JP2006105332A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2006105332A
JP2006105332A JP2004295258A JP2004295258A JP2006105332A JP 2006105332 A JP2006105332 A JP 2006105332A JP 2004295258 A JP2004295258 A JP 2004295258A JP 2004295258 A JP2004295258 A JP 2004295258A JP 2006105332 A JP2006105332 A JP 2006105332A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
bearing device
thrust
hydrodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004295258A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakajima
達雄 中島
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004295258A priority Critical patent/JP2006105332A/en
Priority to US11/629,458 priority patent/US20080203838A1/en
Priority to PCT/JP2005/016970 priority patent/WO2006038444A1/en
Priority to CNB200580023285XA priority patent/CN100470067C/en
Priority to KR1020077001204A priority patent/KR20070062496A/en
Publication of JP2006105332A publication Critical patent/JP2006105332A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve cost reduction of a dynamic pressure bearing device and to keep stable rotating performance. <P>SOLUTION: This dynamic pressure bearing device 1 is composed of a rotating member M composed of a shaft portion 2a, a flange portion 2b and a disc hub 3, and a bearing member 7 mounted on an outer periphery of the shaft portion 2a. The rotating member M is rotatably supported in a non-contact state by dynamic pressure effect generated in radial bearing clearance and thrust bearing clearance formed between these members. Here, a radial bearing surface A having a dynamic pressure generating portion formed by supplying a resin composition, is formed on a material surface of the shaft portion 2a, one end-side end face of the bearing member 7 is faced to the first thrust bearing clearance, and has a thrust bearing surface B formed by die forming and having a dynamic pressure generating portion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受装置に関するものである。この動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えば軸流ファンなどの小型モータ用の軸受装置として好適である。   The present invention relates to a hydrodynamic bearing device. This hydrodynamic bearing device is a spindle of information equipment, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. It is suitable as a bearing device for a small motor such as a motor, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or an electric device such as an axial fan.

上記動圧軸受装置の一例として、ラジアル軸受隙間およびスラスト軸受隙間に生じた潤滑流体の動圧作用で軸部材をラジアル方向およびスラスト方向に非接触支持する動圧軸受装置を挙げることができる。この種の動圧軸受装置としては、スリーブ状の部材(軸受スリーブ)の内周面、および軸部材のフランジ部の両端面に対向する軸受スリーブの端面やハウジングの底面に、動圧発生手段としての動圧溝を形成したものが知られている(例えば、特許文献1参照)。
特開2000−291648号公報
As an example of the above-mentioned dynamic pressure bearing device, there can be mentioned a dynamic pressure bearing device that supports the shaft member in the radial direction and the thrust direction in a non-contact manner by the dynamic pressure action of the lubricating fluid generated in the radial bearing gap and the thrust bearing gap. As this type of hydrodynamic bearing device, dynamic pressure generating means is provided on the inner peripheral surface of a sleeve-like member (bearing sleeve) and on the end surface of the bearing sleeve facing the both end surfaces of the flange portion of the shaft member and the bottom surface of the housing. Are known (see, for example, Patent Document 1).
JP 2000-291648 A

上述の動圧軸受装置は、軸部材の他、軸受スリーブや、軸受スリーブを収容するハウジング等の多くの部品で構成される。近年では、情報機器の低価格化に伴い、この種の動圧軸受装置に対するコスト低減の要求も益々厳しくなっており、この要請に応えるためにも、部品点数の削減や製作工程の見直し等により、さらなる低コスト化を図ることが急務となっている。   In addition to the shaft member, the above-described dynamic pressure bearing device includes a number of components such as a bearing sleeve and a housing that houses the bearing sleeve. In recent years, with the price reduction of information equipment, the demand for cost reduction for this type of hydrodynamic bearing device has become increasingly severe. To meet this demand, the number of parts has been reduced and the manufacturing process has been reviewed. There is an urgent need to further reduce costs.

そこで本発明では、動圧軸受装置のさらなる低コスト化を達成することを目的とする。   Therefore, an object of the present invention is to achieve further cost reduction of the hydrodynamic bearing device.

前記目的を達成するため、本発明では、軸部を有する回転部材と、内周面を軸部の外周面に対向させた軸受部材と、軸部と軸受部材との間のラジアル軸受隙間に生じた流体の動圧作用で回転部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト軸受隙間に生じた流体の動圧作用で回転部材をスラスト方向に非接触支持するスラスト軸受部とを備えるものにおいて、軸部の素材表面に樹脂組成物を供給して、ラジアル軸受隙間に流体動圧を発生させるための動圧発生部を形成したものであり、軸受部材の一端開口が軸受部材と一体または別体の蓋部材により閉塞され、前記スラスト軸受隙間に面する軸受部材の一端側端面に、動圧発生部を有する第1のスラスト軸受面が型成形されていることを特徴とする動圧軸受装置を提供する。   In order to achieve the above object, in the present invention, a rotation member having a shaft portion, a bearing member having an inner peripheral surface opposed to an outer peripheral surface of the shaft portion, and a radial bearing gap between the shaft portion and the bearing member are generated. A radial bearing that supports the rotating member in a non-contact manner in the radial direction by the dynamic pressure of the fluid, and a thrust bearing that supports the rotating member in a non-contact manner in the thrust direction by the dynamic pressure of the fluid generated in the thrust bearing gap. In this structure, a resin composition is supplied to the material surface of the shaft part to form a dynamic pressure generating part for generating fluid dynamic pressure in the radial bearing gap, and one end opening of the bearing member is integrated with the bearing member. Alternatively, the first thrust bearing surface having a dynamic pressure generating portion is molded on the one end face of the bearing member which is closed by a separate lid member and faces the thrust bearing gap. Provide bearing device

軸部の外周面に動圧発生部を形成する上記の解決手段と異なり、スリーブ状の部材の内周面に動圧発生部として例えば動圧溝を形成する場合、その成形方法の一例として、当該部材を焼結金属製とし、溝型を有するコアロッドを当該部材の内周に挿入した上で型内にて圧迫することにより、溝型をスリーブ状の部材の内周面に転写して動圧溝を形成する手法が知られている(例えば特開平11−182550号公報)。しかしながら、この方法ではスリーブ状の部材を収容すると共に、その一端開口部を閉塞する有底円筒状の部材(ハウジング)を別途準備し、かつ両者を接着や圧入等の手段で精度良く確実に固定する必要がある。従って、部品点数の増加および組立工程の煩雑化を招き、この点が動圧軸受装置の低コスト化を阻む一因となっている。   Unlike the above-described solving means for forming the dynamic pressure generating portion on the outer peripheral surface of the shaft portion, for example, when forming a dynamic pressure groove as the dynamic pressure generating portion on the inner peripheral surface of the sleeve-like member, The member is made of sintered metal, and a core rod having a groove mold is inserted into the inner periphery of the member and then pressed in the mold to transfer the groove mold to the inner peripheral surface of the sleeve-shaped member. A technique for forming a pressure groove is known (for example, Japanese Patent Application Laid-Open No. 11-182550). However, in this method, a sleeve-shaped member is accommodated and a bottomed cylindrical member (housing) that closes one end opening portion is separately prepared, and both are fixed accurately and securely by means such as adhesion or press-fitting. There is a need to. Therefore, the number of parts increases and the assembly process becomes complicated, which is one of the factors that hinder the cost reduction of the hydrodynamic bearing device.

