device to manufacture spherical toner | |
JP3991037B2 (en) | Toner production method | |
JPH09197715A (en) | Electrophotographic toner and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090626 |
|
TRDD | Decision of grant or rejection written | ||
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090810 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |