JP2006105847A - Thermal type flowmeter - Google Patents

Thermal type flowmeter Download PDF

Info

Publication number
JP2006105847A
JP2006105847A JP2004294605A JP2004294605A JP2006105847A JP 2006105847 A JP2006105847 A JP 2006105847A JP 2004294605 A JP2004294605 A JP 2004294605A JP 2004294605 A JP2004294605 A JP 2004294605A JP 2006105847 A JP2006105847 A JP 2006105847A
Authority
JP
Japan
Prior art keywords
pipe
fluid
temperature
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004294605A
Other languages
Japanese (ja)
Inventor
Yuichi Otani
雄一 大谷
Akimasa Kohama
晃正 小浜
Ryoichi Kanazawa
良一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004294605A priority Critical patent/JP2006105847A/en
Publication of JP2006105847A publication Critical patent/JP2006105847A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal type flowmeter (boundary layer flowmeter) capable of accurate flow measurement even in a wide flow measuring range wherein the flow state is shifted from a laminar flow region to a transitional region and then to a turbulent flow region in accompany with an increase of a fluid flow rate in a conventional case. <P>SOLUTION: This flowmeter has a constitution wherein a turbulent flow accelerator such as a coil 14, an annulus, a projection or a twisted tape is provided inside a part to be heated by a heater 11 of a pipe 15, to thereby disturb the flow of a fluid flowing in the pipe 15 by the turbulent flow accelerator, and the fluid is put into a turbulent flow state in the whole range of a prescribed flow measuring range of the fluid. Otherwise, the fluid may be put into the turbulent flow state in the whole range of the prescribed flow measuring range, by allowing the pipe to have a structure of a plurality of steps having a plurality of pipe parts having different tube diameters, by forming at least a pipe part to be heated by the heater of the pipe to be a spiral pipe, by forming the pipe part to be heated by the heater of the pipe to be a bent pipe, or by arranging a fluid collision member in the pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱式流量計に関し、具体的には熱式流量計の一種である境界層流量計に関する。   The present invention relates to a thermal flow meter, and more specifically to a boundary layer flow meter which is a kind of a thermal flow meter.

熱式流量計の構造及び測定原理は次のとおりである。なお、以下文章中にある熱式流量計は、境界層流量計を示す。   The structure and measurement principle of the thermal flow meter are as follows. The thermal flow meter in the following text indicates a boundary layer flow meter.

図10には従来の熱式流量計の構成図を示す。同図に示すように熱式流量計は、内部を流体(例えば、水)が流れる配管1を加熱するヒータ2と、ヒータ2よりも上流側に位置する配管1の管壁部分(測定点1a)の温度を測定する測温抵抗体などの温度センサ3と、ヒータ2で加熱される配管1の管壁部分(測定点1b)の温度を測定する測温抵抗体などの温度センサ4とを有している。この場合、温度センサ3はヒータ2から十分離れた位置に配置され、温度センサ4は図示のようなヒータ2の直ぐ内側(直下又は直上など)もしくはヒータ2よりも下流側に配置される。このため、温度センサ3で測定される管壁温度T1はヒータ2の影響が小さく、図10に配管1の半径r方向の温度分布(流体温度及び管壁温度)のグラフを示すようにほぼ流体温度と等しくなることから、温度センサ3で測定される管壁温度T1と測温抵抗体4で測定される管壁温度T2との差は、ヒータ2の加熱量と流体の熱伝達率に依存する。従って、ヒータ2の加熱量が既知である場合、本体系により流体の熱伝達率を評価し、最終的にはこの熱伝達率への影響因子である流体の流速(流量)を求めることができる。   FIG. 10 shows a configuration diagram of a conventional thermal flow meter. As shown in the figure, the thermal flow meter includes a heater 2 that heats a pipe 1 through which a fluid (for example, water) flows, and a pipe wall portion (measurement point 1a) of the pipe 1 that is located upstream of the heater 2. ) And a temperature sensor 4 such as a resistance thermometer that measures the temperature of the wall portion (measurement point 1b) of the pipe 1 heated by the heater 2. Have. In this case, the temperature sensor 3 is disposed at a position sufficiently away from the heater 2, and the temperature sensor 4 is disposed immediately inside the heater 2 as illustrated (directly below or directly above) or downstream of the heater 2. Therefore, the pipe wall temperature T1 measured by the temperature sensor 3 is less affected by the heater 2, and the temperature distribution (fluid temperature and pipe wall temperature) in the radius r direction of the pipe 1 is almost fluid as shown in FIG. Since the temperature is equal to the temperature, the difference between the tube wall temperature T1 measured by the temperature sensor 3 and the tube wall temperature T2 measured by the resistance temperature detector 4 depends on the heating amount of the heater 2 and the heat transfer coefficient of the fluid. To do. Therefore, when the heating amount of the heater 2 is known, the heat transfer coefficient of the fluid can be evaluated by the main body system, and finally the flow velocity (flow rate) of the fluid which is an influencing factor on the heat transfer coefficient can be obtained. .

詳述すると、温度センサ3の測温点1aから温度センサ4の測温点1bまでの間で流体への入放熱量が十分小さければ、ヒータ加熱部における流体温度は温度センサ3で測定される上流側の管壁温度T1と同等とみなせる。従って、ヒータ加熱部の管壁温度(流体温度)T1と管壁温度T2及びヒータ2の発熱量の関係は以下のとおりとなる。
q=h×(T2−T1)
q=Q/A
ここで、q(W/m2)は熱流束、h(W/m2・k)は管壁/流体間の熱伝達率、Q(W)はヒータ発熱量、A(m2)はヒータ加熱面積である。熱伝達率hは、レイノルズ数Re、プラントル数をPrとすると、一般に
h∝Rem・Prn
の関係となることから、流体物性及び管径が既知であれば、流体の流速u(m/s)の関数となる。即ち、
h=f(u)
であることから、ヒータ発熱量Qとヒータ加熱面積Aから求められる熱流束q及び温度センサ3,4によって求められる管壁温度T1,T2より、流速uは下式で求められる。また、この流速uと配管1の流路断面積や流体の密度から流体の流量が求められる。
u=f-1(h)=f-1{q/(T2−T1)}
More specifically, if the amount of heat input to heat from the temperature measuring point 1a of the temperature sensor 3 to the temperature measuring point 1b of the temperature sensor 4 is sufficiently small, the fluid temperature in the heater heating unit is measured by the temperature sensor 3. It can be regarded as equivalent to the upstream pipe wall temperature T1. Therefore, the relationship between the tube wall temperature (fluid temperature) T1 of the heater heating portion, the tube wall temperature T2, and the heat generation amount of the heater 2 is as follows.
q = h × (T2-T1)
q = Q / A
Here, q (W / m 2 ) is the heat flux, h (W / m 2 · k) is the heat transfer coefficient between the tube wall / fluid, Q (W) is the heating value of the heater, and A (m 2 ) is the heater Heating area. The heat transfer coefficient h is generally expressed as h∝Re m · Pr n , where Reynolds number Re and Prandtl number are Pr.
Therefore, if the fluid physical properties and the pipe diameter are known, it is a function of the fluid flow velocity u (m / s). That is,
h = f (u)
Therefore, the flow velocity u is obtained by the following equation from the heat flux q obtained from the heater heat generation amount Q and the heater heating area A and the tube wall temperatures T1 and T2 obtained from the temperature sensors 3 and 4. Further, the flow rate of the fluid is obtained from the flow velocity u, the cross-sectional area of the pipe 1 and the density of the fluid.
u = f −1 (h) = f −1 {q / (T2−T1)}

なお、熱式流量計が記載されている先行技術文献としては、例えば下記の特許文献1がある。   As a prior art document describing a thermal flow meter, for example, there is Patent Document 1 below.

特開平5−79875号公報JP-A-5-79875

上記の先行技術文献においては従来の熱式流量計に流体過熱防止用の冷却機構を設けたものであるが、これを含めた従来の熱式流量計では基本的に、流体の流量測定範囲が広い場合、流体の流況(流動状態)自体が流体の流速(流量)の増大とともに層流域から遷移域、最終的には乱流域へと移行するため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的では無くなってしまう。つまり、図11に流体流量(流況)と熱伝達率の関係を示すように流体流量の増大とともに流況が層流域、遷移域、乱流域と移行する場合には流体流量と熱伝達率の関係にリニアリティがない。このため、従来の熱式流量計(境界層流量計)では広い流量計測範囲において精度のよい流量計測を行うことが難しかった。   In the above prior art documents, a conventional thermal flow meter is provided with a cooling mechanism for preventing fluid overheating. However, a conventional thermal flow meter including this basically has a fluid flow measurement range. In a wide case, the fluid flow state (flow state) itself shifts from a laminar flow region to a transition region, and finally to a turbulent flow region as the fluid flow velocity (flow rate) increases, so the fluid flow rate and the heat transfer coefficient (ie thermal The relationship with the output of the flowmeter is not unique. In other words, as shown in FIG. 11, the relationship between the fluid flow rate (flow state) and the heat transfer coefficient, when the flow state shifts to the laminar flow region, transition region, and turbulent flow region as the fluid flow rate increases, There is no linearity in the relationship. For this reason, it has been difficult for the conventional thermal flow meter (boundary layer flow meter) to perform accurate flow measurement in a wide flow measurement range.

従って本発明は上記の事情に鑑み、従来であれば流体流量の増大とともに流況が層流域、遷移域、乱流域と移行するような広い流量計測範囲においても、精度のよい流量計測を行うことができる熱式流量計(境界層流量計)を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention can accurately measure the flow rate even in a wide flow rate measurement range in which the flow state transitions to a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases. It is an object of the present invention to provide a thermal flow meter (boundary layer flow meter) capable of performing the above.

上記課題を解決する第1発明の熱式流量計は、配管を加熱する加熱手段と、前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、前記配管の前記加熱手段で加熱される部分の内部に乱流促進体を設け、この乱流促進体で前記配管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とするように構成したことを特徴とする。   The thermal flow meter of the first invention that solves the above problems includes a heating means for heating a pipe, and a temperature of a pipe wall portion of the pipe or a temperature of a fluid flowing in the pipe at a position upstream of the heating means. A thermal flow meter having first temperature measuring means for measuring the temperature and second temperature measuring means for measuring the temperature of the pipe wall portion of the pipe heated by the heating means, A turbulent flow promoting body is provided inside the part heated by the heating means, and the turbulent flow promoting body disturbs the flow of the fluid flowing in the pipe so that the fluid flows over the entire predetermined flow rate measurement range of the fluid. It is characterized by having a turbulent state.

また、第2発明の熱式流量計は、第1発明の熱式流量計において、前記乱流促進体は、コイルであることを特徴とする。   The thermal flow meter of the second invention is the thermal flow meter of the first invention, wherein the turbulence promoting body is a coil.

また、第3発明の熱式流量計は、第1発明の熱式流量計において、前記乱流促進体は、前記流体の流れ方向に間隔をあけて配置した複数の円環であることを特徴とする。   The thermal flow meter of the third invention is the thermal flow meter of the first invention, wherein the turbulence promoting body is a plurality of rings arranged at intervals in the fluid flow direction. And

また、第4発明の熱式流量計は、第1発明の熱式流量計において、前記乱流促進体は、前記配管の内面に突設した突起物であることを特徴とする。   The thermal flow meter according to a fourth aspect of the present invention is the thermal flow meter according to the first aspect, wherein the turbulence promoting body is a protrusion projecting from the inner surface of the pipe.