これに対し、本発明では、軸部材の軸部の外周面に動圧発生部を形成するので、例えば上記のスリーブ状の部材の内周面に動圧溝を形成する場合のように、動圧溝の加工性から、スリーブ状の部材とハウジングとを別部材とする必要はなく、両者を一体化した一部材(軸受部材)で構成することができる。この違いは、外形的には、従来品ではスリーブ状の部材と分離独立したハウジングに、スリーブ状の部材の一端開口部を閉塞する蓋部材が一体または別体に設けられていたのに対し、本発明品では前記軸受部材に当該蓋部材が一体または別体に設けられる点に現れる。このように従来の二部材(スリーブ状の部材およびハウジング)を一部材(軸受部材)に一体化することにより、部品点数の削減、および二部材同士の組み付け工程の省略を通じて、動圧軸受装置のさらなる低コスト化を図ることができる。   On the other hand, in the present invention, since the dynamic pressure generating portion is formed on the outer peripheral surface of the shaft portion of the shaft member, the dynamic pressure groove is formed on the inner peripheral surface of the sleeve-shaped member, for example. From the workability of the pressure groove, the sleeve-shaped member and the housing do not have to be separate members, and can be configured as a single member (bearing member) in which both are integrated. This difference is that, in terms of the outer shape, in the conventional product, a lid member that closes one end opening of the sleeve-like member is provided integrally or separately in a housing separated and independent from the sleeve-like member, In the product of the present invention, the lid member is provided integrally or separately with the bearing member. Thus, by integrating the conventional two members (sleeve-shaped member and housing) into one member (bearing member), the number of parts can be reduced and the assembly process between the two members can be omitted. Further cost reduction can be achieved.

軸部を形成する素材表面に動圧発生部を形成する方法としては、素材表面に樹脂組成物を細孔ノズルから着弾あるいは滴下させ、これを硬化させる方法、例えばインクジェット法(以下、「インクジェット法等」という)を挙げることができる。   As a method of forming the dynamic pressure generating portion on the material surface forming the shaft portion, a resin composition is landed or dripped from the pore nozzle on the material surface and cured, for example, an inkjet method (hereinafter referred to as “inkjet method”). Etc.)).

従来、素材表面に動圧発生部を形成する方法としては、例えば印刷型を、軸部材の外周面と接触させながら軸部材の回転に応じて移動させることにより、軸部材の外周に動圧溝以外の部分を樹脂組成物からなる耐食インクで印刷する方法が知られている(例えば特公昭62−49351号公報)。しかしながら、この方法では、製造方法の特性上、印刷型や印刷型を保持するための印刷用スクリーンが必要で、また、印刷には多量のインクが必要であり、さらに、印刷後にはエッチング等による非印刷部の腐食およびインク除去が不可欠であることから、低コスト化が困難であった。   Conventionally, as a method of forming a dynamic pressure generating portion on the surface of a material, for example, a printing die is moved according to the rotation of the shaft member while being in contact with the outer peripheral surface of the shaft member, so that the dynamic pressure groove is formed on the outer periphery of the shaft member. There is known a method of printing other portions with a corrosion-resistant ink made of a resin composition (for example, Japanese Patent Publication No. 62-49351). However, in this method, due to the characteristics of the manufacturing method, a printing mold or a printing screen for holding the printing mold is necessary, and a large amount of ink is necessary for printing. Since corrosion of non-printed parts and ink removal are indispensable, it has been difficult to reduce costs.

これに対しインクジェット法等による動圧発生部の形成方法では、予めプログラミングすることにより、任意の形状パターンを印刷することができ、かつインク(樹脂組成物)の吐出量を精密に制御することにより、形状パターンの各部を任意の厚さに形成することができる。従って硬化したインク自体で高精度の動圧発生部を形成することができるため、軸部の外周面に動圧発生部を形成した軸部材をエッチング等のインク除去工程を経ることなく、そのまま動圧軸受装置に組み込んで軸受面として使用することができ、工程数を減じて製造コストの低減を図ることができる。また、動圧発生部形状に対応した印刷型も不要で、かつインクも動圧発生部を形成するための必要最低限の量で足りるため、かかるコストを低減することもできる。さらにこの場合、理論上は、軸受面のインクが軸受部材と摺動接触し、軸部の素材は軸受部材と非接触となるから、素材に要求される特性として、耐摩耗性の重要度は低くなる。従って、軸部の素材を選定する際の自由度を高めることができ、安価な素材を使用して軸部材を形成することが可能になる。同様の観点から、軸受部材の素材選定も、金属ではなく樹脂に対する耐摩耗性を考慮すれば足りるので、選定自由度が高まる。   On the other hand, in the formation method of the dynamic pressure generating part by the ink jet method or the like, by programming in advance, an arbitrary shape pattern can be printed, and the discharge amount of the ink (resin composition) is precisely controlled. Each part of the shape pattern can be formed to an arbitrary thickness. Therefore, since the hardened ink itself can form a dynamic pressure generating portion with high accuracy, the shaft member in which the dynamic pressure generating portion is formed on the outer peripheral surface of the shaft portion is moved as it is without undergoing an ink removing process such as etching. It can be incorporated into a pressure bearing device and used as a bearing surface, and the manufacturing cost can be reduced by reducing the number of steps. In addition, since a printing mold corresponding to the shape of the dynamic pressure generating portion is not required, and the ink needs only a minimum amount for forming the dynamic pressure generating portion, the cost can be reduced. Further, in this case, theoretically, the ink on the bearing surface is in sliding contact with the bearing member, and the material of the shaft portion is not in contact with the bearing member. Therefore, the importance of wear resistance is a characteristic required for the material. Lower. Accordingly, the degree of freedom in selecting the material for the shaft portion can be increased, and the shaft member can be formed using an inexpensive material. From the same point of view, it is sufficient to select the material of the bearing member in consideration of the wear resistance against the resin, not the metal, and the degree of freedom of selection increases.

さらに本発明では、軸受部材の一端側端面に、動圧発生部を有する第1のスラスト軸受面を型成形するので、軸受部材への動圧発生部の形成を能率よく行うことができ、この点からもさらなる低コスト化を図ることができる。この場合、軸受部材を、樹脂の射出成形品、MIM成形品、または金属のプレス成形品の何れかとすれば、軸受部材を型成形し、かつこの型成形と同時に動圧発生部を有する第1のスラスト軸受面を成形することができるので、さらに能率的な動圧発生部の形成が可能となる。   Furthermore, in the present invention, since the first thrust bearing surface having the dynamic pressure generating portion is molded on the end surface on the one end side of the bearing member, the dynamic pressure generating portion can be efficiently formed on the bearing member. In view of this, further cost reduction can be achieved. In this case, if the bearing member is any one of a resin injection molded product, an MIM molded product, or a metal press molded product, the bearing member is molded, and at the same time as the molding, a first dynamic pressure generating portion is provided. Since the thrust bearing surface can be formed, a more efficient dynamic pressure generating portion can be formed.

