JP2006105260A - Spring member, piezo driving device, and piezo type injector - Google Patents

Spring member, piezo driving device, and piezo type injector Download PDF

Info

Publication number
JP2006105260A
JP2006105260A JP2004292126A JP2004292126A JP2006105260A JP 2006105260 A JP2006105260 A JP 2006105260A JP 2004292126 A JP2004292126 A JP 2004292126A JP 2004292126 A JP2004292126 A JP 2004292126A JP 2006105260 A JP2006105260 A JP 2006105260A
Authority
JP
Japan
Prior art keywords
spring
piezo
spring member
annular portion
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004292126A
Other languages
Japanese (ja)
Inventor
Senta Tojo
千太 東條
Toru Taguchi
透 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004292126A priority Critical patent/JP2006105260A/en
Publication of JP2006105260A publication Critical patent/JP2006105260A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spring member with a wide load range and a hardly wearing abutting part by modifying a spring member shape applying an initial load to a piezo element in a piezo driving device used in a piezo type injector. <P>SOLUTION: The spring member 31 comprises an annular plate spring, and since a radial cross sectional shape of a plate face is substantially V-shaped, spring force is larger than a disc spring which can be installed in the same space. In the piezo driving device of the piezo type injector, wear can be prevented since there is no relative displacement between abutting parts of a V-shaped middle part 313 of the spring member 31, and a first piston and a plate member when a preset spring of combining two spring members 31 is arranged between the first piston displaced integrally with a piezo stack, and the plate member arranged in a lower end of a vertical hole. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ピエゾ式インジェクタ等に使用されるピエゾ駆動装置に関し、詳しくは、ピエゾ駆動装置においてピエゾ素子に初期荷重を付与するために、または他の荷重負荷機構に用いられるばね部材の形状に関する。   The present invention relates to a piezo drive device used for a piezo injector or the like, and more particularly to a shape of a spring member used for applying an initial load to a piezo element in the piezo drive device or for another load loading mechanism.

ディーゼルエンジン等の燃料噴射装置において、ピエゾ駆動装置を備えたピエゾ式インジェクタが知られ、応答性が良いことから高度な燃料噴射制御が期待されている。ピエゾ駆動装置は、通常、通電により変位を発生するピエゾ素子と、ピエゾ素子の変位を伝達するためのピストン部材を有し、該ピストン部材の往復動に伴い油圧室の圧力を増減させるようになっている。この油圧室の圧力により、あるいは油圧制御弁を介してノズルニードルを駆動し、燃焼噴射を制御することができる。   In a fuel injection device such as a diesel engine, a piezo-type injector provided with a piezo drive device is known, and high fuel injection control is expected because of its good response. The piezo drive device usually has a piezo element that generates a displacement by energization and a piston member for transmitting the displacement of the piezo element, and increases or decreases the pressure in the hydraulic chamber as the piston member reciprocates. ing. Combustion injection can be controlled by driving the nozzle needle by the pressure in the hydraulic chamber or via a hydraulic control valve.

従来技術として、特許文献1があり、ピエゾ素子の一端側にピストンを配置し、ピエゾ素子によりピストンを作動させて該ピストンにより画定されたシリンダ室の油圧を変化させるインジェクタ用アクチュエータが開示されている。
特公平7−94812号公報
As a prior art, there is Patent Document 1, which discloses an injector actuator in which a piston is arranged on one end side of a piezo element, and the piston is operated by the piezo element to change the oil pressure in a cylinder chamber defined by the piston. .
Japanese Patent Publication No. 7-94812

図9(a)は、ピエゾ駆動装置の一例を示す図で、ピエゾスタック(ピエゾ素子)101の変位を、第1ピストン102および第2ピストン103と油密室104とからなる油圧伝達装置を介して伝達する構成となっている。この構成において、通電によりピエゾスタック101を伸長させると、第1ピストン102が一体に変位し、油密室104の圧力を上昇させる。これに伴い、第2ピストン103が図示しない油圧制御弁を開弁すると、ノズルニードルの背圧が低下して、ノズルニードルがリフトし、燃焼が噴射される。   FIG. 9A is a diagram illustrating an example of a piezo drive device. The displacement of the piezo stack (piezo element) 101 is transferred via a hydraulic transmission device including a first piston 102, a second piston 103, and an oil-tight chamber 104. It is configured to communicate. In this configuration, when the piezo stack 101 is extended by energization, the first piston 102 is displaced integrally, and the pressure in the oil tight chamber 104 is increased. Accordingly, when the second piston 103 opens a hydraulic control valve (not shown), the back pressure of the nozzle needle is reduced, the nozzle needle is lifted, and combustion is injected.

ここで、ピエゾスタック101の使用に際しては、破損を防止する目的で圧縮力を付与することが一般に行われる。例えば、図9(a)のピエゾ駆動装置では、第1ピストン102とその下方に配設したプレート部材106との間に皿ばね105を設置して、ピエゾスタック101に所定の初期荷重を付与している。すなわち、従来の皿ばね105は、図9(b)に示すように、可動部材(図9(a)では第1ピストン102)と、固定部材(図9(a)ではプレート部材106)の間に配設されて、両部材に負荷を与える形で用いられる。ところが、その負荷は比較的小さく、要求されるばね力が大きい場合に十分対応できないおそれがあった。また、一方が可動部材である場合、その変位に伴い皿ばね105と両部材との当接部で相対すべりが生じ、磨耗するという問題があった。   Here, when the piezo stack 101 is used, a compression force is generally applied for the purpose of preventing breakage. For example, in the piezo drive device shown in FIG. 9A, a disc spring 105 is installed between the first piston 102 and the plate member 106 disposed below the first piston 102 to apply a predetermined initial load to the piezo stack 101. ing. That is, as shown in FIG. 9B, the conventional disc spring 105 is formed between a movable member (first piston 102 in FIG. 9A) and a fixed member (plate member 106 in FIG. 9A). And is used in such a manner that both members are loaded. However, the load is relatively small, and there is a risk that the load cannot be sufficiently met when the required spring force is large. Further, when one of the members is a movable member, there is a problem in that relative sliding occurs at the contact portion between the disc spring 105 and both members due to the displacement, and wears.

図10のように、複数の皿ばねを直列に重ねて配置する構成も知られるが、ばね力は小さく、当接部の磨耗発生も避けられない。   As shown in FIG. 10, a configuration in which a plurality of disc springs are arranged in series is also known, but the spring force is small, and wear of the contact portion is inevitable.

一方、特許文献1では、皿ばねのような圧縮ばねにより圧電素子に偏荷重が作用するのを回避するために、これに代えて、圧電素子付勢用に中空筒状ばねを用いることを提案している。この中空筒状ばねは、筒壁中間部に螺旋状のスリットを形成してばね弾性を付与した金属筒体で、圧電素子周りに挿入されており、その一端側にピストンを一体形成して圧電素子を支持するようになっている。   On the other hand, Patent Document 1 proposes to use a hollow cylindrical spring for biasing the piezoelectric element instead of the biased load acting on the piezoelectric element by a compression spring such as a disc spring. is doing. This hollow cylindrical spring is a metal cylinder that is provided with spring elasticity by forming a spiral slit in the middle of the cylinder wall, and is inserted around the piezoelectric element. The element is supported.

しかしながら、特許文献1の構成では、圧電素子付勢用の中空筒状ばね形状が複雑で、所望のばね特性を得るため、筒壁に多くのスリットを精度よく形成する必要があり、製作に時間とコストがかかる。また、ピエゾ素子の伸縮方向(インジェクタの軸方向)の寸法が大きくなり、大きな搭載スペースが必要となる、といった不具合があった。   However, in the configuration of Patent Document 1, the shape of the hollow cylindrical spring for energizing the piezoelectric element is complicated, and in order to obtain desired spring characteristics, it is necessary to form many slits in the cylindrical wall with high accuracy, and it takes time to manufacture. And costly. In addition, there is a problem that the size of the piezo element in the expansion / contraction direction (the axial direction of the injector) is increased, and a large mounting space is required.