また、第5発明の熱式流量計は、第1発明の熱式流量計において、前記乱流促進体は、ねじれテープであることを特徴とする。   The thermal flow meter of the fifth invention is the thermal flow meter of the first invention, wherein the turbulent flow promoting body is a twisted tape.

また、第6発明の熱式流量計は、配管を加熱する加熱手段と、前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、前記配管は、管径の異なる複数の配管部分を有する複数段の構造とすることにより、前記配管内を流れる流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とし、前記加熱手段は、前記管径の異なる複数の配管部分のそれぞれに配置し、前記第1の温度測定手段は、前記管径の異なる複数の配管部分のうちの最も上流側に位置する配管部分に配置された加熱手段よりも上流側に配置し、前記第2の温度測定手段は、前記管径の異なる複数の配管部分のそれぞれに配置したことを特徴とする。   The thermal flow meter of the sixth aspect of the invention measures the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means and heating means for heating the pipe. A thermal flow meter having a first temperature measuring means and a second temperature measuring means for measuring a temperature of a pipe wall portion of the pipe heated by the heating means, wherein the pipe has a pipe diameter By using a multi-stage structure having a plurality of different pipe portions, the fluid is turbulent in the entire range of a predetermined flow rate measurement range of the fluid flowing in the pipe, and the heating means has a different pipe diameter. It arrange | positions at each of several piping parts, and a said 1st temperature measurement means is upstream from the heating means arrange | positioned at the piping part located in the most upstream among the several piping parts from which the said pipe diameter differs. The second temperature measuring means is disposed on the tube Characterized in that disposed in each of the different piping.

また、第7発明の熱式流量計は、配管を加熱する加熱手段と、前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、前記配管の少なくとも前記加熱手段で加熱される配管部分は螺旋管とすることにより、この螺旋管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とする。   A thermal flow meter according to a seventh aspect of the present invention measures a heating means for heating a pipe and a temperature of a pipe wall portion of the pipe or a temperature of a fluid flowing in the pipe at a position upstream of the heating means. A thermal flow meter having first temperature measuring means and second temperature measuring means for measuring the temperature of the pipe wall portion of the pipe heated by the heating means, wherein at least the heating means of the pipe The pipe portion heated by the above is a spiral pipe, which disturbs the flow of the fluid flowing in the spiral pipe and makes the fluid turbulent in the entire range of a predetermined flow rate measurement range of the fluid. To do.

また、第8発明の熱式流量計は、配管を加熱する加熱手段と、前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、前記配管の前記加熱手段で加熱される配管部分をベンド管とすることにより、このベンド管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とする。   The thermal flow meter according to the eighth aspect of the invention measures the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means and heating means for heating the pipe. A thermal flow meter having a first temperature measuring means and a second temperature measuring means for measuring a temperature of a pipe wall portion of the pipe heated by the heating means, wherein the heating means of the pipe By making the pipe part to be heated into a bend pipe, the flow of the fluid flowing in the bend pipe is disturbed to make the fluid turbulent in the entire range of a predetermined flow rate measurement range of the fluid. .

また、第9発明の熱式流量計は、配管内に配置して、前記配管内を流れる流体が衝突することにより、前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とする流体衝突部材と、前記流体衝突部材を加熱する加熱手段と、前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、前記加熱手段で加熱される前記流体衝突部材の温度を測定する第2の温度測定手段とを有することを特徴とする。   A thermal flow meter according to a ninth aspect of the invention is arranged in a pipe, and the fluid flowing in the pipe collides with the fluid in a turbulent state over the entire predetermined flow rate measurement range of the fluid. A fluid impinging member, a heating means for heating the fluid impinging member, and a temperature of a pipe wall portion of the pipe or a temperature of the fluid flowing in the pipe at a position upstream of the heating means. It has temperature measuring means and second temperature measuring means for measuring the temperature of the fluid collision member heated by the heating means.

第1、第2、第3、第4又は第5発明の熱式流量計によれば、コイル、円環、突起物又はねじれテープなどの乱流促進体を、配管の加熱手段で加熱される部分の内部に設け、この乱流促進体で配管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とするように構成したことを特徴とするため、前記所定の流量測定範囲、即ち、乱流促進体を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、前記所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができ、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。
なお、乱流促進体としては、特にコイルを用いる場合が設置の容易さや入手の容易さなどから低コストであるため、最も望ましい。
According to the thermal flow meter of the first, second, third, fourth, or fifth invention, a turbulent flow promoting body such as a coil, a ring, a protrusion, or a twisted tape is heated by a heating means of the pipe. Provided inside the part, the turbulence promoting body is configured to disturb the flow of the fluid flowing in the pipe so that the fluid is in a turbulent state in the entire range of the predetermined flow rate measurement range of the fluid. Therefore, the predetermined flow rate measurement range, that is, a relatively wide flow rate measurement range in which the flow state transitions to a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless a turbulence promoter is provided. The fluid can be in a turbulent state in the entire range. Accordingly, the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the pipe wall / fluid) can be provided with linearity over the entire range of the predetermined flow rate measurement range, and the fluid flow rate and the heat transfer coefficient (ie, heat transfer rate). The relationship with the output of the flow meter is unique. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.
As the turbulent flow promoter, the use of a coil is the most desirable because it is inexpensive because of its ease of installation and availability.

また、第6発明の熱式流量計によれば、前記配管は、管径の異なる複数の配管部分を有する複数段の構造とすることにより、前記配管内を流れる流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とし、前記加熱手段は、前記管径の異なる複数の配管部分のそれぞれに配置し、前記第1の温度測定手段は、前記管径の異なる複数の配管部分のうちの最も上流側に位置する配管部分に配置された加熱手段よりも上流側に配置し、前記第2の温度測定手段は、前記管径の異なる複数の配管部分のそれぞれに配置したことを特徴とするため、前記所定の流量測定範囲、即ち、比較的管径の大きな配管部分だけでは流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができ、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。しかも、流体流量が大きくなった場合でも、加熱手段の加熱量の増大を要せず、管径の大きな配管部分では第2の温度測定手段で測定した管壁温度と第1の温度測定手段で測定した流体温度又は管壁温度との差が大きくなる。このため、コストアップを招くことなく、流量測定範囲が広くて精度のよい流量測定が可能となる。   Moreover, according to the thermal flow meter of the sixth invention, the pipe has a plurality of stages having a plurality of pipe portions having different pipe diameters, so that a predetermined flow rate measurement range of the fluid flowing in the pipe can be obtained. The fluid is in a turbulent state over the entire range, the heating means is disposed in each of the plurality of pipe parts having different pipe diameters, and the first temperature measurement means is provided for the plurality of pipe parts having different pipe diameters. The second temperature measuring means is arranged on each of the plurality of pipe parts having different pipe diameters, and arranged on the upstream side of the heating means arranged on the pipe part located on the most upstream side. Therefore, the predetermined flow rate measurement range, that is, a relatively wide flow rate in which only the pipe portion having a relatively large pipe diameter moves from a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases. Turbulent fluid flow over the entire measurement range It can be. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the pipe wall / fluid) over the entire range of the predetermined flow rate measurement range. Relationship with the output of the flow meter). Moreover, even when the fluid flow rate is increased, the heating amount of the heating means is not required to be increased, and the pipe wall temperature measured by the second temperature measuring means and the first temperature measuring means are used in a pipe portion having a large pipe diameter. The difference from the measured fluid temperature or tube wall temperature increases. For this reason, the flow rate measurement range is wide and the flow rate can be accurately measured without increasing the cost.

また、第7発明の熱式流量計によれば、前記配管の少なくとも前記加熱手段で加熱される配管部分は螺旋管とすることにより、この螺旋管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とするため、前記流体の所定の流量測定範囲、即ち、配管を螺旋管としなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができるため、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができ、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。   According to the thermal flow meter of the seventh aspect of the invention, at least the pipe portion heated by the heating means of the pipe is a spiral pipe, so that the flow of the fluid flowing in the spiral pipe is disturbed. Since the fluid is in a turbulent flow state in the entire range of the predetermined flow rate measurement range, the flow state is increased as the fluid flow rate is increased unless the flow rate measurement range of the fluid, that is, the pipe is a spiral tube. Since the fluid can be in a turbulent state over the entire range of a relatively wide flow rate measurement range that transitions to the laminar flow region, transition region, and turbulent flow region, the fluid flow rate and heat Linearity can be given to the relationship between the transfer rate (heat transfer rate between the tube wall / fluid), and the relationship between the fluid flow rate and the heat transfer rate (ie, the output of the thermal flow meter) is unique. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.

また、第8発明の熱式流量計によれば、前記配管の前記加熱手段で加熱される配管部分をベンド管とすることにより、このベンド管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とするため、前記流体の所定の流量測定範囲、即ち、配管の加熱部をベンド管としなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができるため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。   According to the thermal flow meter of the eighth aspect of the invention, the pipe portion heated by the heating means of the pipe is a bend pipe, thereby disturbing the flow of the fluid flowing in the bend pipe, and Since the fluid is in a turbulent flow state over the entire flow rate measurement range, the fluid flow rate increases as the fluid flow rate increases unless the predetermined flow rate measurement range of the fluid, i.e., the heating part of the pipe, is a bend pipe. The fluid can be in a turbulent state over the entire range of a relatively wide flow rate measurement range in which the state shifts to a laminar flow region, a transition region, and a turbulent flow region. Since the relationship between the heat transfer coefficient (the heat transfer coefficient between the tube wall and the fluid) can be made linear, the relationship between the fluid flow rate and the heat transfer coefficient (that is, the output of the thermal flow meter) is unique. . For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.

また、第9発明の熱式流量計によれば、配管内に配置して、前記配管内を流れる流体が衝突することにより、前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とする流体衝突部材を有することを特徴とするため、前記流体の所定の流量測定範囲、即ち、配管内に流体衝突部材を配置しなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができるため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。   According to the thermal flow meter of the ninth aspect of the present invention, when the fluid flowing in the piping collides with the fluid, the fluid is turbulently flown over the entire predetermined flow rate measurement range of the fluid. Since the fluid collision member is in a state, the predetermined flow rate measurement range of the fluid, that is, if the fluid collision member is not arranged in the pipe, the flow state is increased as the fluid flow rate increases, The fluid can be in a turbulent state over the entire range of a relatively wide flow rate measurement range that shifts to the turbulent flow region, and the fluid flow rate and the heat transfer coefficient (tube wall / Since the linearity can be given to the relationship with the heat transfer coefficient between the fluids, the relationship between the fluid flow rate and the heat transfer coefficient (that is, the output of the thermal flow meter) is unique. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.

以下、本発明の実施の形態例を図面に基づき、詳細に説明する。なお、本発明の熱式流量計は宇宙ステーションなどの各所に用いられる流量計として幅広く適用可能なものである。   Embodiments of the present invention will be described below in detail with reference to the drawings. The thermal flow meter of the present invention can be widely applied as a flow meter used in various places such as a space station.

<実施の形態例1>
図1〜図5は本発明の実施の形態例1に係る熱式流量計(境界層流量計)の構成図であり、これらの熱式流量計は何れも配管内に乱流促進体を設けたものである。
<Embodiment 1>
1 to 5 are configuration diagrams of a thermal flow meter (boundary layer flow meter) according to Embodiment 1 of the present invention, and these thermal flow meters are all provided with a turbulent flow promoting body in a pipe. It is a thing.