上述の構成に加え、蓋部材あるいは軸受部材の他端側の端面に、動圧発生部を有する第2のスラスト軸受面を型成形してもよい。このように第1のスラスト軸受面に加えて第2のスラスト軸受面を形成することにより、両軸受面とそれぞれ対向する二つのスラスト軸受隙間で生じる流体の動圧作用により、軸部材をスラスト両方向で非接触支持することができる。この第2のスラスト軸受面は型成形されるから、能率よく高精度に成形することができ、これによりさらなる低コスト化を図ることができる。この場合、蓋部材を、樹脂の射出成形品、MIM成形品、または金属のプレス成形品の何れかとすれば、蓋部材の型成形と同時に動圧発生部を有する第2のスラスト軸受面を成形することが可能となり、さらなる加工能率の向上が図られる。   In addition to the above-described configuration, a second thrust bearing surface having a dynamic pressure generating portion may be molded on the end surface on the other end side of the lid member or the bearing member. In this way, by forming the second thrust bearing surface in addition to the first thrust bearing surface, the shaft member is moved in both thrust directions by the dynamic pressure action of the fluid generated in the two thrust bearing gaps respectively facing the both bearing surfaces. Can be supported in a non-contact manner. Since the second thrust bearing surface is molded, it can be molded efficiently and with high accuracy, thereby further reducing the cost. In this case, if the lid member is one of a resin injection molded product, an MIM molded product, or a metal press molded product, the second thrust bearing surface having a dynamic pressure generating portion is molded simultaneously with the molding of the lid member. Thus, the processing efficiency can be further improved.

なお、蓋部材は、軸受部材に別部材として圧入、接着等の手段により固定する他、軸受部材と一体化させることもできる。   The lid member can be integrated with the bearing member in addition to being fixed to the bearing member as a separate member by means such as press fitting or adhesion.

上述の構成において、回転部材は、例えば軸部材と、軸部材の外径側に張り出し、ロータマグネットの取り付け部を有するロータ部とで構成することができる。この場合、ロータ部のうち、少なくともロータマグネットとの対向部に磁性材料を配するのが望ましい。かかる構成によれば、モータの駆動時、ステータコイルとロータマグネット間に生じる磁束がロータ部を介して漏れ、磁力が損失することを防止することができ、モータの回転性能を向上させることができる。   In the above-described configuration, the rotating member can be composed of, for example, a shaft member and a rotor portion that projects to the outer diameter side of the shaft member and has a rotor magnet mounting portion. In this case, it is desirable to arrange a magnetic material in at least a portion facing the rotor magnet in the rotor portion. According to this configuration, when the motor is driven, magnetic flux generated between the stator coil and the rotor magnet can be prevented from leaking through the rotor portion and the magnetic force can be prevented from being lost, and the rotational performance of the motor can be improved. .

軸部材をロータ部に固定する方法としては、加締め、スポット溶接、接着、電着、蝋付け、Cクリップ止め、ネジ止め等を挙げることができる。   Examples of the method for fixing the shaft member to the rotor portion include caulking, spot welding, adhesion, electrodeposition, brazing, C clip fastening, screw fastening, and the like.

以上の構成からなる動圧軸受装置と、ロータマグネットと、ステータコイルとを有するモータは、上記情報機器用、特にハードディスク(HDD)等の磁気ディスク駆動装置用等として好ましく使用することができる。   A motor having the above-described configuration, a dynamic pressure bearing device, a rotor magnet, and a stator coil can be preferably used for the information equipment, particularly for a magnetic disk drive such as a hard disk (HDD).

以上のように、本発明によれば、動圧軸受装置をより一層低コスト化することが可能となる。   As described above, according to the present invention, it is possible to further reduce the cost of the hydrodynamic bearing device.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられたロータ部としてのディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6を備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。ブラケット6の内周に動圧軸受装置1の軸受部材7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、それに伴ってディスクハブ3、さらには軸部材2が回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to an embodiment of the present invention. This spindle motor for information equipment is used for a disk drive device such as an HDD, and includes a dynamic pressure bearing device 1, a disk hub 3 as a rotor portion attached to a shaft member 2 of the dynamic pressure bearing device 1, for example, A stator coil 4 and a rotor magnet 5 which are opposed to each other through a radial gap, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. A bearing member 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and the disk hub 3 and the shaft member 2 are rotated accordingly.

図2に上記動圧軸受装置1の一例を示す。この動圧軸受装置1は、回転中心に軸部2aを有する軸部材2と、スリーブ状の部分を有し、軸部2aをその内周に挿入可能な軸受部材7と、軸受部材7の一端側開口を閉塞する蓋部材8と、軸受部材7の他端側に位置するシール部材9とを備えている。なお、説明の便宜上、蓋部材8の側を下方向、シール部材9の側を上方向として以下説明する。   FIG. 2 shows an example of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2 having a shaft portion 2a at the center of rotation, a bearing member 7 having a sleeve-like portion and capable of inserting the shaft portion 2a into the inner periphery thereof, and one end of the bearing member 7 A lid member 8 that closes the side opening and a seal member 9 located on the other end side of the bearing member 7 are provided. For convenience of explanation, the lid member 8 side will be described below, and the seal member 9 side will be described upward.

軸部材2は、その上端に取り付けたディスクハブ3とで回転部材Mを構成する。この軸部材2は、軸部2aとその一端に固定されたフランジ部2bとで構成される。本実施形態において、軸部2aとフランジ部2bは別部材として形成されているが、一体形成することもできる。軸部2aの外周面2a1には、へリングボーン形状に配列された複数の動圧溝Abと、各動圧溝Abを区画形成する部分Aaとを含むラジアル軸受面Aが軸方向に離隔して形成される。上側のラジアル軸受面Aでは、動圧溝Abが軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、動圧溝Abによる潤滑油の引き込み力(ポンピング力)は下側の対称形のラジアル軸受面Aに比べ上側のラジアル軸受面で相対的に大きくなる。なお、本図示例においては、ラジアル軸受面Aを軸方向に離隔して2箇所形成する場合を例示しているが、ラジアル軸受面は軸方向に任意の数を形成可能であり、1箇所あるいは3箇所以上形成してもよい。本実施形態においてフランジ部2bの両端面2b1、2b2は、動圧溝のない平坦面として形成される。   The shaft member 2 constitutes a rotating member M with a disk hub 3 attached to the upper end thereof. The shaft member 2 includes a shaft portion 2a and a flange portion 2b fixed to one end thereof. In the present embodiment, the shaft portion 2a and the flange portion 2b are formed as separate members, but may be integrally formed. On the outer peripheral surface 2a1 of the shaft portion 2a, a radial bearing surface A including a plurality of dynamic pressure grooves Ab arranged in a herringbone shape and a portion Aa that defines each dynamic pressure groove Ab is separated in the axial direction. Formed. On the upper radial bearing surface A, the dynamic pressure groove Ab is formed axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the axial dimension X2 of the lower region. Is bigger than. For this reason, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove Ab is relatively larger on the upper radial bearing surface than on the lower symmetrical radial bearing surface A. In the illustrated example, the radial bearing surface A is illustrated as being formed at two locations separated in the axial direction, but any number of radial bearing surfaces can be formed in the axial direction. Three or more places may be formed. In the present embodiment, both end surfaces 2b1 and 2b2 of the flange portion 2b are formed as flat surfaces having no dynamic pressure grooves.

ラジアル軸受面Aの動圧溝Abを区画形成する区画部Aaは、軸部2aの素材表面に樹脂組成物を供給することによって形成される。素材としては、例えばステンレス鋼等の金属材料が使用可能である。樹脂組成物の供給方法の一例として、本実施形態では、流動状態のインク(樹脂組成物)をノズルから微小液滴の状態で吐出し、定着すべき軸部2aの外周面2a1に着弾させて動圧溝Abを区画形成する区画部Aaを印刷するインクジェット方式を採用する。   The partition portion Aa that partitions and forms the dynamic pressure groove Ab of the radial bearing surface A is formed by supplying a resin composition to the material surface of the shaft portion 2a. As the material, for example, a metal material such as stainless steel can be used. As an example of a resin composition supply method, in this embodiment, fluid ink (resin composition) is ejected from a nozzle in the form of fine droplets and landed on the outer peripheral surface 2a1 of the shaft portion 2a to be fixed. An ink jet method is employed in which the partition portion Aa that partitions the dynamic pressure groove Ab is printed.