そこで、本発明は、これら問題点に鑑み、ピエゾ素子等の部材に荷重を与えるばね形状を見直し、付与可能な負荷範囲が大きく、しかも簡易な構成で搭載スペースが小さいばね部材を得ることを第1の目的とする。また、可動部材の変位に伴い、ばね部材と隣接する部材との当接部で摩耗が発生するのを抑制することを第2の目的とする。そして、このようなばね部材を用いて、小型で製作が容易であり、高性能と高信頼性を兼ね備えたピエゾ駆動装置およびピエゾ式インジェクタを実現しようとするものである。   Therefore, in view of these problems, the present invention has reviewed the shape of a spring that applies a load to a member such as a piezo element, and obtains a spring member that has a large load range that can be applied and that has a simple configuration and a small mounting space. 1 purpose. A second object is to suppress the occurrence of wear at the contact portion between the spring member and the adjacent member with the displacement of the movable member. By using such a spring member, it is intended to realize a piezo drive device and a piezo injector that are small in size and easy to manufacture, and have both high performance and high reliability.

請求項1は荷重負荷機構に用いられるばね部材であって、一端側が可動部材に他端側が固定部材に支持されて、該可動部材を介して所定荷重を負荷する。このばね部材は、環状の板ばねからなり、内周環状部と外周環状部が同一方向に反り、これら内周環状部と外周環状部の間に、その反り方向と反対方向に張り出す中間環状部を有する形状となっている。   A first aspect of the present invention is a spring member used in a load loading mechanism, wherein one end side is supported by a movable member and the other end side is supported by a fixed member, and a predetermined load is loaded through the movable member. This spring member is composed of an annular leaf spring, and the inner ring portion and the outer ring portion are warped in the same direction, and an intermediate ring projecting in a direction opposite to the warp direction between the inner ring portion and the outer ring portion. The shape has a part.

上記構成において、ばね部材に負荷が作用すると、内周側の半部は外側に広がろうとする一方、外周側の半部は内側に縮もうとする。このため、従来の皿ばねのように自由に変形できず、大きな反発力が発生するために、ばねを大型化することなく、ばね力を大きくできる。このばね力は板厚によって調整可能であり、要求に応じた所望のばね力が実現できる。また、内周側と外周側から反対方向の力が作用するために、中間環状部とこれに当接する部材との間では相対変位が生じず、摩耗発生が防止できる。かくして、簡単な構成で、部材に与える負荷範囲が大きく、摩耗が発生しにくいばね部材を得ることができる。このばね部材は、プレスにより容易に形成でき、伸縮方向の寸法が小さいので、小さなスペースで搭載可能である。   In the above configuration, when a load is applied to the spring member, the half on the inner peripheral side tends to spread outward while the half on the outer peripheral side tends to shrink inward. For this reason, unlike the conventional disc spring, it cannot be freely deformed, and a large repulsive force is generated. Therefore, the spring force can be increased without increasing the size of the spring. This spring force can be adjusted by the plate thickness, and a desired spring force according to the demand can be realized. Further, since forces in opposite directions are applied from the inner peripheral side and the outer peripheral side, relative displacement does not occur between the intermediate annular portion and the member in contact with the intermediate annular portion, and wear can be prevented. Thus, it is possible to obtain a spring member that has a simple configuration, has a large load range applied to the member, and is less likely to be worn. The spring member can be easily formed by pressing and has a small size in the expansion / contraction direction, and can be mounted in a small space.

請求項2の発明のように、具体的には、ばね部材となる環状の板ばねを、板面の径方向断面形状が略V字状となるように構成することができる。略V字状とすることで、内周環状部と外周環状部が同一方向に反り、中間環状部が反対方向に張り出すばね形状を容易に実現して、上述した効果を得ることができる。   Specifically, the annular leaf spring serving as the spring member can be configured such that the radial cross-sectional shape of the plate surface is substantially V-shaped. By making it substantially V-shaped, it is possible to easily realize a spring shape in which the inner annular portion and the outer annular portion warp in the same direction and the intermediate annular portion projects in the opposite direction, and the above-described effects can be obtained.

請求項3の発明のように、ばね部材を構成する環状の板ばねは、一枚の環状平板をプレス成形することで、容易に形成することができる。   As in the invention of claim 3, the annular leaf spring constituting the spring member can be easily formed by press-molding one annular flat plate.

請求項4の発明のように、環状の板ばねにおいて、中間環状部の板厚を、内周環状部および外周環状部の板厚よりも大きくすると、ばね力を大きくすることができ、内外周部が薄肉であるので製作加工が比較的容易にできる。さらに、負荷時の応力が集中する中間環状部の板厚を大きくすることにより、最大応力が低減すると同時に応力分布も均一化され信頼性が向上する。   As in the invention of claim 4, in the annular leaf spring, if the plate thickness of the intermediate annular portion is larger than the plate thickness of the inner annular portion and the outer annular portion, the spring force can be increased, and the inner and outer circumferences can be increased. Since the portion is thin, the manufacturing process can be made relatively easy. Furthermore, by increasing the plate thickness of the intermediate annular portion where stress during loading is concentrated, the maximum stress is reduced and the stress distribution is made uniform and the reliability is improved.

請求項5の発明のように、環状の板ばねの最大板厚をTmax、内径をDin、外径をDoutとした時、下記式(1)
Tmax≦(Dout−Din)/4・・・(1)
を満足する構成とすると、曲げ成形時に板厚が平面部長より短くなるようにして、加工を容易にすることができる。
As in the invention of claim 5, when the maximum plate thickness of the annular leaf spring is Tmax, the inner diameter is Din, and the outer diameter is Dout, the following formula (1)
Tmax ≦ (Dout−Din) / 4 (1)
If the configuration satisfies the above, it is possible to facilitate processing by making the plate thickness shorter than the length of the flat portion at the time of bending.

請求項6の発明のように、ばね部材を、複数の環状の板ばねを組み合わせた複合ばねとすることもできる。この場合、複数の環状の板ばねのうち少なくとも2個を、内周環状部および外周環状部が互いに当接するように配置するとよい。   As in the sixth aspect of the present invention, the spring member may be a composite spring in which a plurality of annular leaf springs are combined. In this case, at least two of the plurality of annular leaf springs may be arranged so that the inner circumferential annular portion and the outer circumferential annular portion are in contact with each other.

例えば、2個の環状の板ばねを、内周環状部および外周環状部が互いに当接するようにして、可動部材と固定部材の間に配設した時、両部材とばね部材とは中間環状部のみで当接するので、相対変位が生じず、両部材との間で摩耗が発生することがない。   For example, when two annular leaf springs are disposed between the movable member and the fixed member so that the inner peripheral annular portion and the outer peripheral annular portion are in contact with each other, the two members and the spring member are intermediate annular portions. Therefore, no relative displacement occurs, and no wear occurs between the two members.

請求項7は、請求項1ないし6いずれか1つに記載のばね部材を用いたピエゾ駆動装置であって、ピエゾ素子に追従して変位する可動部材と固定部材との間に、前記環状の板ばねを設け、前記環状の板ばねによって前記ピエゾ素子に予荷重を負荷する。   According to a seventh aspect of the present invention, there is provided a piezo drive device using the spring member according to any one of the first to sixth aspects, wherein the annular member is interposed between a movable member and a fixed member that are displaced following the piezo element. A leaf spring is provided, and a preload is applied to the piezo element by the annular leaf spring.