図1に示す熱式流量計は、加熱手段としてのヒータ11と、第1の温度測定手段としての測温抵抗体又は熱電対などの温度センサ12と、第2の温度測定手段としての測温抵抗体又は熱電対などの温度センサ13と、乱流促進体としてのコイル14とを有するものであり、図1中に矢印Aで示すように配管15内を流れる水などの流体の流速(流量)を計測するためのものである。   The thermal flow meter shown in FIG. 1 includes a heater 11 as a heating means, a temperature sensor 12 such as a resistance temperature detector or a thermocouple as a first temperature measurement means, and a temperature measurement as a second temperature measurement means. A temperature sensor 13 such as a resistor or a thermocouple, and a coil 14 as a turbulence promoting body, and a flow velocity (flow rate) of a fluid such as water flowing in the pipe 15 as indicated by an arrow A in FIG. ).

ヒータ11は配管15の外周面15aに装着されており、配管15(管壁)を加熱する。ヒータ11は電気ヒータであり、図示しないヒータ電源に接続されている。従って、ヒータ11はヒータ電源からの供給電力により発熱して配管15を加熱する。なお、ヒータ15の加熱量は例えばヒータ電源からヒータ15へ供給される電力量を電力計で計測することなどによって適宜求めることができる。   The heater 11 is mounted on the outer peripheral surface 15a of the pipe 15 and heats the pipe 15 (pipe wall). The heater 11 is an electric heater and is connected to a heater power source (not shown). Therefore, the heater 11 generates heat by the power supplied from the heater power source and heats the pipe 15. The heating amount of the heater 15 can be determined as appropriate by, for example, measuring the amount of power supplied from the heater power source to the heater 15 with a wattmeter.

温度センサ12はヒータ15の設置位置よりも流体の流れ方向の上流側(以下単に上流側という)において配管15の管壁に設置されており、当該管壁部分(測定点15c)の温度T1を測定する。この場合、温度センサ12によって流体の温度を直接測定することも考えられるが、そのためには温度センサ12を配管15内に挿入しなければならず、温度センサ12が流体の流れに対する抵抗となってしまうため、温度センサ12によって管壁温度T1を計測するほうが望ましい。温度センサ12はヒータ11から十分離れた位置に配置されているため、温度センサ12で測定される管壁温度T1はヒータ11の影響が小さく、配管15内を流れる流体の温度とほぼ等しくなる。換言すれば、温度センサ12は流体の流量が変化しても出力(管壁温度の測定値)が変化しないようにヒータ11から十分離れた位置に設置する。   The temperature sensor 12 is installed on the pipe wall of the pipe 15 on the upstream side (hereinafter simply referred to as the upstream side) of the fluid flow direction from the installation position of the heater 15, and the temperature T1 of the pipe wall part (measurement point 15c) is measured. taking measurement. In this case, it is conceivable to directly measure the temperature of the fluid by the temperature sensor 12, but for that purpose, the temperature sensor 12 must be inserted into the pipe 15, and the temperature sensor 12 becomes a resistance against the flow of the fluid. Therefore, it is desirable to measure the tube wall temperature T1 by the temperature sensor 12. Since the temperature sensor 12 is disposed at a position sufficiently away from the heater 11, the tube wall temperature T <b> 1 measured by the temperature sensor 12 is less affected by the heater 11 and is substantially equal to the temperature of the fluid flowing in the pipe 15. In other words, the temperature sensor 12 is installed at a position sufficiently away from the heater 11 so that the output (measured value of the tube wall temperature) does not change even when the flow rate of the fluid changes.

温度センサ13はヒータ11で加熱される配管15の管壁部分(測定点15d)の温度T2を測定する。この場合、流体流量の変化に伴って変化する流体の熱伝達率(管壁/流体間の熱伝達率)の変化が温度センサ13で測定される管壁温度T2に大きく反映されるよう、即ち温度センサ13の測定点15dを通過する熱流束が大きくなるように温度センサ13は、図示のようなヒータ11の直ぐ内側(直上又は直下など)に設置することが望ましい。   The temperature sensor 13 measures the temperature T2 of the pipe wall portion (measurement point 15d) of the pipe 15 heated by the heater 11. In this case, the change in the heat transfer coefficient of the fluid (the heat transfer coefficient between the tube wall / fluid) that changes with the change in the fluid flow rate is greatly reflected in the tube wall temperature T2 measured by the temperature sensor 13, that is, It is desirable to install the temperature sensor 13 immediately inside the heater 11 as shown in the figure (directly above or directly below) so that the heat flux passing through the measurement point 15d of the temperature sensor 13 becomes large.

温度センサ12で測定した管壁温度T1(又は流体温度)と温度センサ13で測定した管壁温度T2は図示しない演算装置に入力される。演算装置では、背景技術の欄で述べたとおり、管壁温度T1(又は流体温度)及びヒータ加熱部の管壁温度T2と、ヒータ11の加熱量と、流体物性と、管径とに基づいて演算により流体の流速(流量)を求める。   The tube wall temperature T1 (or fluid temperature) measured by the temperature sensor 12 and the tube wall temperature T2 measured by the temperature sensor 13 are input to an arithmetic device (not shown). In the arithmetic unit, as described in the background art section, based on the tube wall temperature T1 (or fluid temperature), the tube wall temperature T2 of the heater heating unit, the heating amount of the heater 11, the fluid properties, and the tube diameter. The flow velocity (flow rate) of the fluid is obtained by calculation.

そして、コイル14は配管15のヒータ11で加熱される部分の内部に配置されている。コイル14は接着などの適宜の固定手段によって配管15の内周面15bに固定されている。コイル14は中心軸の方向が流体の流れ方向(矢印A方向)に沿っている。なお、図示例ではコイル14として針金などの金属線を螺旋状に形成してなるワイヤーコイルを用いているが、必ずしもこれに限定するものではなく、コイル14を形成する(螺旋状とする)ための線状体の材質としては樹脂などの適宜のものを用いることができる。   And the coil 14 is arrange | positioned inside the part heated with the heater 11 of the piping 15. As shown in FIG. The coil 14 is fixed to the inner peripheral surface 15b of the pipe 15 by appropriate fixing means such as adhesion. The direction of the central axis of the coil 14 is along the fluid flow direction (arrow A direction). In the illustrated example, a wire coil formed by forming a metal wire such as a wire in a spiral shape is used as the coil 14, but the present invention is not limited to this, and the coil 14 is formed (has a spiral shape). As the material of the linear body, an appropriate material such as a resin can be used.

コイル14を配管15内に設けたことにより、配管15内を流れる流体がコイル14を設けなければ層流となるような低流量域(低レイノルズ域)のときにも、前記流体の流れをコイル14によって乱す(管壁付近の境界層流れを撹乱する)ことで前記流体を乱流状態とすることができる。つまり、コイル14を設けることによって比較的低流量域(低レイノルズ域)のときから流況を乱流とすることができる。このため、所定(所望)の流量測定範囲、即ち、コイル14を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   Since the coil 14 is provided in the pipe 15, the flow of the fluid can be controlled even when the fluid flowing in the pipe 15 is in a low flow rate region (low Reynolds region) where a laminar flow occurs unless the coil 14 is provided. The fluid can be brought into a turbulent state by turbulence by 14 (perturbing the boundary layer flow near the tube wall). That is, by providing the coil 14, the flow state can be made turbulent from a relatively low flow rate region (low Reynolds region). Therefore, a predetermined (desired) flow rate measurement range, that is, a relatively wide flow rate measurement range in which the flow state shifts from a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless the coil 14 is provided. The fluid can be in a turbulent state over the entire range. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range.

また、コイル14に代えて、図2〜図5に示すような他の構造の乱流促進体を用いるようにしてもよい。なお、図2〜図5では乱流促進体と構造が異なるのみであり、その他の構成については図1と同様であるため、同一の符号を付し、重複する詳細な説明は省略する。   Moreover, it may replace with the coil 14 and you may make it use the turbulence promoter of another structure as shown in FIGS. 2 to 5 are only different in structure from the turbulence promoting body, and the other configurations are the same as those in FIG. 1, and therefore, the same reference numerals are given and the detailed description thereof is omitted.

図2に示す熱式流量計では、乱流促進体としての複数の円環21が、配管15のヒータ11で加熱される部分の内部に設けられている。複数の円環21は配管15内を流れる流体の流れ方向(矢印A方向)に一定の間隔で配置されており、配管15の内面15bに接着などの適宜の固定手段によって固定されている。このように複数の円環21を配管15内に設けたことにより、配管15内を流れる流体が円環21を設けなければ層流となるような低流量域(低レイノルズ域)のときにも、前記流体の流れを円環21によって乱す(管壁付近の境界層流れを撹乱する)ことで前記流体を乱流状態とすることができる。つまり、円環21を設けることによって比較的低流量域(低レイノルズ域)のときから流況を乱流とすることができる。このため、所定(所望)の流量測定範囲、即ち、円環21を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   In the thermal flow meter shown in FIG. 2, a plurality of circular rings 21 as turbulence promoting bodies are provided inside a portion of the pipe 15 that is heated by the heater 11. The plurality of annular rings 21 are arranged at regular intervals in the flow direction of the fluid flowing in the pipe 15 (arrow A direction), and are fixed to the inner surface 15b of the pipe 15 by appropriate fixing means such as adhesion. By providing a plurality of annular rings 21 in the pipe 15 in this way, even when the fluid flowing in the pipe 15 is in a low flow rate region (low Reynolds area) where a laminar flow occurs if the annular ring 21 is not provided. The fluid flow can be made turbulent by disturbing the flow of the fluid by the annular ring 21 (disturbing the boundary layer flow near the tube wall). That is, by providing the ring 21, the flow state can be made turbulent from a relatively low flow rate region (low Reynolds region). For this reason, a predetermined (desired) flow rate measurement range, that is, a relatively wide flow rate measurement range in which the flow state shifts from a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless an annular ring 21 is provided. The fluid can be in a turbulent state in the entire range. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range.

図3に示す熱式流量計では、乱流促進体としての突起物31が、配管15のヒータ11で加熱される部分の内部に設けられている。突起物31は配管15の内面に突設されており、螺旋状に形成された一体のものである。なお、突起物31の断面形状は図示例のような台形状の他、三角形状や矩形状などの適宜の形状とすることができる。このように突起物31を配管15内に設けたことにより、配管15内を流れる流体が突起物31を設けなければ層流となるような低流量域(低レイノルズ域)のときにも、前記流体の流れを突起物31によって乱す(管壁付近の境界層流れを撹乱する)ことで前記流体を乱流状態とすることができる。つまり、突起物31を設けることによって比較的低流量域(低レイノルズ域)のときから流況を乱流とすることができる。このため、所定(所望)の流量測定範囲、即ち、突起物31を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   In the thermal flow meter shown in FIG. 3, a protrusion 31 as a turbulence promoting body is provided inside a portion of the pipe 15 that is heated by the heater 11. The protrusion 31 protrudes from the inner surface of the pipe 15 and is an integral one formed in a spiral shape. In addition, the cross-sectional shape of the protrusion 31 can be set to an appropriate shape such as a triangular shape or a rectangular shape in addition to the trapezoidal shape shown in the illustrated example. By providing the protrusion 31 in the pipe 15 as described above, the fluid flowing in the pipe 15 is a laminar flow if the protrusion 31 is not provided, even in a low flow rate region (low Reynolds region). By disturbing the flow of the fluid by the protrusions 31 (disturbing the boundary layer flow near the tube wall), the fluid can be in a turbulent state. That is, by providing the protrusions 31, the flow can be made turbulent from the relatively low flow rate range (low Reynolds range). For this reason, a predetermined (desired) flow rate measurement range, that is, a relatively wide flow rate measurement range in which the flow state shifts to a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless the protrusion 31 is provided. The fluid can be in a turbulent state in the entire range. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range.