図3は、インクジェット方式の印刷装置の概要を示すものである。図示のように、この印刷装置は、回転駆動される軸部材2の素材2a’(フランジ部に相当する部分の図示は省略している)の外周面2a1と対向させた一又は複数のノズルヘッド10と、ノズルヘッド10に対してその円周方向位置を異ならせて配置した、好ましくは図示のように素材2a’を挟んでノズルヘッド10と対向させて配置した硬化部11とを主要な構成要素とする。ノズルヘッド10には、微小液滴状態のインク12を吐出する複数のノズル14が軸方向に配設されている。インク12は、例えば光硬化性樹脂、好ましくは紫外線硬化樹脂をベース樹脂とする樹脂組成物であり、必要に応じて適当な割合で有機溶媒を配合したものが使用される。硬化部11は、樹脂組成物を硬化させるための光を照射する光源で、例えば紫外線ランプが使用される。   FIG. 3 shows an outline of an ink jet printing apparatus. As shown in the figure, this printing apparatus includes one or a plurality of nozzle heads opposed to the outer peripheral surface 2a1 of the material 2a 'of the shaft member 2 to be rotationally driven (the portion corresponding to the flange portion is not shown). 10 and a hardened portion 11 that is arranged with a circumferential position different from that of the nozzle head 10, and preferably arranged to face the nozzle head 10 with the material 2 a ′ interposed therebetween as shown in the figure. Element. The nozzle head 10 is provided with a plurality of nozzles 14 for discharging ink 12 in a microdroplet state in the axial direction. The ink 12 is a resin composition containing, for example, a photo-curable resin, preferably an ultraviolet curable resin as a base resin, and an ink mixed with an organic solvent in an appropriate ratio as needed. The curing unit 11 is a light source that emits light for curing the resin composition, and for example, an ultraviolet lamp is used.

素材2a’を回転させながらノズルヘッド10を軸方向に往復スライドさせ、ノズル14からインク12を吐出することにより、インク12の微小液滴が素材2a’の外周面2a1の所定位置に着弾する。この微小液滴が多数集合することで、素材2a’の外周面2a1には動圧発生部として、例えばヘリングボーン形状に配列された動圧溝Abおよび動圧溝Abを区画形成する区画部Aaを有する動圧溝パターンが形成される。動圧溝パターンの印刷は軸部材2の回転に伴って徐々に円周方向に進行する形で行われ、印刷部分が硬化部11の対向領域に達すると、紫外線の照射を受けたインク12が重合反応を起こして順次硬化する。各ノズルからのインクの供給・停止を適宜切換えながら軸部材を1〜数十回転させて、軸部2aの全周に動圧溝パターンを形成する。このとき、ノズルヘッド10と硬化部11とは素材2a’を挟む対向位置に配置されているので、硬化部11から照射される紫外線は素材2a’に遮蔽され、ノズル14から吐出されるインク12には重合反応による硬化作用は及ばない。従って硬化したインク12によるノズル14の目詰まり等を防止して、効率よく動圧溝パターンを形成することができる。   The nozzle head 10 is slid back and forth in the axial direction while rotating the material 2 a ′, and the ink 12 is ejected from the nozzles 14, whereby the fine droplets of the ink 12 land on a predetermined position on the outer peripheral surface 2 a 1 of the material 2 a ′. As a result of the collection of a large number of microdroplets, the outer peripheral surface 2a1 of the material 2a ′ has, as a dynamic pressure generating portion, for example, a dynamic pressure groove Ab arranged in a herringbone shape and a partition portion Aa that partitions the dynamic pressure groove Ab. A dynamic pressure groove pattern is formed. The printing of the dynamic pressure groove pattern is performed so as to gradually progress in the circumferential direction as the shaft member 2 rotates, and when the printed portion reaches the opposite area of the curing portion 11, the ink 12 that has been irradiated with ultraviolet rays is A polymerization reaction is caused to cure sequentially. The shaft member is rotated one to several tens of times while appropriately switching the supply / stop of the ink from each nozzle to form a dynamic pressure groove pattern on the entire circumference of the shaft portion 2a. At this time, since the nozzle head 10 and the curing unit 11 are disposed at opposing positions sandwiching the material 2a ′, the ultraviolet rays irradiated from the curing unit 11 are shielded by the material 2a ′ and the ink 12 ejected from the nozzle 14 is used. Does not have a curing effect due to the polymerization reaction. Therefore, the clogging of the nozzle 14 due to the cured ink 12 can be prevented, and the dynamic pressure groove pattern can be efficiently formed.

なお、インクの定着方式としては、上述のインクジェット方式のみならず、例えば電気泳動を利用して液滴を吐出する方法、いわゆるノズルレスタイプの液滴吐出方式、あるいはマイクロピペットを介してインクを液滴の状態ではなく連続的に素材の表面に吐出する方式、あるいは素材表面までの距離を短縮し、インクを吐出と同時に定着面に接触させる方式などを使用することもできる。   The ink fixing method is not limited to the above-described ink jet method, for example, a method of discharging droplets using electrophoresis, a so-called nozzleless type droplet discharging method, or a method of discharging ink via a micropipette. It is also possible to use a method in which the ink is continuously ejected on the surface of the material instead of in a droplet state, or a method in which the distance to the material surface is shortened and ink is brought into contact with the fixing surface simultaneously with ejection.

上述のように軸部2aに動圧発生部を、樹脂組成物を着弾または滴下させた後、硬化させ区画形成する方法、例えばインクジェット法により形成したことにより、従来のようなエッチング等の工程を省略し、そのまま動圧軸受装置1に組み込んでラジアル軸受面Aとして使用可能である。さらに、余剰インクの供給および印刷型等の消耗品が不要となることから、工程省略、消耗品削減が可能となる。また、軸部2aに形成される樹脂組成物からなる動圧発生部が素材表面から凸状に形成されるため、軸部2aの素材が軸受部材7に摺動接触することがない。よって、軸部2aを形成する金属材料は、耐摩耗性等を考慮しなくて良くなり、より安価な金属材料を選択可能となるため、動圧軸受装置1の更なる低コスト化が可能になる。   As described above, the dynamic pressure generating portion is formed on the shaft portion 2a by landing or dripping the resin composition and then curing and forming a partition, for example, an inkjet method, thereby performing a conventional process such as etching. It can be omitted and used as the radial bearing surface A by being incorporated in the hydrodynamic bearing device 1 as it is. Furthermore, since supply of surplus ink and consumables such as a printing die are not required, the process can be omitted and the consumables can be reduced. Moreover, since the dynamic pressure generating portion made of the resin composition formed on the shaft portion 2a is formed in a convex shape from the surface of the material, the material of the shaft portion 2a does not make sliding contact with the bearing member 7. Therefore, the metal material forming the shaft portion 2a does not need to consider wear resistance and the like, and a cheaper metal material can be selected, so that the cost of the hydrodynamic bearing device 1 can be further reduced. Become.