上述したように小さい搭載スペースで負荷範囲の大きい前記ばね部材をピエゾ駆動装置に用いることで、簡易な構成でピエゾ素子に所望の初期荷重を負荷することができ、摩耗の発生も抑制できる。よって、小型で製作が容易であり、高性能かつ高信頼性を備えたピエゾ駆動装置を実現することができる。また、可動部材を介して荷重を負荷するので、ピエゾ素子に偏荷重が加わるのを抑制でき、固定部材を前記ばね部材の組付け時の高さ調節部材として用いることで、初期荷重の設定等が容易になる。   As described above, by using the spring member having a small mounting space and a large load range for the piezo drive device, a desired initial load can be applied to the piezo element with a simple configuration, and the occurrence of wear can be suppressed. Therefore, it is possible to realize a piezoelectric drive device that is small and easy to manufacture, and that has high performance and high reliability. In addition, since a load is applied via the movable member, it is possible to suppress an uneven load from being applied to the piezo element. By using the fixed member as a height adjustment member when the spring member is assembled, setting of an initial load, etc. Becomes easier.

請求項8の発明は、請求項7記載のピエゾ駆動装置を用いたピエゾ式インジェクタであり、ピエゾ駆動装置によって駆動される制御弁と、ノズルニードルに閉弁方向の圧力を作用させる制御室を備え、この制御室と低圧通路との間を制御弁で開閉することにより、制御室の圧力を増減させて燃料噴射を制御するようになっている。   The invention of claim 8 is a piezo-type injector using the piezo drive device according to claim 7, comprising a control valve driven by the piezo drive device and a control chamber for applying pressure in the valve closing direction to the nozzle needle. The fuel injection is controlled by increasing or decreasing the pressure in the control chamber by opening and closing the control chamber and the low pressure passage with a control valve.

高性能かつ高信頼性の本発明のピエゾ駆動装置を駆動部に用いることで、インジェクタの燃料噴射を制御性よく行うことができる。さらに、ピエゾ式インジェクタの全長(ピエゾ素子の積層方向)を小さくすることができ、車両への搭載性が向上する。   By using the high-performance and high-reliability piezoelectric drive device of the present invention for the drive unit, fuel injection of the injector can be performed with good controllability. Furthermore, the overall length of the piezo injector (piezo element stacking direction) can be reduced, and the mounting property on the vehicle is improved.

以下、図面に基づいて本発明の第1の実施形態を説明する。図1、2は第1の実施形態におけるばね部材31構成を示す図で、図4は、ばね部材31を組み込んだピエゾ駆動装置1を駆動部とするピエゾ式インジェクタ構成を示す図である。ここでは、ディーゼルエンジンのコモンレール式燃料噴射装置への適用例として説明する。ピエゾ式インジェクタはエンジンの各気筒に対応して設けられ(図4にはそのうち1つのみを示す)、図略のコモンレールから燃料(ここでは軽油)の供給を受けるようになっている。コモンレールには図略の高圧サプライポンプにより圧送される燃料が噴射圧力に相当する所定の高圧で蓄えられる。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIGS. 1 and 2 are views showing the configuration of the spring member 31 in the first embodiment, and FIG. 4 is a view showing the configuration of a piezo injector using the piezo drive device 1 incorporating the spring member 31 as a drive unit. Here, it demonstrates as an example applied to the common rail type fuel injection device of a diesel engine. Piezo-type injectors are provided corresponding to each cylinder of the engine (only one of them is shown in FIG. 4), and is supplied with fuel (light oil here) from a common rail (not shown). In the common rail, fuel pumped by a high-pressure supply pump (not shown) is stored at a predetermined high pressure corresponding to the injection pressure.

まず、図4により、ピエゾ式インジェクタの全体構成について説明する。図中、ピエゾ式インジェクタは、ピエゾ駆動装置1が収容されるハウジングH1の下端に、バルブボディH2、H3を介してノズルボディH4を配設し、リテーナH5で油密に固定してなる。ハウジングH1内には、上下方向に高圧燃料通路62が形成され、上側部に突設した燃料導入管63を介して、外部のコモンレール(図略)に連通している。ハウジングH1上側部には、また、低圧燃料通路64に連通する燃料導出管65が突設され、燃料導出管65から流出する燃料は、燃料タンク(図略)へ戻される。   First, the overall configuration of the piezoelectric injector will be described with reference to FIG. In the drawing, the piezo injector has a nozzle body H4 disposed at the lower end of a housing H1 in which the piezo drive device 1 is accommodated via valve bodies H2 and H3, and is oil-tightly fixed by a retainer H5. A high-pressure fuel passage 62 is formed in the housing H1 in the vertical direction, and communicates with an external common rail (not shown) via a fuel introduction pipe 63 protruding from the upper side. A fuel outlet pipe 65 communicating with the low pressure fuel passage 64 protrudes from the upper portion of the housing H1, and the fuel flowing out from the fuel outlet pipe 65 is returned to the fuel tank (not shown).

ハウジングH1は略円柱状で、中心軸に対し偏心する縦穴61内に、ピエゾ駆動装置1を収容している。縦穴61は、高圧燃料通路62の側方に平行に設けられ、低圧燃料通路64は、縦穴61とピエゾ駆動装置1との間の隙間を経由してさらに下方に延びている。ピエゾ駆動装置1は、ピエゾ素子であるピエゾスタック2の駆動力を、第1、第2ピストン41、43および油密室42からなる油圧伝達装置によって伝達し、3方弁構造の制御弁5に駆動するようになっている。   The housing H1 is substantially cylindrical, and houses the piezo drive device 1 in a vertical hole 61 that is eccentric with respect to the central axis. The vertical hole 61 is provided in parallel to the side of the high-pressure fuel passage 62, and the low-pressure fuel passage 64 extends further downward via a gap between the vertical hole 61 and the piezo drive device 1. The piezo drive device 1 transmits the driving force of the piezo stack 2 that is a piezo element by a hydraulic transmission device including first and second pistons 41 and 43 and an oil-tight chamber 42 and is driven to the control valve 5 having a three-way valve structure. It is supposed to be.

制御弁5は、弁体51が高圧通路52または低圧通路54を選択的に閉鎖することにより、ノズルニードル45の背圧室46を、図示しない連通路を介して高圧通路52または低圧通路54に選択的に連通させて、ノズルニードル45の背圧を増減する。高圧通路52は高圧燃料通路62に、低圧通路54は低圧燃料通路64にそれぞれ連通している。弁体51の下方にはスプリング53が配設されて、弁体51を上方に付勢している。   When the valve body 51 selectively closes the high pressure passage 52 or the low pressure passage 54, the control valve 5 allows the back pressure chamber 46 of the nozzle needle 45 to be connected to the high pressure passage 52 or the low pressure passage 54 via a communication passage (not shown). The back pressure of the nozzle needle 45 is increased or decreased by selectively communicating. The high pressure passage 52 communicates with the high pressure fuel passage 62 and the low pressure passage 54 communicates with the low pressure fuel passage 64. A spring 53 is disposed below the valve body 51 to urge the valve body 51 upward.