図4に示す熱式流量計では、乱流促進体としての突起物41が、配管15のヒータ11で加熱される部分の内部に設けられている。突起物41は配管15の内面に複数突設されている。なお、突起物31の断面形状は図示例のような円錐状の他、円錐台状、針状など適宜の形状とすることができる。このように突起物41を配管15内に設けたことにより、配管15内を流れる流体が突起物41を設けなければ層流となるような低流量域(低レイノルズ域)のときにも、前記流体の流れを突起物41によって乱す(管壁付近の境界層流れを撹乱する)ことで前記流体を乱流状態とすることができる。つまり、突起物41を設けることによって比較的低流量域(低レイノルズ域)のときから流況を乱流とすることができる。このため、所定(所望)の流量測定範囲、即ち、突起物41を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   In the thermal flow meter shown in FIG. 4, a protrusion 41 as a turbulent flow promoting body is provided inside a portion heated by the heater 11 of the pipe 15. A plurality of protrusions 41 are provided on the inner surface of the pipe 15. In addition, the cross-sectional shape of the protrusion 31 can be set to an appropriate shape such as a truncated cone shape or a needle shape in addition to the conical shape as shown in the illustrated example. By providing the protrusion 41 in the pipe 15 as described above, the fluid flowing in the pipe 15 is in a low flow rate region (low Reynolds area) where a laminar flow occurs unless the protrusion 41 is provided. By disturbing the flow of the fluid by the protrusions 41 (disturbing the boundary layer flow near the tube wall), the fluid can be in a turbulent state. That is, by providing the protrusions 41, the flow state can be made turbulent from a relatively low flow rate range (low Reynolds range). For this reason, a predetermined (desired) flow rate measurement range, that is, a wide flow rate measurement range in which the flow state transitions to a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless the protrusion 41 is provided. The fluid can be turbulent in the range. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range.

図5に示す熱式流量計では、乱流促進体としてのねじれテープ51が、配管15のヒータ11で加熱される部分の内部に設けられている。ねじれテープ51は接着などの適宜の固定手段によって配管15の内周面15bに固定されている。ねじれテープ51は金属板などの適宜の材質の板をねじった構造のものであり、中心軸の方向が流体の流れ方向(矢印A方向)に沿っている。このようにねじれテープ51を配管15内に設けたことにより、配管15内を流れる流体がねじれテープ51を設けなければ層流となるような低流量域(低レイノルズ域)のときにも、前記流体の流れをねじれテープ51によって乱す(主流を旋回させて主流と管壁近傍の流れとを入れ替える)ことで前記流体を乱流状態とすることができる。つまり、ねじれテープ51を設けることによって比較的低流量域(低レイノルズ域)のときから流況を乱流とすることができる。このため、所定(所望)の流量測定範囲、即ち、ねじれテープ51を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   In the thermal flow meter shown in FIG. 5, a twisted tape 51 as a turbulent flow promoting body is provided inside a portion heated by the heater 11 of the pipe 15. The twisted tape 51 is fixed to the inner peripheral surface 15b of the pipe 15 by appropriate fixing means such as adhesion. The twisted tape 51 has a structure in which a plate made of an appropriate material such as a metal plate is twisted, and the direction of the central axis is along the flow direction of the fluid (the direction of arrow A). Since the twisted tape 51 is provided in the pipe 15 as described above, the fluid flowing in the pipe 15 is in a low flow rate region (low Reynolds region) where a laminar flow is generated unless the twisted tape 51 is provided. The fluid flow can be made turbulent by disturbing the flow of the fluid by the twisted tape 51 (by turning the main flow to exchange the main flow and the flow in the vicinity of the pipe wall). That is, by providing the twisted tape 51, the flow state can be made turbulent from the relatively low flow rate region (low Reynolds region). Therefore, a predetermined (desired) flow measurement range, that is, a wide flow measurement range in which the flow state shifts to a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless the twisted tape 51 is provided. The fluid can be turbulent in the range. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range.

以上のように本実施の形態例の熱式流量計によれば、コイル14、円環21、突起物31,41又はねじれテープ51などの乱流促進体を、配管15のヒータ11で加熱される部分の内部に設け、この乱流促進体で配管15内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とするように構成したことを特徴とするため、前記所定の流量測定範囲、即ち、乱流促進体を設けなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができるため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。
なお、乱流促進体としては、特にコイル14を用いる場合が設置の容易さや入手の容易さなどから低コストであるため、最も望ましい。
As described above, according to the thermal flow meter of the present embodiment, the turbulence promoting body such as the coil 14, the ring 21, the protrusions 31 and 41, or the twisted tape 51 is heated by the heater 11 of the pipe 15. The turbulence promoter is used to disturb the flow of the fluid flowing through the pipe 15 so that the fluid is in a turbulent state over the predetermined flow rate measurement range of the fluid. Therefore, if a turbulence promoter is not provided, a relatively wide flow rate that causes the flow state to shift to a laminar flow region, a transition region, or a turbulent flow region if a turbulence promoter is not provided. The fluid can be in a turbulent state over the entire measurement range, and linearity is achieved in the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow measurement range. Fluid flow rate and heat transfer coefficient That is the relationship between the thermal type the output of the flow meter) is unique. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.
As the turbulent flow promoter, the use of the coil 14 is most preferable because it is inexpensive because of its ease of installation and availability.

<実施の形態例2>
配管の管径を小さくすれば低流量域でも流体を乱流状態にすることができる。しかし、単に管径を小さくした場合、当該小管径の配管において高流量の測定を行うときには、流体の流速が非常に大きくなって、流体の熱伝達率が非常に大きくなるため、ヒータ加熱部における管壁温度T2と流体温度(管壁温度T1)との差が小さくなって測定精度が低下してしまう。このため、測定精度を上げるには管壁温度T2と流体温度(管壁温度T1)との差を大きくしなければならないが、そのためにはヒータ加熱量を大きくしなければならず、コストアップを招いてしまう。
<Embodiment 2>
If the pipe diameter is reduced, the fluid can be in a turbulent state even in a low flow rate region. However, when the pipe diameter is simply reduced, the flow rate of the fluid becomes very large and the heat transfer coefficient of the fluid becomes very large when measuring a high flow rate in the small pipe diameter pipe. In this case, the difference between the tube wall temperature T2 and the fluid temperature (tube wall temperature T1) becomes small, and the measurement accuracy decreases. For this reason, in order to increase the measurement accuracy, the difference between the tube wall temperature T2 and the fluid temperature (tube wall temperature T1) must be increased. To this end, the heater heating amount must be increased, which increases the cost. I will invite you.

そこで、本実施の形態例2では、管径を小さくすることよって乱流を促進し、且つ、その場合に生じる上記のような問題点も解決するものである。図6には本発明の実施の形態例2に係る熱式流量計(境界層流量計)の構成図を示す。   Therefore, in the second embodiment, the turbulent flow is promoted by reducing the tube diameter, and the above-mentioned problems occurring in that case are also solved. FIG. 6 shows a configuration diagram of a thermal type flow meter (boundary layer flow meter) according to Embodiment 2 of the present invention.

図6に示す熱式流量計は、加熱手段としてのヒータ61,62,63と、第1の温度測定手段としての測温抵抗体又は熱電対などの温度センサ64と、第2の温度測定手段としての測温抵抗体又は熱電対などの温度センサ65,66,67とを有し、且つ、配管68の構造に工夫を施したものであり(詳細後述)、図6中に矢印Aで示すように配管68内を流れる水などの流体の流速(流量)を計測するためのものである。   The thermal flow meter shown in FIG. 6 includes heaters 61, 62, and 63 as heating means, a temperature sensor 64 such as a resistance temperature detector or a thermocouple as first temperature measuring means, and second temperature measuring means. 6 and a temperature sensor 65, 66, 67 such as a thermocouple, and the structure of the pipe 68 is devised (details will be described later), and is indicated by an arrow A in FIG. Thus, the flow rate (flow rate) of fluid such as water flowing in the pipe 68 is measured.

配管68は、管径の異なる3つの配管部分68A,68B,68Cを有する3段構造となっている。配管部分68A,68B,68Cは流体の流れ方向の上流側から下流側(以下単に上流側、下流側という)に向かって順に管径(内径)が小さくなっている。最も下流側に位置して最も管径の小さい配管部分68Cでは、他の配管部分68B,68Cでは層流となるような低流量域の流体でも、乱流となる。換言すれば、配管部分68Cの管径は流体流量が所定の低流量のときにも流体が乱流状態となるような値に設定されている。そして、流体流量の増大とともに配管部分68Bでも流体が乱流状態となり、更に配管部分68Aでも乱流状態となる。   The pipe 68 has a three-stage structure having three pipe parts 68A, 68B, 68C having different pipe diameters. The pipe portions 68A, 68B, 68C have smaller pipe diameters (inner diameters) in order from the upstream side in the fluid flow direction to the downstream side (hereinafter simply referred to as the upstream side and the downstream side). In the pipe portion 68C having the smallest pipe diameter located on the most downstream side, even a fluid in a low flow rate region that becomes laminar flow in the other pipe portions 68B and 68C becomes turbulent. In other words, the pipe diameter of the pipe portion 68C is set to such a value that the fluid is in a turbulent state even when the fluid flow rate is a predetermined low flow rate. As the fluid flow rate increases, the fluid is also turbulent in the pipe portion 68B, and the turbulent state is also in the pipe portion 68A.

このため、所定(所望)の流量測定範囲、即ち、配管部分68Aや配管部分68Bのような比較的管径の大きな配管部分だけでは流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができる。従って、所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。なお、段数(管径の異なる配管部分の数)は必ずしも3段(3つ)に限定するものではなく、必要に応じて2段(2つ)又は4段(4つ)以上であってもよい。   For this reason, in a predetermined (desired) flow rate measurement range, that is, only in a pipe part having a relatively large pipe diameter such as the pipe part 68A or the pipe part 68B, the flow state is increased as the fluid flow rate increases. The fluid can be in a turbulent state in the entire range of a relatively wide flow rate measurement range that shifts. Therefore, linearity can be given to the relationship between the fluid flow rate and the heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range. Note that the number of stages (the number of pipe portions having different pipe diameters) is not necessarily limited to three (three), and may be two (two) or four (four) or more as required. Good.

ヒータ61,62,63は、管径の異なる複数の配管部分68A,68B,68Cのそれぞれの外周面68A−1,68B−1,68C−1に装着されており、各配管部分68A,68B,68Cの管壁をそれぞれ加熱する。ヒータ61,62,63は電気ヒータであり、図示しないヒータ電源に接続されている。従って、ヒータ61,62,63はヒータ電源からの供給電力により発熱して配管部分68A,68B,68Cをそれぞれ加熱する。なお、各ヒータ61,62,63の加熱量は例えばヒータ電源から各ヒータ61,62,63へ供給される電力量を電力計で計測することなどによって適宜求めることができる。   The heaters 61, 62, and 63 are mounted on the outer peripheral surfaces 68A-1, 68B-1, and 68C-1 of the plurality of pipe portions 68A, 68B, and 68C having different pipe diameters, and the pipe portions 68A, 68B, and 68C-1, respectively. Each 68C tube wall is heated. The heaters 61, 62, and 63 are electric heaters and are connected to a heater power source (not shown). Accordingly, the heaters 61, 62, 63 generate heat by the power supplied from the heater power source and heat the pipe portions 68A, 68B, 68C, respectively. In addition, the heating amount of each heater 61, 62, 63 can be calculated | required suitably, for example by measuring the electric energy supplied to each heater 61, 62, 63 from a heater power supply with a wattmeter.