軸受部材7は、略円筒形状に形成される。図示例の軸受部材7は、スリーブ部7aとその上方のシール装着部7bとで構成される。スリーブ部7aの内周面7a1は、シール装着部7bの内周面7b1よりも小径で、軸部材2の二つのラジアル軸受面Aと対向する。シール装着部7bの下端外周は部分的に縮径形成され、この縮径部分の外周面7a3に後述する蓋部材8が嵌合固定される。スリーブ部7aの下側端面7a2には、図4に示すように、動圧発生部として例えばスパイラル形状に配列した複数の動圧溝7a5と、各動圧溝7a5を区画形成する区画部7a6とを含む第1のスラスト軸受面Bが形成される。   The bearing member 7 is formed in a substantially cylindrical shape. The illustrated bearing member 7 includes a sleeve portion 7a and a seal mounting portion 7b above the sleeve portion 7a. The inner peripheral surface 7a1 of the sleeve portion 7a has a smaller diameter than the inner peripheral surface 7b1 of the seal mounting portion 7b, and faces the two radial bearing surfaces A of the shaft member 2. The outer periphery of the lower end of the seal mounting portion 7b is partially reduced in diameter, and a lid member 8 described later is fitted and fixed to the outer peripheral surface 7a3 of the reduced diameter portion. On the lower end surface 7a2 of the sleeve portion 7a, as shown in FIG. 4, a plurality of dynamic pressure grooves 7a5 arranged in a spiral shape, for example, as dynamic pressure generating portions, and a partition portion 7a6 that partitions each dynamic pressure groove 7a5. A first thrust bearing surface B including is formed.

この軸受部材7は、軟質金属等の金属材料のプレス成形、樹脂材料の射出成形、あるいはMIM成形の何れかの手法で一体形成される。何れの成形法においても、成形型のスリーブ部7aの下側端面7a2を成形する部分に、第1のスラスト軸受面Bの動圧発生部形状に対応した型を形成しておくことで、軸受部材7の型成形と同時に、第1のスラスト軸受面Bを成形することが可能となる。これにより、動圧発生部の安定した加工精度を維持することができるとともに、加工工数が減少し、サイクルタイムが短縮され、コスト低減が可能となる。   The bearing member 7 is integrally formed by any one of press molding of a metal material such as soft metal, injection molding of a resin material, or MIM molding. In any molding method, a bearing corresponding to the shape of the dynamic pressure generating portion of the first thrust bearing surface B is formed on the portion of the molding die that forms the lower end surface 7a2 of the sleeve portion 7a. Simultaneously with the molding of the member 7, the first thrust bearing surface B can be molded. As a result, stable machining accuracy of the dynamic pressure generating portion can be maintained, the number of machining steps can be reduced, cycle time can be shortened, and cost can be reduced.

蓋部材8は、軸受部材7とは別体の有底略円筒状に形成される。この蓋部材8は、円筒状の側部8aと、側部8aの下端開口を封口する底部8bとを備え、図示例では側部8aと底部8bとを一体成形した場合を例示している。底部8bの上側端面8b1には、図5に示すように、動圧発生部として例えばスパイラル形状に配列した複数の動圧溝8b2と、各動圧溝8b2を区画形成する区画部8b3とを含む第2のスラスト軸受面Cが形成される。なお、側部8aと底部8bとは別体とすることもできる。   The lid member 8 is formed in a substantially bottomed cylindrical shape that is separate from the bearing member 7. The lid member 8 includes a cylindrical side portion 8a and a bottom portion 8b that seals the lower end opening of the side portion 8a. In the illustrated example, the side portion 8a and the bottom portion 8b are integrally formed. As shown in FIG. 5, the upper end surface 8b1 of the bottom 8b includes a plurality of dynamic pressure grooves 8b2 arranged in a spiral shape, for example, as a dynamic pressure generating portion, and a partition portion 8b3 that partitions each dynamic pressure groove 8b2. A second thrust bearing surface C is formed. In addition, the side part 8a and the bottom part 8b can also be made into a different body.

この蓋部材8は、上記軸受部材7と同様に、軟質金属等の金属材料のプレス成形、樹脂材料の射出成形、あるいはMIM成形の何れかの手法で一体形成される。何れの成形法においても、成形型の底部8bの上側端面8b1を成形する部分に、第2のスラスト軸受面Cの動圧発生部形状に対応した型を形成しておくことで、蓋部材8の型成形と同時に第2のスラスト軸受面Cを成形することが可能となり、さらなる低コスト化が達成される。   Similar to the bearing member 7, the lid member 8 is integrally formed by any one of press molding of a metal material such as soft metal, injection molding of a resin material, or MIM molding. In any of the molding methods, a lid member 8 is formed by forming a mold corresponding to the shape of the dynamic pressure generating portion of the second thrust bearing surface C at a portion where the upper end surface 8b1 of the bottom 8b of the mold is to be molded. The second thrust bearing surface C can be formed at the same time as the mold is formed, and further cost reduction is achieved.

蓋部材8は、側部8aの内周面8a1を軸受部材7の縮径部外周面7a3に嵌合し、圧入、接着、溶着等の適宜の手段を施すことにより軸受部材7に固定される。この時、軸部材2のフランジ部2bは、軸受部材7のスリーブ部7aの下側端面7a2と蓋部材8の底部8bの上側端面8b1との間に空間に収容される。蓋部材8の側部8aの上側端面8a2は、軸受部材7のスリーブ部7aの外周に形成された肩面7a4と当接しており、これによって後述のスラスト軸受隙間が規定幅に管理される。   The lid member 8 is fixed to the bearing member 7 by fitting the inner peripheral surface 8a1 of the side portion 8a to the outer peripheral surface 7a3 of the reduced diameter portion of the bearing member 7 and applying appropriate means such as press-fitting, adhesion, and welding. . At this time, the flange portion 2 b of the shaft member 2 is accommodated in a space between the lower end surface 7 a 2 of the sleeve portion 7 a of the bearing member 7 and the upper end surface 8 b 1 of the bottom portion 8 b of the lid member 8. The upper end surface 8a2 of the side portion 8a of the lid member 8 is in contact with a shoulder surface 7a4 formed on the outer periphery of the sleeve portion 7a of the bearing member 7, whereby a later-described thrust bearing gap is managed to a specified width.

なお、軸受部材7と蓋部材8の材料選択は、求められる軸受特性に対応して適宜選択することができる。この時、蓋部材8と軸受部材7は、異種材料・同種材料の何れで形成しても構わない。   In addition, the material selection of the bearing member 7 and the cover member 8 can be suitably selected corresponding to the required bearing characteristics. At this time, the lid member 8 and the bearing member 7 may be formed of either different materials or the same materials.

シール部材9は、金属材料や樹脂材料で環状に形成される。シール部材9は、この実施形態では、軸受部材7とは別体に形成され、軸受部材7のシール装着部7bの内周面7b1に圧入、接着、溶着等の手段で固定される。シール部材9の内周面9aは上方に向かうにつれてテーパ状に拡径しており、この内周面9aと、内周面9aに対向する軸部2aの外周面2a1との間には、上方に向かうにつれて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。シール部材9で密封された動圧軸受装置1の内部空間には、潤滑油が注油され、動圧軸受装置1内が潤滑油で満たされる。この状態では、潤滑油の油面はシール空間Sの範囲内に維持される。部品点数の削減および組立工数の削減のため、シール部材9を軸受部材7と一体成形することもできる。   The seal member 9 is formed in a ring shape with a metal material or a resin material. In this embodiment, the seal member 9 is formed separately from the bearing member 7, and is fixed to the inner peripheral surface 7b1 of the seal mounting portion 7b of the bearing member 7 by means such as press-fitting, adhesion, and welding. The inner peripheral surface 9a of the seal member 9 is increased in diameter in a tapered manner toward the upper side. Between the inner peripheral surface 9a and the outer peripheral surface 2a1 of the shaft portion 2a facing the inner peripheral surface 9a, An annular seal space S in which the radial dimension gradually increases as it goes to is formed. Lubricating oil is injected into the internal space of the hydrodynamic bearing device 1 sealed with the seal member 9, and the hydrodynamic bearing device 1 is filled with the lubricating oil. In this state, the oil level of the lubricating oil is maintained within the range of the seal space S. In order to reduce the number of parts and the number of assembly steps, the seal member 9 can be integrally formed with the bearing member 7.