弁体51は、ピエゾ駆動装置1が作動しない状態で低圧通路54を閉鎖する上端位置にあり、高圧通路52が開放されて背圧室46に高圧燃料が流入する。この時、背圧室46の圧力でノズルニードル45は下端位置にあり、燃料噴射はなされない。ピエゾ駆動装置1が作動して弁体51を下端位置に押し下げると、背圧室46と高圧通路52の連通が遮断され、低圧通路54が開放される。すると、背圧室46の圧力が低下し、ノズルニードル45が上昇して噴孔47から燃料が噴射される。   The valve body 51 is at an upper end position that closes the low-pressure passage 54 in a state where the piezo drive device 1 is not operated, and the high-pressure passage 52 is opened and high-pressure fuel flows into the back pressure chamber 46. At this time, the nozzle needle 45 is in the lower end position by the pressure of the back pressure chamber 46, and fuel injection is not performed. When the piezo drive device 1 is actuated to push the valve body 51 down to the lower end position, the communication between the back pressure chamber 46 and the high pressure passage 52 is cut off, and the low pressure passage 54 is opened. Then, the pressure in the back pressure chamber 46 decreases, the nozzle needle 45 rises, and fuel is injected from the nozzle hole 47.

ピエゾ素子としてのピエゾスタック2は、PZT等の圧電セラミック層と電極層を交互に積層した公知の構成で、積層方向(図の上下方向)を伸縮方向として、筒状ケーシング11に収容される。ピエゾスタック2には電極リード棒2a、2bが接続され、筒状ケーシング11上方に装着されるコネクタ12を介して、図示しない駆動回路により充放電されるようになっている。ケーシング11内には、ピエゾスタック2の下端面に当接して一体に上下動するロッド13が収容され、ロッド13外周を取り巻くケーシング11下端部筒壁は伸縮可能に折り曲げ成形されてベローズ15となっている。   The piezo stack 2 as a piezo element has a known configuration in which piezoelectric ceramic layers such as PZT and electrode layers are alternately stacked, and is housed in the cylindrical casing 11 with the stacking direction (vertical direction in the figure) as the expansion / contraction direction. Electrode lead rods 2 a and 2 b are connected to the piezo stack 2, and are charged and discharged by a drive circuit (not shown) via a connector 12 mounted above the cylindrical casing 11. In the casing 11, a rod 13 that moves up and down integrally with the lower end surface of the piezo stack 2 is accommodated. ing.

ベローズ15の下端縁は、ケーシング11の底面を構成する円盤状部材14の外周に溶接固定されており、円盤状部材14の上面はロッド13の下端面に当接している。これにより、円盤状部材14は、ケーシング11の下方に位置する第1ピストン41に、ピエゾスタック2の変位を伝達可能となっている。ベローズ15は、ピエゾスタック2の変位に追従して上下方向に伸縮し円盤状部材14の変位を可能とする。また、後述するプリセットスプリング3とともに、ピエゾスタック2に圧縮方向の予荷重を与えている。   The lower end edge of the bellows 15 is welded and fixed to the outer periphery of the disk-shaped member 14 constituting the bottom surface of the casing 11, and the upper surface of the disk-shaped member 14 is in contact with the lower end surface of the rod 13. Thereby, the disk-shaped member 14 can transmit the displacement of the piezo stack 2 to the first piston 41 located below the casing 11. The bellows 15 expands and contracts in the vertical direction following the displacement of the piezo stack 2 and enables the disc-like member 14 to be displaced. A preload in the compression direction is applied to the piezo stack 2 together with a preset spring 3 described later.

油圧伝達装置を構成する可動部材としての第1ピストン41は、縦穴61の下端部内に摺動自在に設けられて、ピエゾスタック2の変位に追従して上下方向に摺動するようになっている。第1ピストン41は上端閉鎖の筒状で、その筒状部内に、第2ピストン43が摺動自在に設けられている。第2ピストン43の小径の下半部は、第1ピストン41の筒状部から下方に突出し、ピン状の先端部が制御弁5の弁体51に当接している。第1ピストン41の上部内壁面と第2ピストン43の上端面とで囲まれる空間には、作動油としての燃料が充填されて油密室42を形成している。   The first piston 41 as a movable member constituting the hydraulic transmission device is slidably provided in the lower end portion of the vertical hole 61 so as to slide up and down following the displacement of the piezo stack 2. . The first piston 41 has a cylindrical shape with an upper end closed, and a second piston 43 is slidably provided in the cylindrical portion. The lower half portion of the small diameter of the second piston 43 protrudes downward from the cylindrical portion of the first piston 41, and the pin-shaped tip portion is in contact with the valve body 51 of the control valve 5. A space surrounded by the upper inner wall surface of the first piston 41 and the upper end surface of the second piston 43 is filled with fuel as hydraulic oil to form an oil tight chamber 42.

油密室42は、第1ピストン41の変位を油圧に変換し、第2ピストン43に伝達する。PZT等の圧電セラミックは金属と熱変形量が異なるため、両者を混在させる手段として、このように油圧を利用した変位伝達装置を用いるとよい。これにより、部材間で異なる熱変形量を吸収して、良好な伝達性能を維持することができる。また、本実施形態のように第1ピストン41内に第2ピストン43を収容する構成とすると、ピエゾ駆動装置1の軸方向長を短縮することができる。   The oil-tight chamber 42 converts the displacement of the first piston 41 into hydraulic pressure and transmits it to the second piston 43. Since piezoelectric ceramics such as PZT are different from metals in the amount of thermal deformation, it is preferable to use a displacement transmission device using hydraulic pressure in this way as a means for mixing both. Thereby, the amount of thermal deformation which differs between members can be absorbed and good transmission performance can be maintained. Moreover, when it is set as the structure which accommodates the 2nd piston 43 in the 1st piston 41 like this embodiment, the axial direction length of the piezo drive device 1 can be shortened.

なお、第1ピストン41と円盤状部材14の間には、油密室42と縦穴61内を連通する通路にボール弁を配設してなる逆止弁44が設けられる。逆止弁44は、油密室42方向への作動油の流入のみを許容し、燃料リーク等で油密室42の圧力が低下した時に、低圧燃料通路64から油密室42に燃料を補充する。円盤状部材14の下端面は凹型の曲面形状に、これに当接する逆止弁44構成部材の上端面は凸型の曲面形状に成形してある。このように、凹凸曲面にて当接させることにより自動調心が可能である。   A check valve 44 is provided between the first piston 41 and the disc-like member 14 by providing a ball valve in a passage communicating between the oil-tight chamber 42 and the vertical hole 61. The check valve 44 allows only hydraulic oil to flow in the direction of the oil-tight chamber 42 and replenishes the oil-tight chamber 42 from the low-pressure fuel passage 64 when the pressure of the oil-tight chamber 42 decreases due to a fuel leak or the like. The lower end surface of the disk-shaped member 14 is formed into a concave curved surface shape, and the upper end surface of the check valve 44 constituting member that is in contact therewith is formed into a convex curved surface shape. In this way, automatic alignment is possible by making contact with the uneven curved surface.

図5(a)のように、縦穴61の下端部内には、固定部材となるプレート部材16がバルブボディH2の上面に載置され、このプレート部材16と第1ピストン41の下端面との間に、プリセットスプリング3が配設されている。プレート部材16およびプリセットスプリング3はリング状で、第2ピストンの小径の下半部外周に配置される。図5(b)のように、本実施形態では、プリセットスプリング3は、2個のばね部材31を上下方向に重ねた複合ばねからなる。このばね部材31形状は、本発明の特徴部分であり、以下に詳細に説明する。   As shown in FIG. 5A, in the lower end portion of the vertical hole 61, a plate member 16 serving as a fixing member is placed on the upper surface of the valve body H2, and between this plate member 16 and the lower end surface of the first piston 41. Further, a preset spring 3 is disposed. The plate member 16 and the preset spring 3 are ring-shaped and are arranged on the outer periphery of the lower half of the small diameter of the second piston. As shown in FIG. 5B, in the present embodiment, the preset spring 3 is composed of a composite spring in which two spring members 31 are stacked in the vertical direction. The shape of the spring member 31 is a characteristic part of the present invention and will be described in detail below.