温度センサ64は管径の異なる配管部分68A,68B,68Cのうちの最も上流側に位置する配管部分68Aに配置されたヒータ61の設置位置よりも上流側において配管部分68Aの管壁に設置されており、当該管壁部分(測定点68a)の温度T1を測定する。この場合、温度センサ64によって流体の温度を直接測定することも考えられるが、そのためには温度センサ64を配管68(配管部分68A)内に挿入しなければならず、温度センサ64が流体の流れに対する抵抗となってしまうため、温度センサ64によって管壁温度T1を計測するほうが望ましい。温度センサ64はヒータ61から十分離れた位置に配置されているため、温度センサ64で測定される管壁温度T1はヒータ61の影響が小さく、配管68内を流れる流体の温度とほぼ等しくなる。換言すれば、温度センサ64は流体の流量が変化しても出力(管壁温度の測定値)が変化しないようにヒータ61から十分離れた位置に設置する。この場合、当然、温度センサ64はヒータ62,63からも十分離れている。   The temperature sensor 64 is installed on the pipe wall of the pipe part 68A upstream of the installation position of the heater 61 arranged in the pipe part 68A located on the most upstream side of the pipe parts 68A, 68B, 68C having different pipe diameters. The temperature T1 of the tube wall portion (measurement point 68a) is measured. In this case, it is conceivable to directly measure the temperature of the fluid by the temperature sensor 64, but for this purpose, the temperature sensor 64 must be inserted into the pipe 68 (pipe portion 68A), and the temperature sensor 64 flows into the fluid. Therefore, it is preferable to measure the tube wall temperature T1 by the temperature sensor 64. Since the temperature sensor 64 is disposed at a position sufficiently away from the heater 61, the tube wall temperature T1 measured by the temperature sensor 64 is less affected by the heater 61 and is substantially equal to the temperature of the fluid flowing in the pipe 68. In other words, the temperature sensor 64 is installed at a position sufficiently away from the heater 61 so that the output (measured value of the tube wall temperature) does not change even when the flow rate of the fluid changes. In this case, of course, the temperature sensor 64 is sufficiently separated from the heaters 62 and 63.

温度センサ65,66,67は管径の異なる配管部分68A,68B,68Cのそれぞれに配置され、各ヒータ61,62,63で加熱される各配管部分68A,68B,68Cの管壁部分(測定点68b,68c,68d)の温度T2−1,T2−2,T2−3のそれぞれを測定する。勿論、これらの配管加熱及び温度測定は同時に行うのではなく、温度センサ65で管壁温度T2−1を測定するときにはヒータ61によって配管部分61Aを加熱し、温度センサ66で管壁温度T2−2を測定するときにはヒータ62によって配管部分61Bを加熱し、温度センサ67で管壁温度T2−3を測定するときにはヒータ63によって配管部分61Aを加熱する。この場合、流体流量の変化に伴って変化する流体の熱伝達率(管壁/流体間の熱伝達率)の変化が各温度センサ65,66,67で測定される管壁温度T2−1,T2−2,T2−3に大きく反映されるよう、即ち各温度センサ65,66,67の測定点68b,68c,68dを通過する熱流束が大きくなるように各温度センサ65,66,67は、図示のような各ヒータ61,62,63の直ぐ内側(直下又は直上など)に設置することが望ましい。   The temperature sensors 65, 66, and 67 are disposed in the pipe portions 68A, 68B, and 68C having different pipe diameters, and the pipe wall portions (measurements) of the pipe portions 68A, 68B, and 68C heated by the heaters 61, 62, and 63, respectively. Temperatures T2-1, T2-2, and T2-3 at points 68b, 68c, and 68d) are measured. Of course, these pipe heating and temperature measurement are not performed at the same time. When the pipe wall temperature T2-1 is measured by the temperature sensor 65, the pipe portion 61A is heated by the heater 61, and the pipe wall temperature T2-2 by the temperature sensor 66. When measuring the pipe portion 61B by the heater 62, and when measuring the pipe wall temperature T2-3 by the temperature sensor 67, the heater 63 heats the pipe portion 61A. In this case, the change in the heat transfer coefficient of the fluid (the heat transfer coefficient between the pipe wall / fluid) that changes with the change in the fluid flow rate is measured by the temperature sensors 65, 66, and 67. The temperature sensors 65, 66, and 67 are reflected in T2-2 and T2-3 so that the heat flux passing through the measurement points 68b, 68c, and 68d of the temperature sensors 65, 66, and 67 is increased. It is desirable that the heaters 61, 62, and 63 as shown in FIG.

温度センサ64で測定した管壁温度T1(又は流体温度)と温度センサ65,66,67で測定した管壁温度T2−1,T2−2,T2−3は図示しない演算装置に入力される。演算装置では、背景技術の欄で述べたとおり、管壁温度T1(又は流体温度)及びヒータ加熱部の管壁温度T2−1,T2−2又はT2−3と、ヒータ61,62又は63の加熱量と、流体物性と、各段の配管部分68A,68B又は68Cの管径とに基づいて演算により流体の流速(流量)を求める。   The tube wall temperature T1 (or fluid temperature) measured by the temperature sensor 64 and the tube wall temperatures T2-1, T2-2, and T2-3 measured by the temperature sensors 65, 66, and 67 are input to an arithmetic unit (not shown). In the arithmetic unit, as described in the background section, the tube wall temperature T1 (or fluid temperature), the tube wall temperature T2-1, T2-2, or T2-3 of the heater heating unit, and the heaters 61, 62, or 63 The flow velocity (flow rate) of the fluid is obtained by calculation based on the heating amount, the physical properties of the fluid, and the pipe diameter of the pipe portion 68A, 68B or 68C of each stage.

以上のように本実施の形態例の熱式流量計によれば、配管68を管径の異なる複数の配管部分68A,68B,68Cを有する複数段の構造とすることにより、配管68内を流れる流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とし、ヒータ61,62,63を管径の異なる複数の配管部分68A,68B,68Cのそれぞれに配置し、温度センサ64を管径の異なる複数の配管部分68A,68B,68Cのうちの最も上流側に位置する配管部分68Aに配置されたヒータ61よりも上流側に配置し、温度センサ65,66,67を管径の異なる複数の配管部分68A,68B,68Cのそれぞれに配置したことを特徴とするため、前記所定の流量測定範囲、即ち、比較的管径の大きな配管部分だけでは流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定の流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができるため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。しかも、流体流量が大きくなった場合でも、ヒータ加熱量の増大を要せず、管径の大きな配管部分68A又は68Bでは温度センサ65又は66で測定した管壁温度T2−1又はT2−2と温度センサ64で測定した流体温度又は管壁温度T1との差が大きくなる。このため、コストアップを招くことなく、流量測定範囲が広くて精度のよい流量測定が可能となる。   As described above, according to the thermal flow meter of the present embodiment, the pipe 68 has a plurality of pipe portions 68A, 68B, 68C having different pipe diameters, thereby flowing in the pipe 68. The fluid is brought into a turbulent state over the entire range of the predetermined flow rate measurement range of the fluid, the heaters 61, 62, 63 are arranged in the pipe portions 68A, 68B, 68C having different pipe diameters, and the temperature sensor 64 is connected to the pipe. It arrange | positions upstream from the heater 61 arrange | positioned in the piping part 68A located in the most upstream among the some piping parts 68A, 68B, 68C from which a diameter differs, and temperature sensor 65, 66, 67 differs in a pipe diameter. Since the plurality of pipe portions 68A, 68B, and 68C are arranged respectively, the predetermined flow rate measurement range, that is, only a pipe portion having a relatively large pipe diameter increases the fluid flow rate. The fluid can be in a turbulent flow state over a relatively wide flow measurement range where the state moves from a laminar flow region, a transition region, and a turbulent flow region, and the fluid flow rate over the entire range of the predetermined flow measurement range. And the heat transfer coefficient (the heat transfer coefficient between the tube wall / fluid) can be made linear, so the relationship between the fluid flow rate and the heat transfer coefficient (ie, the output of the thermal flow meter) is unique. Become. Moreover, even when the fluid flow rate increases, the heater heating amount does not need to be increased, and the pipe wall temperature T2-1 or T2-2 measured by the temperature sensor 65 or 66 is used in the pipe portion 68A or 68B having a large pipe diameter. The difference from the fluid temperature or the tube wall temperature T1 measured by the temperature sensor 64 increases. For this reason, the flow rate measurement range is wide and the flow rate can be accurately measured without increasing the cost.

<実施の形態例3>
図7は本発明の実施の形態例3に係る熱式流量計(境界層流量計)の構成図である。図7に示す熱式流量計は、加熱手段としてのヒータ71と、第1の温度測定手段としての測温抵抗体又は熱電対などの温度センサ72と、第2の温度測定手段としての測温抵抗体又は熱電対などの温度センサ73とを有し、図7中に矢印Aで示すように配管74内を流れる水などの流体の流速(流量)を計測するためのものである。
<Embodiment 3>
FIG. 7 is a configuration diagram of a thermal type flow meter (boundary layer flow meter) according to Embodiment 3 of the present invention. The thermal flow meter shown in FIG. 7 includes a heater 71 as a heating means, a temperature sensor 72 such as a resistance temperature detector or a thermocouple as a first temperature measurement means, and a temperature measurement as a second temperature measurement means. It has a temperature sensor 73 such as a resistor or a thermocouple, and measures the flow velocity (flow rate) of a fluid such as water flowing in the pipe 74 as indicated by an arrow A in FIG.

ヒータ71は配管74の外周面に装着されており、配管74(管壁)を加熱する。ヒータ71は電気ヒータであり、図示しないヒータ電源に接続されている。従って、ヒータ71はヒータ電源からの供給電力により発熱して配管74を加熱する。なお、ヒータ71の加熱量は例えばヒータ電源からヒータ71へ供給される電力量を電力計で計測することなどによって適宜求めることができる。   The heater 71 is mounted on the outer peripheral surface of the pipe 74 and heats the pipe 74 (pipe wall). The heater 71 is an electric heater and is connected to a heater power source (not shown). Accordingly, the heater 71 generates heat by the power supplied from the heater power source and heats the pipe 74. The heating amount of the heater 71 can be determined as appropriate by, for example, measuring the amount of power supplied from the heater power source to the heater 71 with a wattmeter.