上記構成の動圧軸受装置1において、軸部材2が回転すると、軸部2aの外周面2a1に離隔形成されたラジアル軸受面Aは、それぞれ軸受部材7のスリーブ部7aの内周面7a1とラジアル軸受隙間を介して対向する。軸部材2の回転に伴い、各ラジアル軸受隙間に満たされた潤滑油が動圧作用を発生し、その圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the radial bearing surfaces A formed on the outer peripheral surface 2a1 of the shaft portion 2a are separated from the inner peripheral surface 7a1 of the sleeve portion 7a of the bearing member 7, respectively. Opposing through the bearing gap. As the shaft member 2 rotates, the lubricating oil filled in the radial bearing gaps generates a dynamic pressure action, and the shaft member 2 is rotatably supported in the radial direction by the pressure. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

同様に軸受部材7の下側端面7a2に形成された第1のスラスト軸受面Bとフランジ部2bの上側端面2b1との間、および蓋部材8の上側端面8b1に形成された第2のスラスト軸受面Cとフランジ部2bの下側端面2b2との間にそれぞれスラスト軸受隙間が形成され、軸部材2の回転に伴い、両スラスト軸受隙間に満たされた潤滑油が動圧作用を発生し、その圧力によって軸部材2がスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト両方向に回転自在に非接触支持する第1スラスト軸受部T1および第2スラスト軸受部T2が形成される。   Similarly, a second thrust bearing formed between the first thrust bearing surface B formed on the lower end surface 7a2 of the bearing member 7 and the upper end surface 2b1 of the flange portion 2b and on the upper end surface 8b1 of the lid member 8. Thrust bearing gaps are respectively formed between the surface C and the lower end face 2b2 of the flange portion 2b. As the shaft member 2 rotates, the lubricating oil filled in both thrust bearing gaps generates a dynamic pressure action, The shaft member 2 is supported by the pressure in a non-contact manner so as to be rotatable in the thrust direction. Thereby, the first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in a non-contact manner so as to be rotatable in both directions of the thrust are formed.

なお、図示は省略しているが、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2の各軸受隙間で生じる圧力をバランスさせるため、軸受部材7には一端が第1のスラスト軸受部T1の外周付近に開口し、他端が第1のラジアル軸受部R1の上方に開口する油循環用の流路を形成するのが望ましい。   Although illustration is omitted, in order to balance the pressure generated in the bearing clearances of the radial bearing portions R1, R2 and the thrust bearing portions T1, T2, one end of the bearing member 7 is the first thrust bearing portion T1. It is desirable to form a flow path for oil circulation that opens near the outer periphery and opens at the other end above the first radial bearing portion R1.

本発明の動圧軸受装置1は、上述のように、従来のスリーブ状部材とハウジングとを軸受部材7として一体化した構造を有するので、部品点数の削減、および二部材同士の組み付け工程の省略を通じて、動圧軸受装置の低コスト化を図ることができる。さらに本発明では、軸受部材7や蓋部材8を樹脂の射出成形品、MIM成形品、または金属のプレス成形品の何れかとし、かつ軸受部材7に動圧発生部を有する第1のスラスト軸受面B、蓋部材8に同じく動圧発生部を有する第2のスラスト軸受面Cをそれぞれ形成するので、これらの部材7、8の型成形と同時に各スラスト軸受面B、Cを成形することができる。従って、これらスラスト軸受面B、Cを、軸部材2の成形後に鍛造等によってフランジ部両端面2b1、2b2に形成する場合に比べ、加工工程を省略して、より一層の低コスト化を図ることができる。   As described above, the hydrodynamic bearing device 1 of the present invention has a structure in which the conventional sleeve-shaped member and the housing are integrated as the bearing member 7, so that the number of parts is reduced and the assembly process between the two members is omitted. Thus, the cost of the hydrodynamic bearing device can be reduced. In the present invention, the bearing member 7 and the lid member 8 are any one of a resin injection molded product, an MIM molded product, and a metal press molded product, and the bearing member 7 has a dynamic pressure generating portion. Since the second thrust bearing surface C having the dynamic pressure generating portion is formed on the surface B and the lid member 8, the thrust bearing surfaces B and C can be formed simultaneously with the molding of these members 7 and 8. it can. Therefore, compared with the case where the thrust bearing surfaces B and C are formed on the flange end faces 2b1 and 2b2 by forging after the shaft member 2 is formed, the processing steps are omitted and the cost is further reduced. Can do.

図1に示すように、本発明の動圧軸受装置1は、ブラケット6の内周に軸受部材7の外周面(さらに必要に応じて蓋部材8の外周面)を固定し、さらに軸部材2の上端にロータ部としてのディスクハブ3を装着することによってスピンドルモータに組み込まれる。ディスクハブ3は、略円盤形状をなすプレート部3aと、プレート部3aの外周に一体成形された円筒部3bとを備え、例えば加締め、溶接(スポット溶接等)、接着、電着、蝋付け、Cクリップ、ネジ止め等の手段により軸部材2の上端に固定される。   As shown in FIG. 1, in the hydrodynamic bearing device 1 of the present invention, the outer peripheral surface of the bearing member 7 (and the outer peripheral surface of the lid member 8 as necessary) is fixed to the inner periphery of the bracket 6, and the shaft member 2. A disk hub 3 as a rotor portion is mounted on the upper end of the spindle motor and incorporated in the spindle motor. The disc hub 3 includes a plate portion 3a having a substantially disk shape and a cylindrical portion 3b integrally formed on the outer periphery of the plate portion 3a. For example, caulking, welding (spot welding, etc.), adhesion, electrodeposition, brazing The shaft member 2 is fixed to the upper end of the shaft member 2 by means such as a C clip or a screw.

このディスクハブ3は、例えば樹脂材料を射出成形して形成することができる。このようにディスクハブ3を樹脂材料で製作した場合、ステータコイル4とロータマグネット5間に生じる磁束がディスクハブ3を介して漏れ、磁力損失を招くおそれがあるが、図2に示すように、強磁性体の金属材料からなる磁気シールド部材20を円筒部3bの内周面3b1とマグネット5との間に介在させれば、かかる問題を解消することができる。この磁気シールド部材20は、例えばインサート成形によってディスクハブ3と一体成形することもできる。なお、ディスクハブ3自体を強磁性体で製作した場合には、磁気シールド部材20は不要となる。   The disk hub 3 can be formed by, for example, injection molding of a resin material. When the disk hub 3 is made of a resin material in this manner, the magnetic flux generated between the stator coil 4 and the rotor magnet 5 may leak through the disk hub 3 and cause magnetic loss, but as shown in FIG. If the magnetic shield member 20 made of a ferromagnetic metal material is interposed between the inner peripheral surface 3b1 of the cylindrical portion 3b and the magnet 5, such a problem can be solved. The magnetic shield member 20 can be integrally formed with the disk hub 3 by insert molding, for example. When the disk hub 3 itself is made of a ferromagnetic material, the magnetic shield member 20 is not necessary.