図1(a)はばね部材31の全体構成を示す斜視図、図1(b)はその断面形状を示す斜視図で、図示するように、ばね部材31は環状の板ばねからなり、その板面は、径方向の中間部が図の下方に略V字状に凹陥した形状となっている。具体的には、図2のように、内周環状部(以下、内周部という)311と外周環状部(以下、外周部)312が同一方向(図の上方)に略弓なりに反り、中間環状部(以下、中間部という)313は、内外周部311、312の反り方向と反対方向(図の下方)に張り出している。   1A is a perspective view showing the overall configuration of the spring member 31, and FIG. 1B is a perspective view showing the cross-sectional shape thereof. As shown in the drawing, the spring member 31 is formed of an annular leaf spring. The surface has a shape in which an intermediate portion in the radial direction is recessed in a substantially V shape downward in the drawing. Specifically, as shown in FIG. 2, an inner peripheral annular portion (hereinafter referred to as an inner peripheral portion) 311 and an outer peripheral annular portion (hereinafter referred to as an outer peripheral portion) 312 are warped in a substantially bow shape in the same direction (upward in the drawing) An annular portion (hereinafter referred to as an intermediate portion) 313 projects in a direction opposite to the warping direction of the inner and outer peripheral portions 311 and 312 (downward in the drawing).

図2において、このばね部材31に負荷Fが作用した時、内周部311から中間部313にかけては外側に広がろうとし、一方、外周部312から中間部313にかけては内側に縮もうとする。このため、ばね部材31の変形は従来の皿ばねのように自由でなく、大きな反発力が発生する。従って、同じスペースに設置可能な皿ばねに比べて、ばね力の大きなばねが得られる。   In FIG. 2, when a load F acts on the spring member 31, the spring member 31 tends to spread outward from the inner peripheral portion 311 to the intermediate portion 313, while trying to shrink inward from the outer peripheral portion 312 to the intermediate portion 313. . For this reason, the deformation of the spring member 31 is not free like a conventional disc spring, and a large repulsive force is generated. Therefore, a spring having a large spring force can be obtained as compared with a disc spring that can be installed in the same space.

このような形状のばね部材31は、例えば、ばね用鋼材からなる環状平板をプレス成形して得ることができる。ばね力は板厚を変更することによって調整することができ、例えば、板厚を薄くすることによりばね力は小さくなる。よって、ばね力小から大まで任意に調整可能で、荷重負荷範囲の大きなばね部材を実現できる。   The spring member 31 having such a shape can be obtained, for example, by press-molding an annular flat plate made of spring steel. The spring force can be adjusted by changing the plate thickness. For example, the spring force is reduced by reducing the plate thickness. Therefore, a spring member that can be arbitrarily adjusted from a small spring force to a large spring force and has a large load load range can be realized.

ここで、図3のように、ばね部材31を構成する環状板ばねは、その最大板厚をTmax、内径をDin、外径をDoutとした時、下記式(1)
Tmax≦(Dout−Din)/4・・・(1)
を満足する形状とするとよい。この構成とすると、曲げ成形時に板厚が平面部長より短くなるので、略V字形状への加工を容易にすることができる。
Here, as shown in FIG. 3, when the maximum leaf thickness is Tmax, the inner diameter is Din, and the outer diameter is Dout, the annular leaf spring constituting the spring member 31 is expressed by the following formula (1).
Tmax ≦ (Dout−Din) / 4 (1)
It is better to have a shape that satisfies With this configuration, the plate thickness is shorter than the length of the flat portion at the time of bending, so that processing into a substantially V shape can be facilitated.

この時、図3のように、中間部313の板厚が他の部分より厚く、内周部311または外周部312側が薄くなる形状とすることもできる。この構成とすると、ばね力を大きくするために板厚を厚くした場合でも、内周部311および外周部312の板厚が薄いので、成形加工が容易になる。さらに、負荷時の応力が集中する中間環状部の板厚を大きくすることにより、最大応力が低減すると同時に応力分布も均一化され信頼性が向上する。   At this time, as shown in FIG. 3, the intermediate portion 313 may be thicker than other portions, and the inner peripheral portion 311 or the outer peripheral portion 312 side may be thinned. With this configuration, even when the plate thickness is increased in order to increase the spring force, the inner peripheral portion 311 and the outer peripheral portion 312 are thin, so that molding is facilitated. Furthermore, by increasing the plate thickness of the intermediate annular portion where stress during loading is concentrated, the maximum stress is reduced and the stress distribution is made uniform and the reliability is improved.

このようなばね部材31を複数組み合わせて、プリセットスプリング3とする場合には、図5(b)のように内周部311と内周部311、外周部312と外周部312が互いに当接するようにし、この状態で図5(a)のピエゾ駆動装置1に組み込む。この時、上方のばね部材31の中間部313が可動部材である第1ピストン41に、下方のばね部材31の中間部313が固定部材であるプレート部材16に当接する。このようにプリセットスプリング3がピエゾ駆動装置1の下端に位置する構成であると、組み付けがしやすく、プレート部材16を高さ調節部材として用いることで、セット荷重の調整等が容易にできる。   When a plurality of such spring members 31 are combined to form the preset spring 3, the inner peripheral portion 311 and the inner peripheral portion 311 and the outer peripheral portion 312 and the outer peripheral portion 312 are in contact with each other as shown in FIG. In this state, it is incorporated into the piezo drive device 1 shown in FIG. At this time, the intermediate portion 313 of the upper spring member 31 contacts the first piston 41 that is a movable member, and the intermediate portion 313 of the lower spring member 31 contacts the plate member 16 that is a fixed member. As described above, when the preset spring 3 is positioned at the lower end of the piezo drive device 1, it is easy to assemble, and the set load can be easily adjusted by using the plate member 16 as a height adjusting member.

これにより、可動部材である第1ピストン41下端面に上向きの荷重が負荷され、第1ピストン41を円盤状部材14に押し付けて一体に変位可能とする。さらに、円盤状部材14およびロッド13を介してピエゾスタック2に作用して、ピエゾスタック2の圧縮力となる。従って、プリセットスプリング3の圧縮力とベローズ15によって与えられる圧縮力の和が、ピエゾスタック2に必要な所定の予荷重となるように、これら付勢力を設定するとよい。また、プリセットスプリング3の付勢力は、変位を伝達する各部材間の接触圧を高め、ピエゾスタック2の変位が第1ピストン41まで伝達される際の損失を最小限に抑制している。   As a result, an upward load is applied to the lower end surface of the first piston 41 that is a movable member, and the first piston 41 is pressed against the disk-shaped member 14 so as to be integrally displaceable. Furthermore, it acts on the piezo stack 2 via the disk-shaped member 14 and the rod 13, and becomes a compressive force of the piezo stack 2. Therefore, these urging forces may be set so that the sum of the compression force of the preset spring 3 and the compression force applied by the bellows 15 becomes a predetermined preload required for the piezo stack 2. Further, the biasing force of the preset spring 3 increases the contact pressure between the members that transmit the displacement, and suppresses a loss when the displacement of the piezo stack 2 is transmitted to the first piston 41 to a minimum.

次に、上記構成のピエゾ式インジェクタの作動を説明する。ピエゾ駆動装置1のピエゾスタック2が放電状態で縮小している状態では、制御弁5の弁体51がスプリング53により上方に付勢されて低圧通路54を閉鎖し、高圧通路52に連通する背圧室46の圧力によって、ノズルニードル5は噴孔を閉鎖する下端位置にある。   Next, the operation of the piezoelectric injector having the above configuration will be described. In a state where the piezo stack 2 of the piezo drive device 1 is contracted in a discharged state, the valve body 51 of the control valve 5 is urged upward by a spring 53 to close the low pressure passage 54 and communicate with the high pressure passage 52. Due to the pressure in the pressure chamber 46, the nozzle needle 5 is in the lower end position for closing the nozzle hole.