温度センサ72はヒータ71の設置位置よりも流体の流れ方向の上流側(以下単に上流側という)において配管74の管壁に設置されており、当該管壁部分(測定点74a)の温度T1を測定する。この場合、温度センサ72によって流体の温度を直接測定することも考えられるが、そのためには温度センサ72を配管74内に挿入しなければならず、温度センサ72が流体の流れに対する抵抗となってしまうため、温度センサ72によって管壁温度T1を計測するほうが望ましい。温度センサ72はヒータ71から十分離れた位置に配置されているため、温度センサ72で測定される管壁温度T1はヒータ71の影響が小さく、配管74内を流れる流体の温度とほぼ等しくなる。換言すれば、温度センサ72は流体の流量が変化しても出力(管壁温度の測定値)が変化しないようにヒータ71から十分離れた位置に設置する。   The temperature sensor 72 is installed on the pipe wall of the pipe 74 on the upstream side (hereinafter simply referred to as the upstream side) in the fluid flow direction from the installation position of the heater 71, and the temperature T1 of the pipe wall part (measurement point 74a) is measured. taking measurement. In this case, the temperature of the fluid may be directly measured by the temperature sensor 72. To this end, the temperature sensor 72 must be inserted into the pipe 74, and the temperature sensor 72 becomes a resistance against the fluid flow. Therefore, it is desirable to measure the tube wall temperature T1 by the temperature sensor 72. Since the temperature sensor 72 is disposed at a position sufficiently away from the heater 71, the tube wall temperature T1 measured by the temperature sensor 72 is less affected by the heater 71 and is substantially equal to the temperature of the fluid flowing in the pipe 74. In other words, the temperature sensor 72 is installed at a position sufficiently away from the heater 71 so that the output (measured value of the tube wall temperature) does not change even if the flow rate of the fluid changes.

温度センサ73はヒータ71で加熱される配管74の管壁部分(測定点74b)の温度T2を測定する。この場合、流体流量の変化に伴って変化する流体の熱伝達率(管壁/流体間の熱伝達率)の変化が温度センサ73で測定される管壁温度T2に大きく反映されるよう、即ち温度センサ73の測定点74bを通過する熱流束が大きくなるように温度センサ73は、図示のようにヒータ71の直ぐ内側に設置することが望ましい。   The temperature sensor 73 measures the temperature T2 of the pipe wall portion (measurement point 74b) of the pipe 74 heated by the heater 71. In this case, the change in the heat transfer coefficient of the fluid (the heat transfer coefficient between the tube wall / fluid) that changes with the change in the fluid flow rate is greatly reflected in the tube wall temperature T2 measured by the temperature sensor 73, that is, It is desirable that the temperature sensor 73 is installed immediately inside the heater 71 as shown in the figure so that the heat flux passing through the measurement point 74b of the temperature sensor 73 is increased.

温度センサ72で測定した管壁温度T1(又は流体温度)と温度センサ73で測定した管壁温度T2は図示しない演算装置に入力される。演算装置では、背景技術の欄で述べたとおり、管壁温度T1(又は流体温度)及びヒータ加熱部の管壁温度T2と、ヒータ71の加熱量と、流体物性と、配管(螺旋管)74の管径とに基づいて演算により流体の流速(流量)を求める。   The tube wall temperature T1 (or fluid temperature) measured by the temperature sensor 72 and the tube wall temperature T2 measured by the temperature sensor 73 are input to an arithmetic device (not shown). In the arithmetic unit, as described in the background section, the tube wall temperature T1 (or fluid temperature), the tube wall temperature T2 of the heater heating unit, the heating amount of the heater 71, the fluid properties, and the piping (spiral tube) 74 The flow velocity (flow rate) of the fluid is obtained by calculation based on the pipe diameter.

そして、配管74は螺旋管となっている。このため、螺旋管内を流れる流体は、その流れが乱されて(旋回流となって)、比較的低流量域のときから流況が乱流状態となる。従って、前記流体の所定(所望)の流量測定範囲、即ち、配管74を螺旋管としなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができるため、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。なお、この場合、配管74は少なくともヒータ71で加熱される配管部分(温度センサ73の温度測定部分)を螺旋管とすればよく、その他の配管部分(温度センサ72の温度測定部分など)は必ずしも乱流にする必要はないため、螺旋管にしなくても(例えば直管でも)よい。   The pipe 74 is a spiral pipe. For this reason, the fluid flowing in the spiral tube is disturbed (a swirl flow), and the flow state becomes a turbulent state from a relatively low flow rate region. Therefore, a predetermined (desired) flow rate measurement range of the fluid, that is, a relatively wide range in which the flow state shifts to a laminar flow region, a transition region, and a turbulent flow region as the fluid flow rate increases unless the pipe 74 is a spiral tube. Since the fluid can be in a turbulent state in the entire flow rate measurement range, the linearity of the relationship between the fluid flow rate and the heat transfer rate (heat transfer rate between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range. Can be given. In this case, the pipe 74 may be at least a pipe part (temperature measurement part of the temperature sensor 73) heated by the heater 71, and other pipe parts (temperature measurement part of the temperature sensor 72, etc.) are not necessarily used. Since it is not necessary to make a turbulent flow, it is not necessary to use a spiral tube (for example, a straight tube).

以上のように本実施の形態例の熱式流量計によれば、配管74の少なくともヒータ71で加熱される配管部分は螺旋管とすることにより、この螺旋管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とするため、前記流体の所定の流量測定範囲、即ち、配管74を螺旋管としなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができるため、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができ、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。   As described above, according to the thermal type flow meter of the present embodiment, at least the pipe portion heated by the heater 71 of the pipe 74 is a spiral pipe, thereby disturbing the flow of the fluid flowing in the spiral pipe. Since the fluid is in a turbulent state in the entire range of the predetermined flow rate measurement range of the fluid, the fluid flow rate is increased unless the predetermined flow rate measurement range of the fluid, that is, the pipe 74 is a spiral tube. In addition, since the fluid can be in a turbulent flow state in a relatively wide flow measurement range where the flow state shifts to a laminar flow region, a transition region, and a turbulent flow region, The relationship between fluid flow rate and heat transfer coefficient (tube wall / fluid heat transfer coefficient) can be linearized, and the relationship between fluid flow rate and heat transfer coefficient (ie thermal flow meter output) is unique It becomes. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.

<実施の形態例4>
図8は本発明の実施の形態例4に係る熱式流量計(境界層流量計)の構成図である。図8に示す熱式流量計は、加熱手段としてのヒータ81と、第1の温度測定手段としての測温抵抗体又は熱電対などの温度センサ82と、第2の温度測定手段としての測温抵抗体又は熱電対などの温度センサ83とを有し、図8中に矢印Aで示すように配管84内を流れる水などの流体の流速(流量)を計測するためのものである。
<Embodiment 4>
FIG. 8 is a configuration diagram of a thermal flow meter (boundary layer flow meter) according to Embodiment 4 of the present invention. The thermal flow meter shown in FIG. 8 includes a heater 81 as a heating means, a temperature sensor 82 such as a resistance temperature detector or a thermocouple as a first temperature measurement means, and a temperature measurement as a second temperature measurement means. It has a temperature sensor 83 such as a resistor or a thermocouple, and measures the flow velocity (flow rate) of a fluid such as water flowing in the pipe 84 as shown by an arrow A in FIG.

ヒータ81は配管84の外周面84cに装着されており、配管84(管壁)を加熱する。ヒータ81は電気ヒータであり、図示しないヒータ電源に接続されている。従って、ヒータ81はヒータ電源からの供給電力により発熱して配管84を加熱する。なお、ヒータ81の加熱量は例えばヒータ電源からヒータ81へ供給される電力量を電力計で計測することなどによって適宜求めることができる。   The heater 81 is mounted on the outer peripheral surface 84c of the pipe 84 and heats the pipe 84 (pipe wall). The heater 81 is an electric heater and is connected to a heater power source (not shown). Therefore, the heater 81 generates heat by the power supplied from the heater power source and heats the pipe 84. The heating amount of the heater 81 can be determined as appropriate by, for example, measuring the amount of power supplied from the heater power source to the heater 81 with a wattmeter.

温度センサ82はヒータ81の設置位置よりも流体の流れ方向の上流側(以下単に上流側という)において配管84の管壁に設置されており、当該管壁部分(測定点84a)の温度T1を測定する。この場合、温度センサ82によって流体の温度を直接測定することも考えられるが、そのためには温度センサ82を配管84内に挿入しなければならず、温度センサ82が流体の流れに対する抵抗となってしまうため、温度センサ82によって管壁温度T1を計測するほうが望ましい。温度センサ82はヒータ81から十分離れた位置に配置されているため、温度センサ82で測定される管壁温度T1はヒータ81の影響が小さく、配管84内を流れる流体の温度とほぼ等しくなる。換言すれば、温度センサ82は流体の流量が変化しても出力(管壁温度の測定値)が変化しないようにヒータ81から十分離れた位置に設置する。   The temperature sensor 82 is installed on the pipe wall of the pipe 84 on the upstream side (hereinafter simply referred to as the upstream side) in the fluid flow direction from the installation position of the heater 81, and the temperature T1 of the pipe wall portion (measurement point 84a) is measured. taking measurement. In this case, it is conceivable to directly measure the temperature of the fluid by the temperature sensor 82, but for this purpose, the temperature sensor 82 must be inserted into the pipe 84, and the temperature sensor 82 becomes a resistance against the flow of the fluid. Therefore, it is desirable to measure the tube wall temperature T1 by the temperature sensor 82. Since the temperature sensor 82 is disposed at a position sufficiently away from the heater 81, the tube wall temperature T1 measured by the temperature sensor 82 is less affected by the heater 81 and is substantially equal to the temperature of the fluid flowing in the pipe 84. In other words, the temperature sensor 82 is installed at a position sufficiently away from the heater 81 so that the output (measured value of the tube wall temperature) does not change even if the flow rate of the fluid changes.

温度センサ83はヒータ81で加熱される配管84の管壁部分(測定点84b)の温度T2を測定する。この場合、流体流量の変化に伴って変化する流体の熱伝達率(管壁/流体間の熱伝達率)の変化が温度センサ83で測定される管壁温度T2に大きく反映されるよう、即ち温度センサ83の測定点84bを通過する熱流束が大きくなるように温度センサ83は、図示のようにヒータ81の直ぐ内側に設置することが望ましい。   The temperature sensor 83 measures the temperature T2 of the pipe wall portion (measurement point 84b) of the pipe 84 heated by the heater 81. In this case, the change in the heat transfer coefficient of the fluid (the heat transfer coefficient between the tube wall / fluid) that changes with the change in the fluid flow rate is greatly reflected in the tube wall temperature T2 measured by the temperature sensor 83, that is, It is desirable that the temperature sensor 83 is installed immediately inside the heater 81 as shown in the drawing so that the heat flux passing through the measurement point 84b of the temperature sensor 83 is increased.

温度センサ82で測定した管壁温度T1(又は流体温度)と温度センサ83で測定した管壁温度T2は図示しない演算装置に入力される。演算装置では、背景技術の欄で述べたとおり、管壁温度T1(又は流体温度)及びヒータ加熱部の管壁温度T2と、ヒータ81の加熱量と、流体物性と、ベンド管84Aの管径とに基づいて演算により流体の流速(流量)を求める。   The tube wall temperature T1 (or fluid temperature) measured by the temperature sensor 82 and the tube wall temperature T2 measured by the temperature sensor 83 are input to an arithmetic device (not shown). In the arithmetic unit, as described in the background section, the tube wall temperature T1 (or fluid temperature), the tube wall temperature T2 of the heater heating unit, the heating amount of the heater 81, the fluid properties, and the diameter of the bend tube 84A. Based on the above, the flow velocity (flow rate) of the fluid is obtained by calculation.