以上本発明の一実施形態を説明したが、本発明はこの実施形態に限定されるものではなく、以下説明する動圧軸受装置においても好ましく用いることができる。なお、以下説明する実施形態において、図2に示す実施形態と同一機能を有する部材および要素には共通の参照番号を付して重複説明を省略する。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and can be preferably used in a hydrodynamic bearing device described below. In the embodiments described below, members and elements having the same functions as those in the embodiment shown in FIG.

図6は、動圧軸受装置の他の実施形態を示すものである。この実施形態の動圧軸受装置30が、図2に示す実施形態と大きく異なる点は、図2に示す第2スラスト軸受部T2が軸受部材7の上側端面7e2と、これに対向するディスクハブ3におけるプレート部3aの下側端面3a1との間に形成されている点、およびシール空間Sが軸受部材7の上端外周面7e1とディスクハブ3の円筒部3bの内周面3b1との間に形成されている点にある。   FIG. 6 shows another embodiment of the hydrodynamic bearing device. The hydrodynamic bearing device 30 of this embodiment is greatly different from the embodiment shown in FIG. 2 in that the second thrust bearing portion T2 shown in FIG. 2 has an upper end surface 7e2 of the bearing member 7 and a disk hub 3 facing this. The seal space S is formed between the upper end outer peripheral surface 7e1 of the bearing member 7 and the inner peripheral surface 3b1 of the cylindrical portion 3b of the disk hub 3. It is in the point.

この実施形態においても、軸受部材7は、従来のハウジングとスリーブ状の部材とを一体形成した形態を有する樹脂の射出成形品等であり、かつ軸受部材7の下側端面7a2に第1のスラスト軸受面B、さらには軸受部材7の上側端面7e2に第2のスラスト軸受面Cがそれぞれ型成形されているので、図2に示す実施形態と同様に動圧軸受装置の低コスト化を図ることができる。   Also in this embodiment, the bearing member 7 is a resin injection molded article having a form in which a conventional housing and a sleeve-like member are integrally formed, and the first thrust is formed on the lower end surface 7a2 of the bearing member 7. Since the second thrust bearing surface C is molded on the bearing surface B and further on the upper end surface 7e2 of the bearing member 7, the cost of the hydrodynamic bearing device can be reduced as in the embodiment shown in FIG. Can do.

なお、以上に述べた各実施形態では、蓋部材8を軸受部材7とを別部材にしているが、これは組立上の都合によるものであり、例えば軸部材2のフランジ部2bを省略した軸受装置等のように、組立上特に不都合がない場合は、蓋部材8と軸受部材7とを一体成形することもできる。図7に示す動圧軸受装置40はその一例であり、軸部材2のフランジ部2bを省略したものである。この実施形態においても、軸受部材7の上側端面7e2にスラスト軸受面が型成形されている。なお、スラスト軸受部Tは、軸受部材7の上側端面7e2と、これに対向するディスクハブ3におけるプレート部3aの下側端面3a1との間に形成されているのみである。   In each of the embodiments described above, the lid member 8 and the bearing member 7 are separate members. However, this is for assembly reasons, and for example, a bearing in which the flange portion 2b of the shaft member 2 is omitted. If there is no particular inconvenience in assembly, such as in an apparatus, the lid member 8 and the bearing member 7 can be integrally formed. The hydrodynamic bearing device 40 shown in FIG. 7 is an example thereof, and the flange portion 2b of the shaft member 2 is omitted. Also in this embodiment, a thrust bearing surface is molded on the upper end surface 7e2 of the bearing member 7. The thrust bearing portion T is only formed between the upper end surface 7e2 of the bearing member 7 and the lower end surface 3a1 of the plate portion 3a in the disk hub 3 opposed to the upper end surface 7e2.

さらに、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2、Tを構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば、円周方向複数箇所で、ラジアル軸受隙間を円周方向の一方又は双方にくさび状に縮小させた形状とした、いわゆる多円弧軸受、軸方向に延びた動圧溝を円周方向の複数箇所に形成した、いわゆるステップ軸受で構成することもできる。また、スラスト軸受部T1、T2、Tとして、円周方向複数箇所で、スラスト軸受隙間を円周方向の一方又は双方にくさび状に縮小させた形状とした構成のものを採用することもできる。   Furthermore, in the above embodiment, as the dynamic pressure bearings constituting the radial bearing portions R1, R2 and the thrust bearing portions T1, T2, T, for example, a dynamic pressure generating portion including a herringbone shape or a spiral shape dynamic pressure groove is provided. Although the used bearing is illustrated, the structure of the dynamic pressure generating portion is not limited to this. As the radial bearing portions R1 and R2, for example, a so-called multi-arc bearing in which a radial bearing gap is reduced in a wedge shape in one or both of the circumferential directions at a plurality of locations in the circumferential direction, axially extending motion It can also be comprised with what is called a step bearing which formed the pressure groove in the multiple places of the circumferential direction. Further, as the thrust bearing portions T1, T2, and T, it is possible to adopt a configuration in which the thrust bearing gap is reduced to a wedge shape in one or both of the circumferential directions at a plurality of locations in the circumferential direction.

本発明の一実施形態に係る動圧軸受装置を組み込んだ情報機器用スピンド ルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 一実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the dynamic pressure bearing apparatus which concerns on one Embodiment. インクジェット方式の印刷装置の概要図である。1 is a schematic diagram of an inkjet printing apparatus. 軸受部材の下側端面を下方から見た図である。It is the figure which looked at the lower end surface of the bearing member from the lower part. 蓋部材の上側端面を上方から見た図である。It is the figure which looked at the upper end face of the lid member from the upper part. 他の実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on other embodiment. 他の実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on other embodiment.

符号の説明Explanation of symbols

1、30、40 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 軸受部材
7a5 動圧溝
8 蓋部材
8b2 動圧溝
9 シール部材
20 磁気シールド部材
A ラジアル軸受面
Ab 動圧溝
B、C スラスト軸受面
M 回転部材
R1、R2 ラジアル軸受部
T1 第1スラスト軸受部
T2 第2スラスト軸受部
T スラスト軸受部
S シール空間
1, 30, 40 Dynamic pressure bearing device 2 Shaft member 2a Shaft portion 2b Flange portion 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Bearing member 7a5 Dynamic pressure groove 8 Lid member 8b2 Dynamic pressure groove 9 Seal member 20 Magnetic shield member A Radial Bearing surface Ab Dynamic pressure groove B, C Thrust bearing surface M Rotating member R1, R2 Radial bearing portion T1 First thrust bearing portion T2 Second thrust bearing portion T Thrust bearing portion S Seal space

Claims (8)