この状態から、ピエゾスタック2に通電して伸長させると、これと一体に変位する円盤状部材14が第1ピストン41を押し下げる。第1ピストン41がプリセットスプリング3を押し縮めながら下降すると、これに伴い油密室42の作動油(ここでは軽油)が圧縮される。この作動油の圧力で第2ピストン43が下降し、制御弁5の弁体51を押し下げると、低圧通路54が開放されて、高圧通路52を閉鎖する。これにより、低圧通路54に連通する背圧室46の圧力が降下し、ノズルニードル45がリフトすると、噴孔47から燃料が噴射される。   From this state, when the piezo stack 2 is energized and extended, the disk-shaped member 14 that is displaced integrally with the piezo stack 2 pushes down the first piston 41. When the first piston 41 descends while compressing the preset spring 3, the hydraulic oil (light oil here) in the oil-tight chamber 42 is compressed accordingly. When the pressure of the hydraulic oil lowers the second piston 43 and pushes down the valve body 51 of the control valve 5, the low pressure passage 54 is opened and the high pressure passage 52 is closed. As a result, when the pressure in the back pressure chamber 46 communicating with the low pressure passage 54 decreases and the nozzle needle 45 is lifted, fuel is injected from the nozzle hole 47.

その後、ピエゾスタック2を放電により収縮させると、第1ピストン41がプリセットスプリング3の付勢力で上方へ移動し、油密室42の圧力が降下して弁体51の押し下げ力が解除される。すると、弁体51が再び上方に移動して低圧通路54を閉鎖し、高圧通路52と連通する背圧室46圧力が再び上昇して、ノズルニードル5を下降させ、噴射が終了する。   Thereafter, when the piezo stack 2 is contracted by electric discharge, the first piston 41 is moved upward by the urging force of the preset spring 3, the pressure of the oil tight chamber 42 is lowered, and the pressing force of the valve body 51 is released. Then, the valve body 51 again moves upward to close the low pressure passage 54, the pressure in the back pressure chamber 46 communicating with the high pressure passage 52 rises again, the nozzle needle 5 is lowered, and the injection is finished.

本実施形態において、ピエゾ駆動装置1は、ピエゾスタック2に予荷重を付与するプリセットスプリング3を、板面中央が略V字に凹陥する環状のばね部材31により構成したので、同一スペースに設置可能な従来の皿ばねに比べてばね力が大きくなり、ピエゾスタック2に必要な荷重を容易に付与することができる。なお、ばね部材31形状は、従来の皿ばねを並列配置した構造と同等であり、内周部311側の環状半部と外周部313の環状半部がそれぞれ従来の皿ばねに相当する形状となっているので、ばね部材1個の負荷が低減し、へたりに強い構造となる。   In the present embodiment, the piezo drive device 1 includes the preset spring 3 that applies a preload to the piezo stack 2 by the annular spring member 31 whose center of the plate surface is recessed into a substantially V-shape, so that it can be installed in the same space. The spring force is larger than that of a conventional disc spring, and a necessary load can be easily applied to the piezo stack 2. The shape of the spring member 31 is equivalent to a structure in which conventional disc springs are arranged in parallel, and the annular half on the inner peripheral portion 311 side and the annular half on the outer peripheral portion 313 are respectively equivalent to conventional disc springs. Therefore, the load of one spring member is reduced and the structure is strong against drooping.

さらに、2個のばね部材31を組み合わせて上下左右対称構造とし、しかも内周部311同士、外周部312同士が互いに当接させて、中間部313が第1ピストン41およびプレート部材16と当接するように設置したので、可動部材である第1ピストン41の変位でばね部材31が伸縮しても、当接部に相対すべりが生じない。よって、摩耗の発生を防止できる。   Further, the two spring members 31 are combined to form a vertically and horizontally symmetrical structure, and the inner peripheral portions 311 and the outer peripheral portions 312 are in contact with each other, and the intermediate portion 313 is in contact with the first piston 41 and the plate member 16. Therefore, even if the spring member 31 expands and contracts due to the displacement of the first piston 41 which is a movable member, no relative slip occurs at the contact portion. Therefore, the occurrence of wear can be prevented.

このようなばね部材31を用いることにより、ピエゾスタック2の伸縮を速やかに、効率よく伝達可能なピエゾ駆動装置1が得られる。また、油圧伝達装置がコンパクトな構成であるので、小型で高性能かつ高信頼性のピエゾ駆動装置1を実現し、ピエゾ式インジェクタの噴射制御性を向上させることができる。   By using such a spring member 31, the piezo drive device 1 capable of transmitting the expansion and contraction of the piezo stack 2 quickly and efficiently is obtained. Further, since the hydraulic transmission device has a compact configuration, a small, high-performance and highly reliable piezo drive device 1 can be realized, and the injection controllability of the piezo injector can be improved.

上記実施形態では、ピエゾ式インジェクタのピエゾ駆動装置1への適用例を示したが、本発明のばね部材31は、図6のように、一端側が可動部材71に他端側が固定部材72に支持され、可動部材71を介して所定部材(図示せず)に初期荷重を負荷する荷重負荷機構であれば、いずれに用いることもできる。このような荷重負荷機構においても、ばね部材31は小さい設置スペースで、所望のばね特性を実現し(ばね力小から大まで任意に調整可能)、可動部材71が変位しても、中間部312と可動部材72の当接部では相対すべりが生じないので、摩耗の発生を抑制できる、といった同様の効果が得られる。   In the above embodiment, the application example of the piezo injector to the piezo drive device 1 has been shown. However, the spring member 31 of the present invention is supported by the movable member 71 at one end side and the fixed member 72 at the other end side as shown in FIG. Any load loading mechanism that applies an initial load to a predetermined member (not shown) via the movable member 71 can be used. Even in such a load-loading mechanism, the spring member 31 achieves desired spring characteristics with a small installation space (can be arbitrarily adjusted from a small spring force to a large spring force), and even if the movable member 71 is displaced, the intermediate portion 312 Since the relative sliding does not occur at the contact portion between the movable member 72 and the movable member 72, the same effect that the occurrence of wear can be suppressed can be obtained.

また、図7のように、可動部材71と固定部材72の間に、複数のばね部材31を組み合わせた複合ばねとして配設することもできる。この場合も、複数のばね部材31の内周部311同士、外周部313同士が当接するように配置することで、比較的小さな設置スペースで、変位が大きく、ばね力小から大まで対応可能な複合ばねとすることができる。また、可動部材71および固定部材72と中間部312を当接させたので、当接部における相対すべりをなくして、摩耗の発生を防止することができる。   Further, as shown in FIG. 7, a composite spring in which a plurality of spring members 31 are combined may be disposed between the movable member 71 and the fixed member 72. Also in this case, by disposing the inner peripheral portions 311 and the outer peripheral portions 313 of the plurality of spring members 31 in contact with each other, the displacement is large and the spring force is small to large in a relatively small installation space. It can be a composite spring. Further, since the movable member 71 and the fixed member 72 are brought into contact with the intermediate portion 312, it is possible to prevent the occurrence of wear by eliminating relative slip at the contact portion.