そして、配管84のヒータ81で加熱される配管部分はベンド管84Aとなっている。即ち、ヒータ81はベンド管84の外周面に設けられ、温度センサ83はベンド管84の管壁温度を測定するようになっている。矢印Aのように配管84内を流れる流体は、ヒータ81及び温度センサ83が設置されたベンド管84Aの内周面84A−1に衝突して流れが乱されるため、比較的低流量域のときから流況が乱流状態となる。このため、前記流体の所定(所望)の流量測定範囲、即ち、配管84のヒータ加熱部をベンド管84Aとしなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   A pipe portion heated by the heater 81 of the pipe 84 is a bend pipe 84A. That is, the heater 81 is provided on the outer peripheral surface of the bend pipe 84, and the temperature sensor 83 measures the tube wall temperature of the bend pipe 84. Since the fluid flowing in the pipe 84 as shown by the arrow A collides with the inner peripheral surface 84A-1 of the bend pipe 84A in which the heater 81 and the temperature sensor 83 are installed, the flow is disturbed. From time to time, the flow conditions become turbulent. For this reason, unless the bend pipe 84A is used as the predetermined (desired) flow rate measurement range of the fluid, that is, if the heater heating portion of the pipe 84 is not the bend pipe 84A, the flow state shifts to a laminar flow area, a transition area, and a turbulent flow area. The fluid can be in a turbulent state over the entire range of the relatively wide flow rate measurement range, and the fluid flow rate and heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range. Linearity can be given to the relationship.

以上のように本実施の形態例の熱式流量計によれば、配管84のヒータ81で加熱される配管部分をベンド管とすることにより、このベンド管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とするため、前記流体の所定の流量測定範囲、即ち、配管84のヒータ加熱部をベンド管84Aとしなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができるため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。   As described above, according to the thermal type flow meter of the present embodiment, the pipe portion heated by the heater 81 of the pipe 84 is a bend pipe, thereby disturbing the flow of the fluid flowing in the bend pipe. Since the fluid is in a turbulent state in the entire range of the predetermined flow rate measurement range of the fluid, the predetermined flow rate measurement range of the fluid, that is, the heater heating portion of the pipe 84 must be the bend pipe 84A. As the fluid flow rate increases, the fluid can be in a turbulent flow state over a relatively wide flow rate measurement range in which the flow state shifts to a laminar flow region, a transition region, and a turbulent flow region. Since the relationship between the fluid flow rate and the heat transfer coefficient (tube wall / fluid heat transfer coefficient) can be linearized over the entire range, the fluid flow rate and the heat transfer coefficient (ie, the output of the thermal flow meter) The relationship is unique. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.

<実施の形態例5>
図9は本発明の実施の形態例5に係る熱式流量計(境界層流量計)の構成図である。図9に示す熱式流量計は、加熱手段としてのヒータ91と、第1の温度測定手段としての測温抵抗体又は熱電対などの温度センサ92と、第2の温度測定手段としての測温抵抗体又は熱電対などの温度センサ93とを有し、図9中に矢印Aで示すように配管94内を流れる水などの流体の流速(流量)を計測するためのものである。
<Embodiment 5>
FIG. 9 is a configuration diagram of a thermal type flow meter (boundary layer flow meter) according to Embodiment 5 of the present invention. The thermal flow meter shown in FIG. 9 includes a heater 91 as a heating means, a temperature sensor 92 such as a resistance temperature detector or a thermocouple as a first temperature measurement means, and a temperature measurement as a second temperature measurement means. It has a temperature sensor 93 such as a resistor or a thermocouple, and measures the flow velocity (flow rate) of a fluid such as water flowing in the pipe 94 as indicated by an arrow A in FIG.

そして、配管94内には板状の流体衝突部材95が配置されている。流体衝突部材95は配管94の内周面94bに図示しない支持部材を介して固定されている。従って、矢印Aのように配管94内を流れる流体は、流体衝突部材95の一方の側面(衝突面)95aに衝突して流れが乱されるため、比較的低流量域のときから流況が乱流状態となる。このため、前記流体の所定(所望)の流量測定範囲、即ち、配管94内に流体衝突部材95を配置しなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができる。   A plate-like fluid collision member 95 is disposed in the pipe 94. The fluid collision member 95 is fixed to the inner peripheral surface 94b of the pipe 94 via a support member (not shown). Therefore, the fluid flowing in the pipe 94 as shown by the arrow A collides with one side surface (collision surface) 95a of the fluid collision member 95 and the flow is disturbed. It becomes a turbulent state. For this reason, unless the fluid collision member 95 is disposed in the predetermined (desired) flow rate measurement range of the fluid, that is, the fluid flow rate increases, the flow state shifts to the laminar flow region, the transition region, and the turbulent flow region. The fluid can be in a turbulent state over the entire range of the relatively wide flow rate measurement range, and the fluid flow rate and heat transfer coefficient (heat transfer coefficient between the tube wall / fluid) over the entire range of the predetermined flow rate measurement range Linearity can be given to the relationship.

ヒータ91は流体衝突部材95の他方の側面95cに装着されており、流体衝突部材95を加熱する。ヒータ91は電気ヒータであり、図示しないヒータ電源に接続されている。従って、ヒータ91はヒータ電源からの供給電力により発熱して流体衝突部材95を加熱する。なお、ヒータ91の加熱量は例えばヒータ電源からヒータ91へ供給される電力量を電力計で計測することなどによって適宜求めることができる。   The heater 91 is mounted on the other side surface 95 c of the fluid collision member 95 and heats the fluid collision member 95. The heater 91 is an electric heater and is connected to a heater power source (not shown). Accordingly, the heater 91 generates heat by the power supplied from the heater power source and heats the fluid collision member 95. The heating amount of the heater 91 can be determined as appropriate by, for example, measuring the amount of power supplied from the heater power source to the heater 91 with a wattmeter.

温度センサ92はヒータ91の設置位置よりも流体の流れ方向の上流側(以下単に上流側という)において配管94の管壁に設置されており、当該管壁部分(測定点94a)の温度T1を測定する。この場合、温度センサ92によって流体の温度を直接測定することも考えられるが、そのためには温度センサ92を配管94内に挿入しなければならず、温度センサ92が流体の流れに対する抵抗となってしまうため、温度センサ92によって管壁温度T1を計測するほうが望ましい。温度センサ92はヒータ91から十分離れた位置に配置されているため、温度センサ92で測定される管壁温度T1はヒータ91の影響が小さく、配管94内を流れる流体の温度とほぼ等しくなる。換言すれば、温度センサ92は流体の流量が変化しても出力(管壁温度の測定値)が変化しないようにヒータ91から十分離れた位置に設置する。   The temperature sensor 92 is installed on the pipe wall of the pipe 94 on the upstream side (hereinafter simply referred to as the upstream side) in the fluid flow direction from the installation position of the heater 91, and the temperature T1 of the pipe wall portion (measurement point 94a) is measured. taking measurement. In this case, it is conceivable to directly measure the temperature of the fluid by the temperature sensor 92. To this end, the temperature sensor 92 must be inserted into the pipe 94, and the temperature sensor 92 becomes a resistance against the flow of the fluid. Therefore, it is desirable to measure the tube wall temperature T1 by the temperature sensor 92. Since the temperature sensor 92 is disposed at a position sufficiently away from the heater 91, the tube wall temperature T1 measured by the temperature sensor 92 is less affected by the heater 91 and is substantially equal to the temperature of the fluid flowing in the pipe 94. In other words, the temperature sensor 92 is installed at a position sufficiently away from the heater 91 so that the output (measured value of the tube wall temperature) does not change even if the flow rate of the fluid changes.

温度センサ93は流体衝突部材95に取り付けられており、ヒータ91で加熱される流体衝突部材95の温度T2を測定する。この場合、流体流量の変化に伴って変化する流体の熱伝達率(管壁/流体間の熱伝達率)の変化が温度センサ93で測定される管壁温度T2に大きく反映されるよう、即ち温度センサ93の測定点95bを通過する熱流束が大きくなるように温度センサ93は、図示のようにヒータ91の直ぐ内側に設置することが望ましい。   The temperature sensor 93 is attached to the fluid collision member 95, and measures the temperature T2 of the fluid collision member 95 heated by the heater 91. In this case, the change in the heat transfer coefficient of the fluid (the heat transfer coefficient between the tube wall / fluid) that changes with the change in the fluid flow rate is greatly reflected in the tube wall temperature T2 measured by the temperature sensor 93, that is, It is desirable that the temperature sensor 93 is installed immediately inside the heater 91 as shown in the figure so that the heat flux passing through the measurement point 95b of the temperature sensor 93 is increased.

温度センサ92で測定した管壁温度T1(又は流体温度)と温度センサ93で測定した管壁温度T2は図示しない演算装置に入力される。演算装置では、背景技術の欄で述べたとおり、管壁温度T1(又は流体温度)及びヒータ加熱部の管壁温度T2と、ヒータ91の加熱量と、流体物性と、配管94の管径とに基づいて演算により流体の流速(流量)を求める。   The tube wall temperature T1 (or fluid temperature) measured by the temperature sensor 92 and the tube wall temperature T2 measured by the temperature sensor 93 are input to an arithmetic device (not shown). In the arithmetic unit, as described in the background section, the tube wall temperature T1 (or fluid temperature), the tube wall temperature T2 of the heater heating unit, the heating amount of the heater 91, the fluid properties, the tube diameter of the pipe 94, Based on the above, the flow velocity (flow rate) of the fluid is calculated.

以上のように本実施の形態例の熱式流量計によれば、配管94内に配置して、配管94内を流れる流体が衝突することにより、前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とする流体衝突部材95を有することを特徴とするため、前記流体の所定の流量測定範囲、即ち、配管内に流体衝突部材を配置しなければ流体流量の増大とともに流況が層流域、遷移域、乱流域と移行していくような比較的広い流量測定範囲の全範囲で流体を乱流状態とすることができ、前記所定流量測定範囲の全範囲にわたって流体流量と熱伝達率(管壁/流体間の熱伝達率)との関係にリニアリティを持たせることができるため、流体流量と熱伝達率(即ち熱式流量計の出力)との関係が一意的となる。このため、流量測定範囲が広くて精度のよい流量測定が可能となる。   As described above, according to the thermal type flow meter of the present embodiment, the fluid flowing in the pipe 94 collides with the fluid flowing through the pipe 94 in the entire range of the predetermined flow rate measurement range of the fluid. Since it has a fluid collision member 95 that brings the fluid into a turbulent state, the flow rate is increased as the fluid flow rate increases unless the fluid collision member is arranged in a predetermined flow rate measurement range of the fluid, that is, in the pipe. The fluid can be in a turbulent flow state over a relatively wide flow rate measurement range such as a transition from a laminar flow region, a transition region, and a turbulent flow region. Since the relationship between the transfer rate (heat transfer rate between the tube wall / fluid) can be made linear, the relationship between the fluid flow rate and the heat transfer rate (ie, the output of the thermal flow meter) is unique. For this reason, the flow rate measurement range is wide and accurate flow rate measurement is possible.

本発明は熱式流量計(境界層流量計)に関するものであり、宇宙ステーションなどの各所において比較的広い流量測定範囲の流量測定を行う場合に適用して有用なものである。   The present invention relates to a thermal flow meter (boundary layer flow meter), and is useful when applied to flow measurement in a relatively wide flow measurement range in various places such as a space station.

本発明の実施の形態例1に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 1 of this invention. 本発明の実施の形態例1に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 1 of this invention. 本発明の実施の形態例1に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 1 of this invention. 本発明の実施の形態例1に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 1 of this invention. 本発明の実施の形態例1に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 1 of this invention. 本発明の実施の形態例2に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 2 of this invention. 本発明の実施の形態例3に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) based on Embodiment 3 of this invention. 本発明の実施の形態例4に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) concerning Embodiment 4 of this invention. 本発明の実施の形態例5に係る熱式流量計(境界層流量計)の構成図である。It is a block diagram of the thermal type flow meter (boundary layer flow meter) which concerns on Example 5 of this invention. 従来の熱式流量計(境界層流量計)の構成図である。It is a block diagram of the conventional thermal type flow meter (boundary layer flow meter). 流体流量(流況)と熱伝達率の関係を示すグラフである。It is a graph which shows the relationship between a fluid flow rate (flow condition) and a heat transfer rate.