軸部を有する回転部材と、内周面を軸部の外周面に対向させた軸受部材と、軸部と軸受部材との間のラジアル軸受隙間に生じた流体の動圧作用で回転部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト軸受隙間に生じた流体の動圧作用で回転部材をスラスト方向に非接触支持するスラスト軸受部とを備えるものにおいて、
軸部の素材表面に樹脂組成物を供給して、ラジアル軸受隙間に流体動圧を発生させるための動圧発生部を形成したものであり、
軸受部材の一端開口が軸受部材と一体または別体の蓋部材により閉塞され、前記スラスト軸受隙間に面する軸受部材の一端側端面に、動圧発生部を有する第1のスラスト軸受面が型成形されていることを特徴とする動圧軸受装置。
A rotary member having a shaft portion, a bearing member having an inner peripheral surface opposed to the outer peripheral surface of the shaft portion, and a dynamic pressure action of fluid generated in a radial bearing gap between the shaft portion and the bearing member causes the rotary member to be radial. A radial bearing portion that supports the contact member in the non-contact direction, and a thrust bearing portion that supports the rotating member in a non-contact manner in the thrust direction by the dynamic pressure action of the fluid generated in the thrust bearing gap.
A resin composition is supplied to the material surface of the shaft part, and a dynamic pressure generating part for generating fluid dynamic pressure in the radial bearing gap is formed.
One end opening of the bearing member is closed by a lid member that is integral with or separate from the bearing member, and a first thrust bearing surface having a dynamic pressure generating portion is molded on one end surface of the bearing member facing the thrust bearing gap. A hydrodynamic bearing device characterized by that.
動圧発生部が、素材表面に樹脂組成物をノズルから着弾または滴下させた後、これを硬化させて形成したものである請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the dynamic pressure generating portion is formed by landing or dripping the resin composition on the surface of the material from the nozzle and then curing the resin composition. 蓋部材に、動圧発生部を有する第2のスラスト軸受面を型成形した請求項1または2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1 or 2, wherein a second thrust bearing surface having a hydrodynamic pressure generating portion is molded on the lid member. 軸受部材の他端側の端面に、動圧発生部を有する第2のスラスト軸受面を型成形した請求項1または2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1 or 2, wherein a second thrust bearing surface having a dynamic pressure generating portion is molded on an end surface on the other end side of the bearing member. 軸受部材が、樹脂の射出成形品、MIM成形品、または金属のプレス成形品の何れかである請求項1〜4何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 4, wherein the bearing member is any one of a resin injection molded product, an MIM molded product, and a metal press molded product. 蓋部材が、樹脂の射出成形品、MIM成形品、または金属のプレス成形品の何れかである請求項1〜5何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 5, wherein the lid member is one of a resin injection molded product, an MIM molded product, or a metal press molded product. 回転部材が、軸部と、軸部の外径側に張り出し、ロータマグネットの取り付け部を有するロータ部とを備え、ロータ部のうち、少なくともロータマグネットとの対向部に磁性材料を配した請求項1から6何れか記載の動圧軸受装置。   The rotating member includes a shaft portion and a rotor portion that projects to an outer diameter side of the shaft portion and has a rotor magnet mounting portion, and at least a portion of the rotor portion facing the rotor magnet is provided with a magnetic material. The hydrodynamic bearing device according to any one of 1 to 6. 請求項1から7何れか記載の動圧軸受装置と、ロータマグネットと、ステータコイルとを有することを特徴とするモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a rotor magnet, and a stator coil.
JP2004295258A 2004-10-07 2004-10-07 Dynamic pressure bearing device Withdrawn JP2006105332A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004295258A JP2006105332A (en) 2004-10-07 2004-10-07 Dynamic pressure bearing device
US11/629,458 US20080203838A1 (en) 2004-10-07 2005-09-14 Dynamic Bearing Device
PCT/JP2005/016970 WO2006038444A1 (en) 2004-10-07 2005-09-14 Dynamic pressure bearing device
CNB200580023285XA CN100470067C (en) 2004-10-07 2005-09-14 Dynamic pressure bearing device
KR1020077001204A KR20070062496A (en) 2004-10-07 2005-09-14 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295258A JP2006105332A (en) 2004-10-07 2004-10-07 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2006105332A true JP2006105332A (en) 2006-04-20

Family

ID=36375308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295258A Withdrawn JP2006105332A (en) 2004-10-07 2004-10-07 Dynamic pressure bearing device

Country Status (2)

Country Link
JP (1) JP2006105332A (en)
CN (1) CN100470067C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141940A1 (en) * 2006-06-08 2007-12-13 Ntn Corporation Fluid bearing device
JP2008111559A (en) * 2007-12-07 2008-05-15 Ntn Corp Fluid bearing device
WO2008069226A1 (en) * 2006-12-05 2008-06-12 Nidec Corporation Fluid dynamic pressure bearing device and spindle motor and disk drive device using it
WO2009001960A1 (en) * 2007-06-28 2008-12-31 Nidec Corporation Fluid dynamic pressure bearing, motor with the fluid dynamic pressure bearing, and method of producing fluid dynamic pressure bearing
US20110097025A1 (en) * 2008-07-08 2011-04-28 Ntn Corporation Fluid dynamic bearing device
KR101077391B1 (en) * 2009-07-15 2011-10-26 삼성전기주식회사 Hydrodynamic bearing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141940A1 (en) * 2006-06-08 2007-12-13 Ntn Corporation Fluid bearing device
JP2007327588A (en) * 2006-06-08 2007-12-20 Ntn Corp Fluid bearing device
US8197141B2 (en) 2006-06-08 2012-06-12 Ntn Corporation Fluid dynamic bearing device
KR101321383B1 (en) * 2006-06-08 2013-10-23 엔티엔 가부시키가이샤 Fluid bearing device
WO2008069226A1 (en) * 2006-12-05 2008-06-12 Nidec Corporation Fluid dynamic pressure bearing device and spindle motor and disk drive device using it
WO2009001960A1 (en) * 2007-06-28 2008-12-31 Nidec Corporation Fluid dynamic pressure bearing, motor with the fluid dynamic pressure bearing, and method of producing fluid dynamic pressure bearing
JP2008111559A (en) * 2007-12-07 2008-05-15 Ntn Corp Fluid bearing device
US20110097025A1 (en) * 2008-07-08 2011-04-28 Ntn Corporation Fluid dynamic bearing device
US8591113B2 (en) * 2008-07-08 2013-11-26 Ntn Corporation Fluid dynamic bearing device
US9200674B2 (en) 2008-07-08 2015-12-01 Ntn Corporation Fluid dynamic bearing device
KR101077391B1 (en) * 2009-07-15 2011-10-26 삼성전기주식회사 Hydrodynamic bearing device

Also Published As

Publication number Publication date
CN1985099A (en) 2007-06-20
CN100470067C (en) 2009-03-18

Similar Documents

Publication Publication Date Title
USRE46300E1 (en) Spindle motor having a fluid dynamic bearing system and a stationary shaft
JP2006283915A (en) Fluid bearing device
US8587895B1 (en) Bearing mechanism, motor and disk drive apparatus
JP4874004B2 (en) Hydrodynamic bearing device
US20080203838A1 (en) Dynamic Bearing Device
CN100470067C (en) Dynamic pressure bearing device
JP2006300181A (en) Dynamic pressure bearing device
JP2006214541A (en) Fluid dynamic bearing
JP2006226520A (en) Dynamic pressure bearing device
JP2006194385A (en) Dynamic pressure bearing device
JP2006226365A (en) Dynamic pressure bearing device
WO2006038444A1 (en) Dynamic pressure bearing device
JP2007100950A (en) Fluid bearing device
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP2006220279A (en) Hydrodynamic bearing device
JP2006207774A (en) Fluid dynamic bearing device and motor equipped with it
JP2006207681A (en) Method for forming dynamic pressure generating part
JP2006200667A (en) Dynamic-pressure bearing device
JP2006064160A (en) Shaft member for dynamic pressure bearing device
US20080217803A1 (en) Method of Molding a Hydrodynamic Pressure Producuing Part
JP2007255594A (en) Dynamic pressure bearing device
JP2007239835A (en) Fluid bearing device and its manufacturing method
JP2006090364A (en) Shaft member for dynamic pressure bearing device
JP2006177414A (en) Forming method for dynamic pressure generating part
JP2006214572A (en) Method of forming dynamic pressure generating part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100601