また、図8のように、ばね部材31を内周側半部31aと外周側半部31bに二分割した構成とすることもできる。すなわち、内周側半部31aと外周側半部31bは外径の異なる環状の板ばねよりなり、その板面は反対方向に傾斜している。このように内周側半部31aおよび外周側半部31bに分割することで、ばね力は分割しない形状よりもやや小さくなるものの、一枚の平板をプレス成形によりばね部材31形状とするよりも、製作が容易になる。よって、簡易に所望の効果を得たい場合に有利であり、小さいスペースで、ばね力小から中まで任意に調整可能であり、変位の大きい複合ばねとすることができる。   Further, as shown in FIG. 8, the spring member 31 may be divided into two parts, that is, an inner peripheral side half 31a and an outer peripheral side half 31b. That is, the inner peripheral half 31a and the outer peripheral half 31b are formed of annular leaf springs having different outer diameters, and the plate surfaces are inclined in opposite directions. By dividing the inner half 31a and the outer half 31b in this way, the spring force is slightly smaller than the non-divided shape, but it is more than the shape of the spring member 31 by press molding a single flat plate. Manufacturing becomes easy. Therefore, it is advantageous when it is desired to easily obtain a desired effect, and can be arbitrarily adjusted from a small spring force to a small spring force in a small space, and a composite spring having a large displacement can be obtained.

以上のように、本発明のばね部材は、ピエゾ駆動装置やその他の荷重負荷機構用のばね部材として好適に利用することができる。なお、前記実施形態では、板面の径方向断面が略V字形状のばね部材のみ示したが、これに限らず、内周部と外周部が同一方向に反り、中間部が反対方向に張り出す形状となっていれば、同様の効果が得られる。   As described above, the spring member of the present invention can be suitably used as a spring member for a piezo drive device or other load loading mechanism. In the above embodiment, only the spring member having a substantially V-shaped cross section in the radial direction of the plate surface is shown. However, the present invention is not limited to this, and the inner peripheral portion and the outer peripheral portion are warped in the same direction, and the intermediate portion is stretched in the opposite direction. The same effect can be obtained as long as the shape is obtained.

なお、本発明のばね部材が適用されるピエゾ駆動装置やピエゾ式インジェクタの構成は、前記実施形態で示したものに限らない。例えば、前記実施形態では、ピエゾ駆動装置の変位伝達装置を、第1ピストン内に第2ピストンが収容される構成としたが、スペースに余裕がある場合には、第1ピストンと第2ピストンを軸方向に並べて配置してもよい。また、第1ピストンの受圧面積を第2ピストンよりも大きくして第1ピストンの変位を拡大伝達する構成としてもよい。さらに、前記実施形態は3方弁構造の制御弁を駆動するインジェクタへの適用例としたが、制御弁を2方弁構造としたり、ノズルニードルの背圧制御機構が異なっていてもよい。   The configuration of the piezo drive device and the piezo injector to which the spring member of the present invention is applied is not limited to that shown in the above embodiment. For example, in the above-described embodiment, the displacement transmission device of the piezo drive device is configured such that the second piston is accommodated in the first piston. However, if there is room in the space, the first piston and the second piston are connected. They may be arranged side by side in the axial direction. Moreover, it is good also as a structure which enlarges and transmits the displacement of a 1st piston by making the pressure receiving area of a 1st piston larger than a 2nd piston. Furthermore, although the said embodiment was taken as the example applied to the injector which drives the control valve of a three-way valve structure, a control valve may be made into a two-way valve structure, or the back pressure control mechanism of a nozzle needle may differ.

本発明の第1の実施形態を示す図で、(a)はばね部材の全体構成を示す斜視図、(b)はばね部材の径方向断面を示す斜視図である。It is a figure which shows the 1st Embodiment of this invention, (a) is a perspective view which shows the whole structure of a spring member, (b) is a perspective view which shows the radial direction cross section of a spring member. 第1の実施形態のばね部材の径方向断面図である。It is radial direction sectional drawing of the spring member of 1st Embodiment. 本発明の第2の実施形態におけるばね部材形状を示す断面図である。It is sectional drawing which shows the spring member shape in the 2nd Embodiment of this invention. 本発明のピエゾ駆動装置を組み込んだピエゾ式インジェクタの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the piezo-type injector incorporating the piezo drive device of this invention. (a)は図4のA図拡大断面図、(b)は本発明のばね部材を用いたプリセットスプリングの径方向断面図である。FIG. 5A is an enlarged sectional view of FIG. 4A, and FIG. 5B is a radial sectional view of a preset spring using the spring member of the present invention. 本発明のばね部材を用いた荷重負荷機構の構成例を示す断面図である。It is sectional drawing which shows the structural example of the load load mechanism using the spring member of this invention. 本発明のばね部材を用いた荷重負荷機構の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the load load mechanism using the spring member of this invention. 本発明のばね部材を用いた荷重負荷機構のさらに他の構成例を示す断面図である。It is sectional drawing which shows the further another structural example of the load load mechanism using the spring member of this invention. (a)は従来のピエゾ駆動装置の主要部構成を示す部分断面図、(b)は図8のB図拡大断面図である。(A) is the fragmentary sectional view which shows the principal part structure of the conventional piezo drive device, (b) is the B figure expanded sectional view of FIG. 従来のピエゾ駆動装置の主要部構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the principal part structure of the conventional piezo drive device.

符号の説明Explanation of symbols

1 ピエゾ駆動装置
11 ケーシング
12 コネクタ
13 ロッド
14 円盤状部材
15 ベローズ
2 ピエゾスタック
3 プリセットスプリング
31 バネ部材
311 内周環状部
312 外周環状部
313 中間環状部
41 第1ピストン
42 油密室
43 第2ピストン
44 逆止弁
45 ノズルニードル
46 背圧室
47 噴孔
5 制御弁
51 弁体
52 高圧通路
53 スプリング
54 低圧通路
61 縦穴
62 高圧燃料通路
64 低圧燃料通路

DESCRIPTION OF SYMBOLS 1 Piezoelectric drive device 11 Casing 12 Connector 13 Rod 14 Disc-shaped member 15 Bellows 2 Piezo stack 3 Preset spring 31 Spring member 311 Inner ring part 312 Outer ring part 313 Middle ring part 41 First piston 42 Oiltight chamber 43 Second piston 44 Check valve 45 Nozzle needle 46 Back pressure chamber 47 Injection hole 5 Control valve 51 Valve body 52 High pressure passage 53 Spring 54 Low pressure passage 61 Vertical hole 62 High pressure fuel passage 64 Low pressure fuel passage

Claims (8)