符号の説明Explanation of symbols

11 ヒータ
12,13 温度センサ
14 コイル
15 配管
15a 外周面
15b 内周面
15c,15d 測定点
21 円環
31 突起物
41 突起物
51 ねじれテープ
61,62,63 ヒータ
64,65,66,67 温度センサ
68 配管
68A,68B,68C 配管部分
68a,68b,68c,68d 測定点
68A−1,68B−1,68C−1 外周面
71 ヒータ
72,73 温度センサ
74 配管(螺旋管)
74a,74b 測定点
81 ヒータ
82,83 温度センサ
84 配管
84A ベンド管
84a,84b 測定点
84c 外周面
84A−1 内周面
DESCRIPTION OF SYMBOLS 11 Heater 12, 13 Temperature sensor 14 Coil 15 Piping 15a Outer peripheral surface 15b Inner peripheral surface 15c, 15d Measurement point 21 Ring 31 Projection 41 Projection 51 Twist tape 61, 62, 63 Heater 64, 65, 66, 67 Temperature sensor 68 Piping 68A, 68B, 68C Piping portion 68a, 68b, 68c, 68d Measuring point 68A-1, 68B-1, 68C-1 Outer peripheral surface 71 Heater 72, 73 Temperature sensor 74 Piping (spiral tube)
74a, 74b Measurement point 81 Heater 82, 83 Temperature sensor 84 Piping 84A Bend pipe 84a, 84b Measurement point 84c Outer peripheral surface 84A-1 Inner peripheral surface

Claims (9)

配管を加熱する加熱手段と、
前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、
前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、
前記配管の前記加熱手段で加熱される部分の内部に乱流促進体を設け、この乱流促進体で前記配管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とするように構成したことを特徴とする熱式流量計。
Heating means for heating the piping;
First temperature measuring means for measuring the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means;
A thermal flow meter having a second temperature measuring means for measuring a temperature of a pipe wall portion of the pipe heated by the heating means,
A turbulence promoting body is provided inside the portion of the pipe heated by the heating means, and the turbulent flow promoting body disturbs the flow of the fluid flowing through the pipe so that the entire range of the predetermined flow rate measurement range of the fluid is reached. A thermal flow meter characterized in that the fluid is in a turbulent state.
請求項1に記載の熱式流量計において、
前記乱流促進体は、コイルであることを特徴とする熱式流量計。
The thermal flow meter according to claim 1,
The thermal flow meter, wherein the turbulence promoting body is a coil.
請求項1に記載の熱式流量計において、
前記乱流促進体は、前記流体の流れ方向に間隔をあけて配置した複数の円環であることを特徴とする熱式流量計。
The thermal flow meter according to claim 1,
The thermal flow meter according to claim 1, wherein the turbulent flow promoting body is a plurality of circular rings arranged at intervals in the fluid flow direction.
請求項1に記載の熱式流量計において、
前記乱流促進体は、前記配管の内面に突設した突起物であることを特徴とする熱式流量計。
The thermal flow meter according to claim 1,
The thermal flow meter, wherein the turbulent flow promoting body is a protrusion projecting from the inner surface of the pipe.
請求項1に記載の熱式流量計において、
前記乱流促進体は、ねじれテープであることを特徴とする熱式流量計。
The thermal flow meter according to claim 1,
The thermal flow meter, wherein the turbulence promoting body is a twisted tape.
配管を加熱する加熱手段と、
前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、
前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、
前記配管は、管径の異なる複数の配管部分を有する複数段の構造とすることにより、前記配管内を流れる流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とし、
前記加熱手段は、前記管径の異なる複数の配管部分のそれぞれに配置し、
前記第1の温度測定手段は、前記管径の異なる複数の配管部分のうちの最も上流側に位置する配管部分に配置された加熱手段よりも上流側に配置し、
前記第2の温度測定手段は、前記管径の異なる複数の配管部分のそれぞれに配置したことを特徴とする熱式流量計。
Heating means for heating the piping;
First temperature measuring means for measuring the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means;
A thermal flow meter having a second temperature measuring means for measuring a temperature of a pipe wall portion of the pipe heated by the heating means,
The pipe has a multi-stage structure having a plurality of pipe parts with different pipe diameters, thereby making the fluid turbulent in the entire range of a predetermined flow rate measurement range of the fluid flowing in the pipe,
The heating means is disposed in each of a plurality of pipe portions having different pipe diameters,
The first temperature measuring means is arranged on the upstream side of the heating means arranged on the pipe part located on the most upstream side among the plurality of pipe parts having different pipe diameters,
The thermal flow meter, wherein the second temperature measuring means is disposed in each of a plurality of pipe portions having different pipe diameters.
配管を加熱する加熱手段と、
前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、
前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、
前記配管の少なくとも前記加熱手段で加熱される配管部分は螺旋管とすることにより、この螺旋管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とする熱式流量計。
Heating means for heating the piping;
First temperature measuring means for measuring the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means;
A thermal flow meter having a second temperature measuring means for measuring a temperature of a pipe wall portion of the pipe heated by the heating means,
The pipe portion heated by at least the heating means of the pipe is a spiral pipe, thereby disturbing the flow of the fluid flowing in the spiral pipe and turbulently flowing the fluid in the entire range of the predetermined flow rate measurement range of the fluid. A thermal flow meter characterized by being in a state.
配管を加熱する加熱手段と、
前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、
前記加熱手段で加熱される前記配管の管壁部分の温度を測定する第2の温度測定手段とを有する熱式流量計であって、
前記配管の前記加熱手段で加熱される配管部分をベンド管とすることにより、このベンド管内を流れる流体の流れを乱して前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とすることを特徴とする熱式流量計。
Heating means for heating the piping;
First temperature measuring means for measuring the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means;
A thermal flow meter having a second temperature measuring means for measuring a temperature of a pipe wall portion of the pipe heated by the heating means,
By making a pipe part heated by the heating means of the pipe into a bend pipe, the flow of the fluid flowing in the bend pipe is disturbed, and the fluid is in a turbulent state in the entire range of a predetermined flow rate measurement range of the fluid. A thermal flow meter characterized by:
配管内に配置して、前記配管内を流れる流体が衝突することにより、前記流体の所定の流量測定範囲の全範囲で前記流体を乱流状態とする流体衝突部材と、
前記流体衝突部材を加熱する加熱手段と、
前記加熱手段よりも上流側の位置で前記配管の管壁部分の温度又は前記配管内を流れる流体の温度を測定する第1の温度測定手段と、
前記加熱手段で加熱される前記流体衝突部材の温度を測定する第2の温度測定手段とを有することを特徴とする熱式流量計。

A fluid collision member that is arranged in a pipe and causes the fluid to flow in a turbulent state in the entire range of a predetermined flow rate measurement range of the fluid by collision of the fluid flowing in the pipe; and
Heating means for heating the fluid collision member;
First temperature measuring means for measuring the temperature of the pipe wall portion of the pipe or the temperature of the fluid flowing in the pipe at a position upstream of the heating means;
And a second temperature measuring means for measuring the temperature of the fluid collision member heated by the heating means.

JP2004294605A 2004-10-07 2004-10-07 Thermal type flowmeter Withdrawn JP2006105847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294605A JP2006105847A (en) 2004-10-07 2004-10-07 Thermal type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294605A JP2006105847A (en) 2004-10-07 2004-10-07 Thermal type flowmeter

Publications (1)

Publication Number Publication Date
JP2006105847A true JP2006105847A (en) 2006-04-20

Family

ID=36375758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294605A Withdrawn JP2006105847A (en) 2004-10-07 2004-10-07 Thermal type flowmeter

Country Status (1)

Country Link
JP (1) JP2006105847A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032617A1 (en) * 2010-09-08 2012-03-15 トヨタ自動車株式会社 Flow quantity detecting device
JP2014126432A (en) * 2012-12-26 2014-07-07 Techno Design Kk Fluid sensor and fluid measuring device
CN108437260A (en) * 2018-04-28 2018-08-24 广州市合诚化学有限公司 A kind of thermoplastic elastomer (TPE) oil-filled equipment
DE102022103952A1 (en) 2022-02-18 2023-08-24 Innovative Sensor Technology Ist Ag System and manipulation track for checking the flow profile at the inlet of a flow sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032617A1 (en) * 2010-09-08 2012-03-15 トヨタ自動車株式会社 Flow quantity detecting device
JP5403165B2 (en) * 2010-09-08 2014-01-29 トヨタ自動車株式会社 Flow rate detector
JP2014126432A (en) * 2012-12-26 2014-07-07 Techno Design Kk Fluid sensor and fluid measuring device
CN108437260A (en) * 2018-04-28 2018-08-24 广州市合诚化学有限公司 A kind of thermoplastic elastomer (TPE) oil-filled equipment
CN108437260B (en) * 2018-04-28 2023-10-13 合诚技术股份有限公司 Thermoplastic elastomer oil filling equipment
DE102022103952A1 (en) 2022-02-18 2023-08-24 Innovative Sensor Technology Ist Ag System and manipulation track for checking the flow profile at the inlet of a flow sensor

Similar Documents

Publication Publication Date Title
JP4637088B2 (en) Differential pressure means for gas meter structure with improved flow structure
Everts et al. Relationship between pressure drop and heat transfer of developing and fully developed flow in smooth horizontal circular tubes in the laminar, transitional, quasi-turbulent and turbulent flow regimes
Saha et al. Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with center-cleared twisted-tape
US9046397B2 (en) Method for registering flow and a thermal, flow measuring device
US8423304B2 (en) Thermal, flow measuring device
Saha et al. Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with helical screw-tape inserts
CN102483339A (en) Fluid flow conditioner
JP2004170113A (en) Fluid detection device
US8583385B2 (en) Thermal, flow measuring device
Meyer et al. Inlet tube spacing and protrusion inlet effects on multiple circular tubes in the laminar, transitional and turbulent flow regimes
KR101824866B1 (en) Thermal Micro Flow Meter and Flow Measuring Method Using Thereof
JP5336640B1 (en) Thermal flow meter
Bashir et al. Influence of inlet contraction ratios on the heat transfer and pressure drop characteristics of single-phase flow in smooth circular tubes in the transitional flow regime
JP2006105847A (en) Thermal type flowmeter
JP6615217B2 (en) Apparatus and method for mixing combustible gas and combustion air, hot water equipment provided thereby, and method for measuring mass flow rate of gas flow
Auliano et al. Near wall temperature measurements and turbulent features in a water flow at transition Reynolds numbers in a square heated asymmetric cavity channel
US20080034862A1 (en) Fluid Flow Meter Body With High Immunity to Inlet/Outlet Flow Disturbances
Arlit et al. Flow rate measurement in flows with asymmetric velocity profiles by means of distributed thermal anemometry
JP2011508193A (en) Thermal flow sensor with turbulence inducer
JP2010117159A (en) Micro-flow meter and micro-flow measuring method
KR101041434B1 (en) Mass Flow Meter and Controller
KR20110006869U (en) Unequal length sensor element of thermal mass flow meter
JP6939191B2 (en) Flow meter and flow measurement method
JP2024033769A (en) Thermal flowmeter
JP2016109615A (en) Flowmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108