一端側が可動部材に他端側が固定部材に支持され、前記可動部材を介して所定荷重を負荷する荷重負荷機構用ばね部材であって、環状の板ばねからなり、前記環状の板ばねは、内周環状部と外周環状部が同一方向に反り、これら内周環状部と外周環状部の間に、その反り方向と反対方向に張り出す中間環状部を有する形状となっていることを特徴とするばね部材。   One end side is supported by a movable member and the other end side is supported by a fixed member. The load member is a spring member for a load mechanism that applies a predetermined load via the movable member, and is composed of an annular leaf spring. The circumferential annular portion and the outer circumferential annular portion are warped in the same direction, and a shape having an intermediate annular portion protruding in a direction opposite to the warping direction is provided between the inner circumferential annular portion and the outer circumferential annular portion. Spring member. 前記環状の板ばねは、板面の径方向断面が略V字状の断面形状となっていることを特徴とする請求項1記載のばね部材。   The spring member according to claim 1, wherein the annular leaf spring has a substantially V-shaped cross section in the radial direction of the plate surface. 前記ばね部材を構成する前記環状の板ばねは、一枚の環状平板をプレス成形してなることを特徴とする請求項1または2記載のばね部材。   The spring member according to claim 1 or 2, wherein the annular leaf spring constituting the spring member is formed by press-molding a single annular flat plate. 前記環状の板ばねにおいて、中間環状部の板厚は、内周環状部および外周環状部の板厚よりも大きいことを特徴とする請求項1ないし3のいずれか1つに記載のばね部材。   4. The spring member according to claim 1, wherein in the annular leaf spring, the plate thickness of the intermediate annular portion is larger than the plate thicknesses of the inner circumferential annular portion and the outer circumferential annular portion. 前記環状の板ばねの最大板厚をTmax、内径をDin、外径をDoutとした時、下記式(1)
Tmax≦(Dout−Din)/4・・・(1)
を満足することを特徴とする請求項1ないし4のいずれか1つに記載のばね部材。
When the maximum plate thickness of the annular leaf spring is Tmax, the inner diameter is Din, and the outer diameter is Dout, the following formula (1)
Tmax ≦ (Dout−Din) / 4 (1)
The spring member according to any one of claims 1 to 4, wherein:
前記ばね部材が、複数の前記環状の板ばねを組み合わせた複合ばねからなり、複数の前記環状の板ばねのうち少なくとも2個は、前記内周環状部および前記外周環状部が互いに当接するように配置されていることを特徴とする請求項1ないし5のいずれか1つに記載のばね部材。   The spring member is composed of a composite spring in which a plurality of the annular leaf springs are combined, and at least two of the plurality of annular leaf springs are such that the inner circumferential annular portion and the outer circumferential annular portion abut against each other. The spring member according to claim 1, wherein the spring member is arranged. 請求項1ないし6いずれか1つに記載のばね部材を用いたピエゾ駆動装置であって、
ピエゾ素子に追従して変位する可動部材と固定部材との間に前記環状の板ばねを設け、
前記環状の板ばねによって前記ピエゾ素子に予荷重を負荷することを特徴とするピエゾ駆動装置。
A piezo drive device using the spring member according to any one of claims 1 to 6,
The annular leaf spring is provided between a movable member and a fixed member that are displaced following the piezo element,
A piezo drive device, wherein a preload is applied to the piezo element by the annular leaf spring.
請求項7記載のピエゾ駆動装置と、該ピエゾ駆動装置によって駆動される制御弁と、ノズルニードルに閉弁方向の圧力を作用させる制御室を備え、該制御室と低圧通路との間を前記制御弁で開閉することにより前記制御室の圧力を増減させて燃料噴射を制御することを特徴とするピエゾ式インジェクタ。

A piezo drive device according to claim 7, a control valve driven by the piezo drive device, and a control chamber for applying a pressure in a valve closing direction to a nozzle needle, wherein the control chamber and the low-pressure passage are controlled by the control chamber. A piezo-type injector characterized in that fuel injection is controlled by increasing or decreasing the pressure in the control chamber by opening and closing with a valve.

JP2004292126A 2004-10-05 2004-10-05 Spring member, piezo driving device, and piezo type injector Pending JP2006105260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292126A JP2006105260A (en) 2004-10-05 2004-10-05 Spring member, piezo driving device, and piezo type injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292126A JP2006105260A (en) 2004-10-05 2004-10-05 Spring member, piezo driving device, and piezo type injector

Publications (1)

Publication Number Publication Date
JP2006105260A true JP2006105260A (en) 2006-04-20

Family

ID=36375246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292126A Pending JP2006105260A (en) 2004-10-05 2004-10-05 Spring member, piezo driving device, and piezo type injector

Country Status (1)

Country Link
JP (1) JP2006105260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767168B1 (en) 2009-06-29 2017-08-10 일리노이즈 툴 워크스 인코포레이티드 Two-phase spring
WO2020071303A1 (en) * 2018-10-02 2020-04-09 日本発條株式会社 Disc spring, disc spring device, and method for manufacturing disc spring
JP2020084760A (en) * 2018-11-14 2020-06-04 株式会社Soken Fuel injection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149633U (en) * 1979-04-16 1980-10-28
JPS59206668A (en) * 1983-01-12 1984-11-22 Nippon Soken Inc Electrostrictive-strain operation type fuel injection valve
JPS61206827A (en) * 1985-03-08 1986-09-13 Ogura Clutch Co Ltd Electromagnetic coupling device
JPH03258418A (en) * 1990-03-09 1991-11-18 Tatsuta Electric Wire & Cable Co Ltd Manufacturing device for coned disc spring
JPH05172171A (en) * 1991-12-24 1993-07-09 Mitsubishi Steel Mfg Co Ltd Belleville spring having contact face of improved flatness
JPH0861408A (en) * 1994-08-22 1996-03-08 Mitsubishi Steel Mfg Co Ltd Flat ring spring
JPH09329155A (en) * 1996-06-10 1997-12-22 Dainatsukusu:Kk Spring plate for multiplate type frictional engaging device
JP2003106427A (en) * 2001-09-28 2003-04-09 Jatco Ltd Cylinder structure of automatic transmission
JP2003322220A (en) * 2002-05-02 2003-11-14 Mai Sumisato Tightening device, and damper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149633U (en) * 1979-04-16 1980-10-28
JPS59206668A (en) * 1983-01-12 1984-11-22 Nippon Soken Inc Electrostrictive-strain operation type fuel injection valve
JPS61206827A (en) * 1985-03-08 1986-09-13 Ogura Clutch Co Ltd Electromagnetic coupling device
JPH03258418A (en) * 1990-03-09 1991-11-18 Tatsuta Electric Wire & Cable Co Ltd Manufacturing device for coned disc spring
JPH05172171A (en) * 1991-12-24 1993-07-09 Mitsubishi Steel Mfg Co Ltd Belleville spring having contact face of improved flatness
JPH0861408A (en) * 1994-08-22 1996-03-08 Mitsubishi Steel Mfg Co Ltd Flat ring spring
JPH09329155A (en) * 1996-06-10 1997-12-22 Dainatsukusu:Kk Spring plate for multiplate type frictional engaging device
JP2003106427A (en) * 2001-09-28 2003-04-09 Jatco Ltd Cylinder structure of automatic transmission
JP2003322220A (en) * 2002-05-02 2003-11-14 Mai Sumisato Tightening device, and damper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767168B1 (en) 2009-06-29 2017-08-10 일리노이즈 툴 워크스 인코포레이티드 Two-phase spring
WO2020071303A1 (en) * 2018-10-02 2020-04-09 日本発條株式会社 Disc spring, disc spring device, and method for manufacturing disc spring
JP6715398B1 (en) * 2018-10-02 2020-07-01 日本発條株式会社 Disc spring, disc spring device, and method for manufacturing disc spring
JP2020084760A (en) * 2018-11-14 2020-06-04 株式会社Soken Fuel injection device
JP7152274B2 (en) 2018-11-14 2022-10-12 株式会社Soken fuel injector

Similar Documents

Publication Publication Date Title
EP1788231A1 (en) High-pressure fuel pump
JP2000511614A (en) Fuel injection valve with piezoelectric or magnetostrictive actuator
US7175112B2 (en) Fuel injection valve
JP4345696B2 (en) Common rail injector
EP1777433A1 (en) Fuel injection valve
JP4297879B2 (en) Injector
CN101624952B (en) Fuel injection device
JP4333757B2 (en) Fuel injection valve
JP4007202B2 (en) Sliding structure of shaft member and injector
JP2001355535A (en) Common rail injector
US20080217441A1 (en) Injector
JP2006105260A (en) Spring member, piezo driving device, and piezo type injector
JP2008215209A (en) Fuel injection valve
JP6245238B2 (en) Fuel pump
JP6217725B2 (en) Fuel pump
JP4131251B2 (en) Fuel injection device
JP4325110B2 (en) Piezoelectric actuator device and fuel injection valve
JP7014637B2 (en) Fuel injection device
JP2010151016A (en) Actuator
JP6993900B2 (en) Fuel injection device
JP6281296B2 (en) Fuel injection valve
JP2010223196A (en) Fuel injection valve
JP6462546B2 (en) Fuel injection valve
JPS618462A (en) Electrostriction fuel injection valve
JP6458747B2 (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124